Citation: Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes[J]. Acta Physico-Chimica Sinica, ;2023, 39(8): 221003. doi: 10.3866/PKU.WHXB202210032 shu

Research Progress of Lithium Metal Halide Solid Electrolytes

  • Corresponding author: Chuang Yu, cyu2020@hust.edu.cn Guangshe Li, guangshe@jlu.edu.cn Jia Xie, xiejia@hust.edu.cn
  • Received Date: 25 October 2022
    Revised Date: 16 November 2022
    Accepted Date: 17 November 2022
    Available Online: 24 November 2022

    Fund Project: the National Key Research and Development Program 2021YFB2400200the National Key Research and Development Program 2021YFB2500300the National Natural Science Foundation of China 52177214the National Natural Science Foundation of China 51821005

  • All-solid-state batteries are a promising energy storage technology owing to their high energy density and safety. Exploring solid electrolytes with high room-temperature ionic conductivity, good electrochemical stability, and excellent cathode/anode compatibility is key to realizing the practical application of all-solid-state batteries. Lithium metal halide solid electrolytes have attracted extensive research attention because of their excellent electrochemical windows, high positive electrode stabilities, and acceptable room-temperature Li-ion conductivities of up to 10−3 S·cm−1. In this paper, the chemical compositions, structural details, lithium-ion conduction pathways, and synthesis routes of lithium metal halide solid electrolytes are reviewed based on recently published papers and our studies. The lithium metal halide Lia-M-X6 can be classified as Lia-M-Cl6, Lia-M-Cl4, and Lia-M-Cl8 based on the substitution of the Li ions with different transition metal elements. Among these, the Lia-M-X6 and Lia-M-X4 electrolytes have been widely investigated because of their high ionic conductivities of up to 10−3 S·cm−1. Lia-M-X6 electrolytes exhibit three types of structure: trigonal, orthorhombic, and monoclinic. Li+ diffusion in lithium metal halide electrolytes with different structures follows a vacancy mechanism. When transition metal cations with larger ionic radii and higher valances are used to substitute Li+ in the structure, vacancies are generated and larger Li+ transport channels are produced, both of which are helpful for achieving faster Li-ion conductivities in the modified electrolytes. The typical synthetic route for lithium metal halide electrolytes is mechanical milling and subsequent sintering. Moreover, recent studies have reported that a pure phase with high conductivity can be obtained via water-mediated synthesis, which is a promising method for mass production. The electrochemical stability of lithium metal halide electrolytes with temperature, humidity, and active electrode materials is also summarized herein. Some lithium halide electrolytes suffer from a low phase-transition temperature close to room temperature, making it difficult to prepare the pure phase and limiting their applications. Owing to the high sensitivity of halides to moisture, lithium halide electrolytes suffer poor stability during storage and operation in the open air. The wide electrochemical window and excellent stability of high-voltage cathode materials of lithium metal halide electrolytes enable the construction of all-solid-state lithium batteries with a high energy density and long lifespan. Moreover, this property makes it possible to introduce carbon conductive additives into the cathode without a surface coating layer on the active materials, which is helpful for designing highly conductive frameworks for thick electrodes used in solid-state batteries. However, lithium metal halide electrolytes exhibit poor stability with bare lithium metal or lithium alloys because of their high reduction potentials. Therefore, another solid electrolyte layer requires the isolation of the direct contact between the lithium metal halide electrolytes and Li-related anodes. Finally, this review summarizes the application of these electrolytes in all-solid-state batteries in recent years and highlights the challenges and research directions of lithium halide electrolytes.
  • 加载中
    1. [1]

      Julien, C. M. J. Power Sources 2011, 196 (8), 3949. doi: 10.1016/j.jpowsour.2010.11.093  doi: 10.1016/j.jpowsour.2010.11.093

    2. [2]

      (a) Goodenough, J. B.; Kim, Y. Chem. Mater. 2009, 22 (3), 587. doi: 10.1021/cm901452z
      (b)Janek, J.; Zeier, W.G. Nat. Energy 2016, 1(9), 16141. doi: 10.1038/nenergy.2016.141

    3. [3]

    4. [4]

      Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C. Adv. Energy Mater. 2016, 6 (8), 1501590. doi: 10.1002/aenm.201501590  doi: 10.1002/aenm.201501590

    5. [5]

      Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. Nat. Energy 2016, 1 (4), 16030. doi: 10.1038/nenergy.2016.30  doi: 10.1038/nenergy.2016.30

