Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts
- Corresponding author: Junjie Ge, gejj@ciac.ac.cn Wei Xing, xingwei@ciac.ac.cn †These authors contributed equally to this work.
Citation: Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts[J]. Acta Physico-Chimica Sinica, ;2023, 39(8): 221003. doi: 10.3866/PKU.WHXB202210036
Chatterjee, S.; Dutta, I.; Lum, Y.; Lai, Z.; Huang, K.-W. Energy Environ. Sci. 2021, 14, 1194. doi: 10.1039/d0ee03011b
doi: 10.1039/d0ee03011b
Cullen, D. A.; Neyerlin, K. C.; Ahluwalia, R. K.; Mukundan, R.; More, K. L.; Borup, R. L.; Weber, A. Z.; Myers, D. J.; Kusoglu, A. Nat. Energy 2021, 6, 462. doi: 10.1038/s41560-021-00775-z
doi: 10.1038/s41560-021-00775-z
Steele, B. C.; Heinzel, A. Nature 2001, 414, 345. doi: 10.1038/35104620
doi: 10.1038/35104620
Staffell, I.; Scamman, D.; Abad, A. V.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.; Ward, K. R. Energy Environ. Sci. 2019, 12, 463. doi: 10.1039/c8ee01157e
doi: 10.1039/c8ee01157e
Shih, C. F.; Zhang, T.; Li, J. H.; Bai, C. L. Joule 2018, 2, 1925. doi: 10.1016/j.joule.2018.08.016
doi: 10.1016/j.joule.2018.08.016
Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115
doi: 10.1038/nature11115
Li, Q.; Wang, T.; Havas, D.; Zhang, H.; Xu, P.; Han, J.; Cho, J.; Wu, G. Adv. Sci. 2016, 3, 1600140. doi: 10.1002/advs.201600140
doi: 10.1002/advs.201600140
Xu, X.; Xia, Z.; Zhang, X.; Sun, R.; Sun, X.; Li, H.; Wu, C.; Wang, J.; Wang, S.; Sun, G. Appl. Catal. B 2019, 259, 118042. doi: 10.1016/j.apcatb.2019.118042
doi: 10.1016/j.apcatb.2019.118042
Wroblowa, H. S.; Yen Chi, P.; Razumney, G. J. Electroanal. Chem. 1976, 69, 195. doi: 10.1016/s0022-0728(76)80250-1
doi: 10.1016/s0022-0728(76)80250-1
Muthukrishnan, A.; Nabae, Y.; Chang, C. W.; Okajima, T.; Ohsaka, T. Catal. Sci. Technol. 2015, 5, 1764. doi: 10.1039/c4cy01429d
doi: 10.1039/c4cy01429d
Luo, E.; Chu, Y.; Liu, J.; Shi, Z.; Zhu, S.; Gong, L.; Ge, J.; Choi, C. H.; Liu, C.; Xing, W. Energy Environ. Sci. 2021, 14, 2158. doi: 10.1039/d1ee00142f
doi: 10.1039/d1ee00142f
Wang, X.; Li, Z.; Qu, Y.; Yuan, T.; Wang, W.; Wu, Y.; Li, Y. Chem 2019, 5, 1486. doi: 10.1016/j.chempr.2019.03.002
doi: 10.1016/j.chempr.2019.03.002
Keith, J. A.; Jerkiewicz, G.; Jacob, T. ChemPhysChem 2010, 11, 2779. doi: 10.1002/cphc.201000286
doi: 10.1002/cphc.201000286
Singh, H.; Zhuang, S.; Ingis, B.; Nunna, B. B.; Lee, E. S. Carbon 2019, 151, 160. doi: 10.1016/j.carbon.2019.05.075
doi: 10.1016/j.carbon.2019.05.075