    6. [6]

      Shin, B. R.; Nam, Y. J.; Oh, D. Y.; Kim, D. H.; Kim, J. W.; Jung, Y. S. Electrochim. Acta 2014, 146, 395. doi: 10.1016/j.electacta.2014.08.139  doi: 10.1016/j.electacta.2014.08.139

    7. [7]

      Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Solid State Ion. 2011, 182 (1), 116. doi: 10.1016/j.ssi.2010.10.013  doi: 10.1016/j.ssi.2010.10.013

    8. [8]

      Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S. Adv. Mater. 2018, 30 (44), e1803075. doi: 10.1002/adma.201803075  doi: 10.1002/adma.201803075

    9. [9]

      Li, X.; Liang, J.; Luo, J.; Norouzi Banis, M.; Wang, C.; Li, W.; Deng, S.; Yu, C.; Zhao, F.; Hu, Y.; et al. Energy Environm. Sci. 2019, 12 (9), 2665. doi: 10.1039/C9EE02311A  doi: 10.1039/C9EE02311A

    10. [10]

      Liu, Y.; Wang, S.; Nolan, A. M.; Ling, C.; Mo, Y. Adv. Energy Mater. 2020, 10 (40), 2002356. doi: 10.1002/aenm.202002356  doi: 10.1002/aenm.202002356

    11. [11]

      Park, K.-H.; Kaup, K.; Assoud, A.; Zhang, Q.; Wu, X.; Nazar, L. F. ACS Energy Lett. 2020, 5 (2), 533. doi: 10.1021/acsenergylett.9b02599  doi: 10.1021/acsenergylett.9b02599

    12. [12]

      Shannon, R. Acta Crystallogr. Sect. A 1976, 32 (5), 751. doi: 10.1107/S0567739476001551  doi: 10.1107/S0567739476001551

    13. [13]

      Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y.; Ceder, G. Nat. Mater. 2015, 14 (10), 1026. doi: 10.1038/nmat4369  doi: 10.1038/nmat4369

    14. [14]

      Lutz, H. D.; Kuske, P.; Wussow, K. Z. Anorg. Allg. Chem. 1987, 553 (10), 172. doi: 10.1002/zaac.19875531020  doi: 10.1002/zaac.19875531020

    15. [15]

      Flores-González, N.; Minafra, N.; Dewald, G.; Reardon, H.; Smith, R. I.; Adams, S.; Zeier, W. G.; Gregory, D. H. ACS Mater. Lett. 2021, 3 (5), 652. doi: 10.1021/acsmaterialslett.1c00055  doi: 10.1021/acsmaterialslett.1c00055

    16. [16]

      Hönle, W.; Miller, G.; Simon, A. J. Solid State Chem. 1988, 75 (1), 147. doi: 10.1016/0022-4596(88)90312-X  doi: 10.1016/0022-4596(88)90312-X

    17. [17]

      Hönle, W.; Simon, A. Z. Anorg. Allg. Chem. 1986, 41 (11), 1391. doi: 10.1515/znb-1986-1113  doi: 10.1515/znb-1986-1113

    18. [18]

      Liang, J.; Li, X.; Wang, S.; Adair, K. R.; Li, W.; Zhao, Y.; Wang, C.; Hu, Y.; Zhang, L.; Zhao, S.; et al. J. Am. Chem. Soc. 2020, 142 (15), 7012. doi: 10.1021/jacs.0c00134  doi: 10.1021/jacs.0c00134

    19. [19]

      Li, X.; Liang, J.; Chen, N.; Luo, J.; Adair, K. R.; Wang, C.; Banis, M. N.; Sham, T.-K.; Zhang, L.; Zhao, S.; et al. Angew. Chem. Int. Ed. 2019, 58 (46), 16427. doi: 10.1002/anie.201909805  doi: 10.1002/anie.201909805

    20. [20]

      Wang, K.; Ren, Q.; Gu, Z.; Duan, C.; Wang, J.; Zhu, F.; Fu, Y.; Hao, J.; Zhu, J.; He, L.; et al. Nat. Commun. 2021, 12 (1), 4410. doi: 10.1038/s41467-021-24697-2  doi: 10.1038/s41467-021-24697-2

    21. [21]

      Chen, S.; Yu, C.; Chen, S.; Peng, L.; Liao, C.; Wei, C.; Wu, Z.; Cheng, S.; Xie, J. Chin. Chem. Lett. 2022, 33 (10), 4635. doi: 10.1016/j.cclet.2021.12.048  doi: 10.1016/j.cclet.2021.12.048