Duan, Z.; Wang, G. Phys. Chem. Chem. Phys. 2011, 13, 20178. doi: 10.1039/c1cp21687b
doi: 10.1039/c1cp21687b
Tao, X.; Lu, R.; Ni, L.; Gridin, V.; Al-Hilfi, S. H.; Qiu, Z.; Zhao, Y.; Kramm, U. I.; Zhou, Y.; Mullen, K. Mater. Horizons 2021, 9, 417. doi: 10.1039/d1mh01307f
doi: 10.1039/d1mh01307f
Li, X.; Xiang, Z. Nat. Commun. 2022, 13, 57. doi: 10.1038/s41467-021-27735-1
doi: 10.1038/s41467-021-27735-1
Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Science 2017, 357, 479. doi: 10.1126/science.aan2255
doi: 10.1126/science.aan2255
Wang, J.; Huang, Z.; Liu, W.; Chang, C.; Tang, H.; Li, Z.; Chen, W.; Jia, C.; Yao, T.; Wei, S.; et al. J. Am. Chem. Soc. 2017, 139, 17281. doi: 10.1021/jacs.7b10385
doi: 10.1021/jacs.7b10385
Yang, G.; Zhu, J.; Yuan, P.; Hu, Y.; Qu, G.; Lu, B.-A.; Xue, X.; Yin, H.; Cheng, W.; Cheng, J.; et al. Nat. Commun. 2021, 12, 1734. doi: 10.1038/s41467-021-21919-5
doi: 10.1038/s41467-021-21919-5
Zhang, X.; Xue, D.; Jiang, S.; Xia, H.; Yang, Y.; Yan, W.; Hu, J.; Zhang, J. InfoMat 2022, 4, 12257. doi: 10.1002/inf2.12257
doi: 10.1002/inf2.12257
Luo, E.; Zhang, H.; Wang, X.; Gao, L.; Gong, L.; Zhao, T.; Jin, Z.; Ge, J.; Jiang, Z.; Liu, C.; et al. Angew. Chem. Int. Ed. 2019, 58, 12469. doi: 10.1002/anie.201906289
doi: 10.1002/anie.201906289
Xiao, M.; Gao, L.; Wang, Y.; Wang, X.; Zhu, J.; Jin, Z.; Liu, C.; Chen, H.; Li, G.; Ge, J.; et al. J. Am. Chem. Soc. 2019, 141, 19800. doi: 10.1021/jacs.9b09234
doi: 10.1021/jacs.9b09234
Xiao, M.; Chen, Y.; Zhu, J.; Zhang, H.; Zhao, X.; Gao, L.; Wang, X.; Zhao, J.; Ge, J.; Jiang, Z.; et al. J. Am. Chem. Soc. 2019, 141, 17763. doi: 10.1021/jacs.9b08362
doi: 10.1021/jacs.9b08362
Zelenay, P.; Myers, D. Electrocatalysis Consortium 2.0.
Xiao, M.; Zhu, J.; Ma, L.; Jin, Z.; Ge, J.; Deng, X.; Hou, Y.; He, Q.; Li, J.; Jia, Q.; et al. ACS Catal. 2018, 8, 2824. doi: 10.1021/acscatal.8b00138
doi: 10.1021/acscatal.8b00138
Fei, H.; Dong, J.; Chen, D.; Hu, T.; Duan, X.; Shakir, I.; Huang, Y.; Duan, X. Chem. Soc. Rev. 2019, 48, 5207. doi: 10.1039/c9cs00422j
doi: 10.1039/c9cs00422j
van Oversteeg, C. H.; Doan, H. Q.; de Groot, F. M.; Cuk, T. Chem. Soc. Rev. 2017, 46, 102. doi: 10.1039/c6cs00230g
doi: 10.1039/c6cs00230g
Luo, E.; Wang, C.; Li, Y.; Wang, X.; Gong, L.; Zhao, T.; Jin, Z.; Ge, J.; Liu, C.; Xing, W. Nano Res. 2020, 13, 2420. doi: 10.1007/s12274-020-2868-8
doi: 10.1007/s12274-020-2868-8
Yu, L.; Li, Y.; Ruan, Y. Angew. Chem. Int. Ed. 2021, 60, 25296. doi: 10.1002/anie.202111761
doi: 10.1002/anie.202111761
Tamenori, Y.; Morita, M.; Nakamura, T. J. Synchrotron Radiat. 2011, 18, 747. doi: 10.1107/S0909049511027531
doi: 10.1107/S0909049511027531
Toyoshima, R.; Kondoh, H. J. Phys. Condens. Matter 2015, 27, 083003. doi: 10.1088/0953-8984/27/8/083003
doi: 10.1088/0953-8984/27/8/083003
Kramm, U. I.; Herrmann-Geppert, I.; Behrends, J.; Lips, K.; Fiechter, S.; Bogdanoff, P. J. Am. Chem. Soc. 2016, 138, 635. doi: 10.1021/jacs.5b11015
doi: 10.1021/jacs.5b11015
Li, J.; Sougrati, M. T.; Zitolo, A.; Ablett, J. M.; Oğuz, I. C.; Mineva, T.; Matanovic, I.; Atanassov, P.; Huang, Y.; Zenyuk, I.; et al. Nat. Catal. 2020, 4, 10. doi: 10.1038/s41929-020-00545-2
doi: 10.1038/s41929-020-00545-2
Jia, Q.; Liu, E.; Jiao, L.; Pann, S.; Mukerjee, S. Adv Mater 2019, 31, e1805157. doi: 10.1002/adma.201805157
doi: 10.1002/adma.201805157
Saveleva, V. A.; Ebner, K.; Ni, L.; Smolentsev, G.; Klose, D.; Zitolo, A.; Marelli, E.; Li, J.; Medarde, M.; Safonova, O. V.; et al. Angew. Chem. Int. Ed. 2021, 60, 11707. doi: 10.1002/anie.202016951
doi: 10.1002/anie.202016951
Bandyopadhyay, D. Int. Mater. Rev. 2006, 51, 171. doi: 10.1179/174328006x79490
doi: 10.1179/174328006x79490
Malko, D.; Kucernak, A.; Lopes, T. Nat. Commun. 2016, 7, 13285. doi: 10.1038/ncomms13285
doi: 10.1038/ncomms13285
Xu, X.; Zhang, X.; Kuang, Z.; Xia, Z.; Rykov, A. I.; Yu, S.; Wang, J.; Wang, S.; Sun, G. Appl. Catal. B 2022, 309, 121290. doi: 10.1016/j.apcatb.2022.121290
doi: 10.1016/j.apcatb.2022.121290
Bae, G.; Kim, H.; Choi, H.; Jeong, P.; Kim, D. H.; Kwon, H. C.; Lee, K. S.; Choi, M.; Oh, H. S.; Jaouen, F.; et al. JACS Au 2021, 1, 586. doi: 10.1021/jacsau.1c00074
doi: 10.1021/jacsau.1c00074
Primbs, M.; Sun, Y.; Roy, A.; Malko, D.; Mehmood, A.; Sougrati, M.-T.; Blanchard, P.-Y.; Granozzi, G.; Kosmala, T.; Daniel, G.; et al. Energy Environ. Sci. 2020, 13, 2480. doi: 10.1039/d0ee01013h
doi: 10.1039/d0ee01013h
Edgecomb, J.; Xie, X.; Shao, Y.; El-Khoury, P. Z.; Johnson, G. E.; Prabhakaran, V. Front. Chem. 2020, 8, 572563. doi: 10.3389/fchem.2020.572563
doi: 10.3389/fchem.2020.572563
Jiao, L.; Li, J.; Richard, L. L.; Sun, Q.; Stracensky, T.; Liu, E.; Sougrati, M. T.; Zhao, Z.; Yang, F.; Zhong, S.; et al. Nat. Mater. 2021, 20, 1385. doi: 10.1038/s41563-021-01030-2
doi: 10.1038/s41563-021-01030-2
Jin, Z.; Li, P.; Meng, Y.; Fang, Z.; Xiao, D.; Yu, G. Nat. Catal. 2021, 4, 615. doi: 10.1038/s41929-021-00650-w
doi: 10.1038/s41929-021-00650-w
Deng, Y.; Luo, J.; Chi, B.; Tang, H.; Li, J.; Qiao, X.; Shen, Y.; Yang, Y.; Jia, C.; Rao, P.; et al. Adv. Energy Mater. 2021, 11, 2101222. doi: 10.1002/aenm.202101222