    22. [22]

      Kwak, H.; Han, D.; Lyoo, J.; Park, J.; Jung, S. H.; Han, Y.; Kwon, G.; Kim, H.; Hong, S.-T.; Nam, K.-W.; et al. Adv. Energy Mater. 2021, 11 (12), 2003190. doi: 10.1002/aenm.202003190  doi: 10.1002/aenm.202003190

    23. [23]

      Liang, J.; Li, X.; Adair, K. R.; Sun, X. Acc. Chem. Res. 2021, 54 (4), 1023. doi: 10.1021/acs.accounts.0c00762  doi: 10.1021/acs.accounts.0c00762

    24. [24]

      Park, J.; Han, D.; Kwak, H.; Han, Y.; Choi, Y. J.; Nam, K.-W.; Jung, Y. S. Chem. Eng. J. 2021, 425, 130630. doi: 10.1016/j.cej.2021.130630  doi: 10.1016/j.cej.2021.130630

    25. [25]

      Cros, C.; Hanebali, L.; Latiex, L.; Villeneuve, G. r.; Gang, W. Solid State Ion. 1983, 9–10, 139. doi: 10.1016/0167-2738(83)90223-0  doi: 10.1016/0167-2738(83)90223-0

    26. [26]

      Sorokin, N. I.; Karimov, D. N.; Komar'kova, O. N. Crystallogr. Rep. 2010, 55 (3), 448. doi: 10.1134/S1063774510030132  doi: 10.1134/S1063774510030132

    27. [27]

      Liu, Z.; Ma, S.; Liu, J.; Xiong, S.; Ma, Y.; Chen, H. ACS Energy Lett. 2021, 6 (1), 298. doi: 10.1021/acsenergylett.0c01690  doi: 10.1021/acsenergylett.0c01690

    28. [28]

      Kuske, P.; Schäfer, W.; Lutz, H. D. Mater. Res. Bull. 1988, 23 (12), 1805. doi: 10.1016/0025-5408(88)90192-4  doi: 10.1016/0025-5408(88)90192-4

    29. [29]

      Kanno, R.; Takeda, Y.; Takada, K.; Yamamoto, O. Solid State Ion. 1983, 9–10, 153. doi: 10.1016/0167-2738(83)90225-4  doi: 10.1016/0167-2738(83)90225-4

    30. [30]

      Pfitzner, A.; Lutz, H. D.; Cockcroft, J. K. J. Solid State Chem. 1990, 87 (2), 463. doi: 10.1016/0022-4596(90)90050-8  doi: 10.1016/0022-4596(90)90050-8

    31. [31]

      Zhou, L.; Kwok, C. Y.; Shyamsunder, A.; Zhang, Q.; Wu, X.; Nazar, L. F. Energy Environm. Sci. 2020, 13 (7), 2056. doi: 10.1039/D0EE01017K  doi: 10.1039/D0EE01017K

    32. [32]

      Zhou, L.; Zuo, T.-T.; Kwok, C. Y.; Kim, S. Y.; Assoud, A.; Zhang, Q.; Janek, J.; Nazar, L. F. Nat. Energy 2022, 7 (1), 83. doi: 10.1038/s41560-021-00952-0  doi: 10.1038/s41560-021-00952-0

    33. [33]

      Schneider, M.; Kuske, P.; Lutz, H. D. Thermochim. Acta 1993, 215, 219. doi: 10.1016/0040-6031(93)80095-R  doi: 10.1016/0040-6031(93)80095-R

    34. [34]

      Kanno, R.; Takeda, Y.; Takahashi, A.; Yamamoto, O.; Suyama, R.; Koizumi, M. J. Solid State Chem. 1987, 71 (1), 189. doi: 10.1016/0022-4596(87)90158-7  doi: 10.1016/0022-4596(87)90158-7

    35. [35]

      Villeneuve, G.; Latié, L.; Cros, C.; Hagenmuller, P. Mater. Res. Bull. 1984, 19 (11), 1515. doi: 10.1016/0025-5408(84)90266-6  doi: 10.1016/0025-5408(84)90266-6

    36. [36]

      Wang, S.; Bai, Q.; Nolan, A. M.; Liu, Y.; Gong, S.; Sun, Q.; Mo, Y. Angew. Chem. Int. Ed. 2019, 58 (24), 8039. doi: 10.1002/anie.201901938  doi: 10.1002/anie.201901938