doi: 10.1002/aenm.202101222
Dong, F.; Wu, M.; Chen, Z.; Liu, X.; Zhang, G.; Qiao, J.; Sun, S. Nanomicro Lett. 2022, 14, 36. doi: 10.1007/s40820-021-00768-3
doi: 10.1007/s40820-021-00768-3
Jasinski, R. Nature 1964, 201, 1212. doi: 10.1038/2011212a0
doi: 10.1038/2011212a0
Jahnke, H.; Schonborn, M.; Zimmermann, G. Top. Curr. Chem. 1976, 61, 133. doi: 10.1007/BFb0046059
doi: 10.1007/BFb0046059
Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Science 2009, 324, 71. doi: 10.1126/science.1170051
doi: 10.1126/science.1170051
Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Science 2011, 332, 443. doi: 10.1126/science.1200832
doi: 10.1126/science.1200832
Zhang, H.; Chung, H. T.; Cullen, D. A.; Wagner, S.; Kramm, U. I.; More, K. L.; Zelenay, P.; Wu, G. Energy Environ. Sci. 2019, 12, 2548. doi: 10.1039/c9ee00877b
doi: 10.1039/c9ee00877b
He, Y.; Liu, S.; Priest, C.; Shi, Q.; Wu, G. Chem. Soc. Rev. 2020, 49, 3484. doi: 10.1039/c9cs00903e
doi: 10.1039/c9cs00903e
Li, X.; Li, J.; Wu, G.; Litster, S. Stationary Direct Methanol Fuel Cells Using Pure Methanol.
Wan, X.; Liu, X.; Li, Y.; Yu, R.; Zheng, L.; Yan, W.; Wang, H.; Xu, M.; Shui, J. Nat. Catal. 2019, 2, 259. doi: 10.1038/s41929-019-0237-3
doi: 10.1038/s41929-019-0237-3
Xiao, M.; Zhu, J.; Li, G.; Li, N.; Li, S.; Cano, Z. P.; Ma, L.; Cui, P.; Xu, P.; Jiang, G.; et al. Angew. Chem. Int. Ed. 2019, 58, 9640. doi: 10.1002/anie.201905241
doi: 10.1002/anie.201905241
Gong, L.; Zhang, H.; Wang, Y.; Luo, E.; Li, K.; Gao, L.; Wang, Y.; Wu, Z.; Jin, Z.; Ge, J.; et al. Angew. Chem. Int. Ed. 2020, 59, 13923. doi: 10.1002/anie.202004534
doi: 10.1002/anie.202004534
Xu, H. Electrocat: Durable Mn-Based Pgm-Free Catalysts for Polymer Electrolyte Membrane Fuel Cells.
Wang, Q.; Yang, Y.; Sun, F.; Chen, G.; Wang, J.; Peng, L.; Chen, W. T.; Shang, L.; Zhao, J.; Sun-Waterhouse, D.; et al. Adv. Energy Mater. 2021, 11, 2100219. doi: 10.1002/aenm.202100219
doi: 10.1002/aenm.202100219
Qu, Y.; Li, Z.; Chen, W.; Lin, Y.; Yuan, T.; Yang, Z.; Zhao, C.; Wang, J.; Zhao, C.; Wang, X.; et al. Nat. Catal. 2018, 1, 781. doi: 10.1038/s41929-018-0146-x
doi: 10.1038/s41929-018-0146-x
Zhu, M.; Zhao, C.; Liu, X.; Wang, X.; Zhou, F.; Wang, J.; Hu, Y.; Zhao, Y.; Yao, T.; Yang, L.-M.; et al. ACS Catal. 2021, 11, 3923. doi: 10.1021/acscatal.0c05503
doi: 10.1021/acscatal.0c05503
Li, J.; Chen, S.; Yang, N.; Deng, M.; Ibraheem, S.; Deng, J.; Li, J.; Li, L.; Wei, Z. Angew. Chem. Int. Ed. 2019, 58, 7035. doi: 10.1002/anie.201902109
doi: 10.1002/anie.201902109
Xie, X.; He, C.; Li, B.; He, Y.; Cullen, D. A.; Wegener, E. C.; Kropf, A. J.; Martinez, U.; Cheng, Y.; Engelhard, M. H.; et al. Nat. Catal. 2020, 3, 1044. doi: 10.1038/s41929-020-00546-1
doi: 10.1038/s41929-020-00546-1
Yin, S.; Yang, S.; Li, G.; Li, G.; Zhang, B.; Wang, C.; Chen, M.; Liao, H.-G.; Yang, J.; Jiang, Y.; et al. Energy Environ. Sci. 2022, 15, 3033. doi: 10.1039/d2ee00061j
doi: 10.1039/d2ee00061j
Mehmood, A.; Gong, M.; Jaouen, F.; Roy, A.; Zitolo, A.; Khan, A.; Sougrati, M.-T.; Primbs, M.; Bonastres, A. M.; Fongalland, D. ; et al. Nat. Catal. 2022, 5, 311. doi: 10.1038/s41929-022-00772-9
doi: 10.1038/s41929-022-00772-9
Wei, X.; Song, S.; Cai, W.; Luo, X.; Jiao, L.; Fang, Q.; Wang, X.; Wu, N.; Luo, Z.; Wang, H.; et al. Chem 2022, 9, 1. doi: 10.1016/j.chempr.2022.10.001
doi: 10.1016/j.chempr.2022.10.001
Xie, H.; Xie, X.; Hu, G.; Prabhakaran, V.; Saha, S.; Gonzalez-Lopez, L.; Phakatkar, A. H.; Hong, M.; Wu, M.; Shahbazian-Yassar, R.; et al. Nat. Energy 2022, 7, 281. doi: 10.1038/s41560-022-00988-w
doi: 10.1038/s41560-022-00988-w
Ramaswamy, N.; Mukerjee, S. J. Phys. Chem. C 2011, 115, 18015. doi: 10.1021/jp204680p
doi: 10.1021/jp204680p
Ramaswamy, N.; Mukerjee, S. Adv. Phys 2012, 2012, 1. doi: 10.1155/2012/491604
doi: 10.1155/2012/491604
Liu, Q. T.; Liu, X. F.; Zheng, L. R.; Shui, J. L. Angew. Chem. Int. Ed. 2018, 57, 1204. doi: 10.1002/anie.201709597
doi: 10.1002/anie.201709597
Shao, Y.; Dodelet, J.-P.; Wu, G.; Zelenay, P. Adv. Mater. 2019, 31, 1807615. doi: 10.1002/adma.201807615
doi: 10.1002/adma.201807615
Miao, Z.; Li, S.; Priest, C.; Wang, T.; Wu, G.; Li, Q. Adv. Mater. 2022, 2200595. doi: 10.1002/adma.202200595
doi: 10.1002/adma.202200595
Miao, Z.; Wang, X.; Zhao, Z.; Zuo, W.; Chen, S.; Li, Z.; He, Y.; Liang, J.; Ma, F.; Wang, H.-L.; et al. Adv. Mater. 2021, 33, 2006613. doi: 10.1002/adma.202006613
doi: 10.1002/adma.202006613
Li, L.; Wen, Y.; Han, G.; Liu, Y.; Song, Y.; Zhang, W.; Sun, J.; Du, L.; Kong, F.; Ma, Y.; et al. Chem. Eng. J. 2022, 437, 135320. doi: 10.1016/j.cej.2022.135320
doi: 10.1016/j.cej.2022.135320
Wan, X.; Shui, J. ACS Energy Lett. 2022, 7, 1696. doi: 10.1021/acsenergylett.2c00473
doi: 10.1021/acsenergylett.2c00473
Ahluwalia, R. K.; Wang, X.; Osmieri, L.; Peng, J. K.; Cetinbas, C. F.; Park, J.; Myers, D. J.; Chung, H. T.; Neyerlin, K. C. J. Electrochem. Soc. 2021, 168, 024513. doi: 10.1149/1945-7111/abe34c
doi: 10.1149/1945-7111/abe34c