    37. [37]

      Rice, M. J.; Roth, W. L. J. Solid State Chem. 1972, 4 (2), 294. doi: 10.1016/0022-4596(72)90121-1  doi: 10.1016/0022-4596(72)90121-1

    38. [38]

      Wakamura, K. Phys. Rev. B 1997, 56 (18), 11593. doi: 10.1103/PhysRevB.56.11593  doi: 10.1103/PhysRevB.56.11593

    39. [39]

      Oi, T. Mater. Res. Bull. 1984, 19 (10), 1343. doi: 10.1016/0025-5408(84)90198-3  doi: 10.1016/0025-5408(84)90198-3

    40. [40]

      Kwak, H.; Han, D.; Son, J. P.; Kim, J. S.; Park, J.; Nam, K.-W.; Kim, H.; Jung, Y. S. Chem. Eng. J. 2022, 437, 135413. doi: 10.1016/j.cej.2022.135413  doi: 10.1016/j.cej.2022.135413

    41. [41]

      Lutz, H. D.; Pfitzner, A.; Wickel, C. Solid State Ion. 1991, 48 (1), 131. doi: 10.1016/0167-2738(91)90209-T  doi: 10.1016/0167-2738(91)90209-T

    42. [42]

      Soubeyroux, J. L.; Cros, C.; Gang, W.; Kanno, R.; Pouchard, M. Solid State Ion. 1985, 15 (4), 293. doi: 10.1016/0167-2738(85)90132-8  doi: 10.1016/0167-2738(85)90132-8

    43. [43]

      Kanno, R.; Takeda, Y.; Takahashi, A.; Yamamoto, O.; Suyama, R.; Kume, S. J. Solid State Chem. 1988, 72 (2), 363. doi: 10.1016/0022-4596(88)90040-0  doi: 10.1016/0022-4596(88)90040-0

    44. [44]

      Zhang, S.; Zhao, F.; Wang, S.; Liang, J.; Wang, J.; Wang, C.; Zhang, H.; Adair, K.; Li, W.; Li, M.; et al. Adv. Energy Mater. 2021, 11 (32), 2100836. doi: 10.1002/aenm.202100836  doi: 10.1002/aenm.202100836

    45. [45]

      Yu, T.; Liang, J.; Luo, L.; Wang, L.; Zhao, F.; Xu, G.; Bai, X.; Yang, R.; Zhao, S.; Wang, J.; et al. Adv. Energy Mater. 2021, 11 (36), 2101915. doi: 10.1002/aenm.202101915  doi: 10.1002/aenm.202101915

    46. [46]

      Schlem, R.; Muy, S.; Prinz, N.; Banik, A.; Shao-Horn, Y.; Zobel, M.; Zeier, W. G. Adv. Energy Mater. 2020, 10 (6), 1903719. doi: 10.1002/aenm.201903719  doi: 10.1002/aenm.201903719

    47. [47]

      Li, X.; Liang, J.; Adair, K. R.; Li, J.; Li, W.; Zhao, F.; Hu, Y.; Sham, T.-K.; Zhang, L.; Zhao, S.; et al. Nano Lett. 2020, 20 (6), 4384. doi: 10.1021/acs.nanolett.0c01156  doi: 10.1021/acs.nanolett.0c01156

    48. [48]

      Wignacourt, J. P.; Mairesse, G.; Barbier, P.; Lorriaux-Rubbens, A.; Wallart, F. Can. J. Chem. 1982, 60 (13), 1747. doi: 10.1139/v82-238  doi: 10.1139/v82-238

    49. [49]

      Wang, C.; Liang, J.; Luo, J.; Liu, J.; Li, X.; Zhao, F.; Li, R.; Huang, H.; Zhao, S.; Zhang, L.; et al. Sci. Adv. 2021, 7 (37), eabh1896. doi: 10.1126/sciadv.abh1896  doi: 10.1126/sciadv.abh1896

    50. [50]

      Wang, C.; Liang, J.; Jiang, M.; Li, X.; Mukherjee, S.; Adair, K.; Zheng, M.; Zhao, Y.; Zhao, F.; Zhang, S.; et al. Nano Energy 2020, 76, 105015. doi: 10.1016/j.nanoen.2020.105015  doi: 10.1016/j.nanoen.2020.105015

    51. [51]