Du, L.; Prabhakaran, V.; Xie, X.; Park, S.; Wang, Y.; Shao, Y. Adv. Mater. 2021, 33, 1908232. doi: 10.1002/adma.201908232
doi: 10.1002/adma.201908232
Xia, D.; Yang, X.; Xie, L.; Wei, Y.; Jiang, W.; Dou, M.; Li, X.; Li, J.; Gan, L.; Kang, F. Adv. Funct. Mater. 2019, 29, 1906174. doi: 10.1002/adfm.201906174
doi: 10.1002/adfm.201906174
Ma, Q.; Jin, H.; Zhu, J.; Li, Z.; Xu, H.; Liu, B.; Zhang, Z.; Ma, J.; Mu, S. Adv. Sci. 2021, 8, 2102209. doi: 10.1002/advs.202102209
doi: 10.1002/advs.202102209
Li, J.; Zhang, H.; Samarakoon, W.; Shan, W.; Cullen, D. A.; Karakalos, S.; Chen, M.; Gu, D.; More, K. L.; Wang, G.; et al. Angew. Chem. Int. Ed. 2019, 58, 18971. doi: 10.1002/anie.201909312
doi: 10.1002/anie.201909312
Wei, H.; Su, X.; Liu, J.; Tian, J.; Wang, Z.; Sun, K.; Rui, Z.; Yang, W.; Zou, Z. Electrochem. Commun. 2018, 88, 19. doi: 10.1016/j.elecom.2018.01.011
doi: 10.1016/j.elecom.2018.01.011
Wang, Z.; Tang, H.; Zhang, H.; Lei, M.; Chen, R.; Xiao, P.; Pan, M. J. Membr. Sci. 2012, 421, 201. doi: 10.1016/j.memsci.2012.07.014
doi: 10.1016/j.memsci.2012.07.014
Yoon, K. R.; Lee, K. A.; Jo, S.; Yook, S. H.; Lee, K. Y.; Kim, I.-D.; Kim, J. Y. Adv. Funct. Mater. 2019, 29, 1806929. doi: 10.1002/adfm.201806929
doi: 10.1002/adfm.201806929
Wang, Y.; Wan, X.; Liu, J.; Li, W.; Li, Y.; Guo, X.; Liu, X.; Shang, J.; Shui, J. Nano Res. 2021, 15, 3082. doi: 10.1007/s12274-021-3966-y
doi: 10.1007/s12274-021-3966-y
Liu, S.; Li, C.; Zachman, M. J.; Zeng, Y.; Yu, H.; Li, B.; Wang, M.; Braaten, J.; Liu, J.; Meyer, H. M.; et al. Nat. Energy 2022, 7, 652. doi: 10.1038/s41560-022-01062-1
doi: 10.1038/s41560-022-01062-1
Yang, N.; Peng, L.; Li, L.; Li, J.; Liao, Q.; Shao, M.; Wei, Z. Chem. Sci. 2021, 12, 12476. doi: 10.1039/d1sc02901k
doi: 10.1039/d1sc02901k
Herranz, J.; Jaouen, F.; Lefevre, M.; Kramm, U. I.; Proietti, E.; Dodelet, J. P.; Bogdanoff, P.; Fiechter, S.; Abs-Wurmbach, I.; Bertrand, P.; et al. J. Phys. Chem. C 2011, 115, 16087. doi: 10.1021/jp2042526
doi: 10.1021/jp2042526
Li, H.; Tang, Y.; Wang, Z.; Shi, Z.; Wu, S.; Song, D.; Zhang, J.; Fatih, K.; Zhang, J.; Wang, H.; et al. J. Power Sources 2008, 178, 103. doi: 10.1016/j.jpowsour.2007.12.068
doi: 10.1016/j.jpowsour.2007.12.068
Fu, X.; Zamani, P.; Choi, J.-Y.; Hassan, F. M.; Jiang, G.; Higgins, D. C.; Zhang, Y.; Hoque, M. A.; Chen, Z. Adv. Mater. 2017, 29, 1604456. doi: 10.1002/adma.201604456
doi: 10.1002/adma.201604456
Chenitz, R.; Kramm, U. I.; Lefèvre, M.; Glibin, V.; Zhang, G.; Sun, S.; Dodelet, J.-P. Energy Environ. Sci. 2018, 11, 365. doi: 10.1039/c7ee02302b
doi: 10.1039/c7ee02302b
Zhang, X.; Xia, Z.; Li, H.; Yu, S.; Wang, S.; Sun, G. RSC Adv. 2019, 9, 7086. doi: 10.1039/c9ra00167k
doi: 10.1039/c9ra00167k
Choi, J.-Y.; Yang, L.; Kishimoto, T.; Fu, X.; Ye, S.; Chen, Z.; Banham, D. Energy Environ. Sci. 2017, 10, 296. doi: 10.1039/c6ee03005j
doi: 10.1039/c6ee03005j
Wang, Y.-C.; Zhu, P.-F.; Yang, H.; Huang, L.; Wu, Q.-H.; Rauf, M.; Zhang, J.-Y.; Dong, J.; Wang, K.; Zhou, Z.-Y.; et al. ChemElectroChem 2018, 5, 1914. doi: 10.1002/celc.201700939
doi: 10.1002/celc.201700939
Hao, Y.-C.; Guo, Y.; Chen, L.-W.; Shu, M.; Wang, X.-Y.; Bu, T.-A.; Gao, W.-Y.; Zhang, N.; Su, X.; Feng, X.; et al. Nat. Catal. 2019, 2, 467. doi: 10.1038/s41929-019-0267-x
doi: 10.1038/s41929-019-0267-x
Mun, Y.; Kim, M. J.; Park, S.-A.; Lee, E.; Ye, Y.; Lee, S.; Kim, Y.-T.; Kim, S.; Kim, O.-H.; Cho, Y.-H.; et al. Appl. Catal. B 2018, 222, 191. doi: 10.1016/j.apcatb.2017.10.015
doi: 10.1016/j.apcatb.2017.10.015
Cheng, Q.; Han, S.; Mao, K.; Chen, C.; Yang, L.; Zou, Z.; Gu, M.; Hu, Z.; Yang, H. Nano Energy 2018, 52, 485. doi: 10.1016/j.nanoen.2018.08.005
doi: 10.1016/j.nanoen.2018.08.005
Slack, J.; Halevi, B.; McCool, G.; Li, J.; Paylicek, R.; Wycisk, R.; Mukerjee, S.; Pintauro, P. ChemElectroChem 2018, 5, 1537. doi: 10.1002/celc.201800283
doi: 10.1002/celc.201800283
Yin, H.; Yuan, P.; Lu, B.-A.; Xia, H.; Guo, K.; Yang, G.; Qu, G.; Xue, D.; Hu, Y.; Cheng, J.; et al. ACS Catal. 2021, 11, 12754. doi: 10.1021/acscatal.1c02259
doi: 10.1021/acscatal.1c02259
Wan, X.; Liu, Q.; Liu, J.; Liu, S.; Liu, X.; Zheng, L.; Shang, J.; Yu, R.; Shui, J. Nat. Commun. 2022, 13, 2963. doi: 10.1038/s41467-022-30702-z
doi: 10.1038/s41467-022-30702-z
Ye, W.; Chen, S.; Lin, Y.; Yang, L.; Chen, S.; Zheng, X.; Qi, Z.; Wang, C.; Long, R.; Chen, M.; et al. Chem 2019, 5, 2865. doi: 10.1016/j.chempr.2019.07.020
doi: 10.1016/j.chempr.2019.07.020
Peng, L.; Yang, J.; Yang, Y.; Qian, F.; Wang, Q.; Sun-Waterhouse, D.; Shang, L.; Zhang, T.; Waterhouse, G. I. N. Adv. Mater. 2022, 34, 2202544. doi: 10.1002/adma.202202544
doi: 10.1002/adma.202202544
Xu, M.-J.; Liu, J.; Ge, J.-J.; Liu, C.-P.; Xing, W. J. Electrochem. 2020, 26, 464. doi: 10.13208/j.electrochem.200444
doi: 10.13208/j.electrochem.200444
Wang, X.; Zhang, L.; Liu, C.-P.; Ge, J.-J.; Zhu, J.-B.; Xing, W. J. Electrochem. 2022, 28, 2108501. doi: 10.13208/j.electrochem.210850
doi: 10.13208/j.electrochem.210850
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433