      Kelly, A. W.; Nicholas, A.; Ahern, J. C.; Chan, B.; Patterson, H. H.; Pike, R. D. J. Alloy. Compd. 2016, 670, 337. doi: 10.1016/j.jallcom.2016.02.055  doi: 10.1016/j.jallcom.2016.02.055

    52. [52]

      Esaka, T.; Okuyama, R.; Iwahara, H. Solid State Ion. 1989, 34 (3), 201. doi: 10.1016/0167-2738(89)90040-4  doi: 10.1016/0167-2738(89)90040-4

    53. [53]

      Bai, L.-X.; Liu, X.; Wang, W.-Z.; Liao, D.-Z.; Wang, Q.-L. Z. Anorg. Allg. Chem. 2004, 630 (7), 1143. doi: 10.1002/zaac.200400063  doi: 10.1002/zaac.200400063

    54. [54]

      Xie, J.; Sendek, A. D.; Cubuk, E. D.; Zhang, X.; Lu, Z.; Gong, Y.; Wu, T.; Shi, F.; Liu, W.; Reed, E. J.; et al. ACS Nano 2017, 11 (7), 7019. doi: 10.1021/acsnano.7b02561  doi: 10.1021/acsnano.7b02561

    55. [55]

      Mäntymäki, M.; Mizohata, K.; Heikkilä, M. J.; Räisänen, J.; Ritala, M.; Leskelä, M. Thin Solid Films 2017, 636, 26. doi: 10.1016/j.tsf.2017.05.026  doi: 10.1016/j.tsf.2017.05.026

    56. [56]

      Ginnings, D. C.; Phipps, T. E. J. Am. Chem. Soc. 1930, 52 (4), 1340. doi: 10.1021/ja01367a006  doi: 10.1021/ja01367a006

    57. [57]

      Jackson, B. J. H.; Young, D. A. J. Phys. Chem. Solids 1969, 30 (8), 1973. doi: 10.1016/0022-3697(69)90174-7  doi: 10.1016/0022-3697(69)90174-7

    58. [58]

      Steiner, H. J.; Lutz, H. D. J. Solid State Chem. 1992, 99 (1), 1. doi: 10.1016/0022-4596(92)90282-Z  doi: 10.1016/0022-4596(92)90282-Z

    59. [59]

      Steiner, H.-J.; Lutz, H. D. Z. Anorg. Allg. Chem. 1992, 613 (7), 26. doi: 10.1002/zaac.19926130104  doi: 10.1002/zaac.19926130104

    60. [60]

      Weppner, W.; Huggins, R. A. Phys. Lett. A 1976, 58 (4), 245. doi: 10.1016/0375-9601(76)90087-6  doi: 10.1016/0375-9601(76)90087-6

    61. [61]

      Kanno, R.; Takeda, Y.; Yamamoto, O. Solid State Ion. 1988, 28–30, 1276. doi: 10.1016/0167-2738(88)90370-0  doi: 10.1016/0167-2738(88)90370-0

    62. [62]

      Kanno, R.; Takeda, Y.; Takada, K.; Yamamoto, O. J. Electrochem. Soc. 1984, 131 (3), 469. doi: 10.1149/1.2115611  doi: 10.1149/1.2115611

    63. [63]

      Ryoji, K.; Yasuo, T.; Masashi, M.; Osamu, Y. Chem. Lett. 1987, 16 (7), 1465. doi: 10.1246/cl.1987.1465  doi: 10.1246/cl.1987.1465

    64. [64]

      Lutz, H. D.; Zhang, Z.; Pfitzner, A. Solid State Ion. 1993, 62 (1), 1. doi: 10.1016/0167-2738(93)90245-X  doi: 10.1016/0167-2738(93)90245-X

    65. [65]

      Yamada, K.; Kumano, K.; Okuda, T. Solid State Ion. 2006, 177 (19–25), 1691. doi: 10.1016/j.ssi.2006.06.026  doi: 10.1016/j.ssi.2006.06.026

    66. [66]

      Tomita, Y.; Matsushita, H.; Kobayashi, K.; Maeda, Y.; Yamada, K. Solid State Ion. 2008, 179 (21–26), 867. doi: 10.1016/j.ssi.2008.02.012  doi: 10.1016/j.ssi.2008.02.012

    67. [67]

      Bohnsack, A.; Balzer, G.; Güdel, H.-U.; Wickleder, M. S.; Meyer, G. Z. Anorg. Allg. Chem. 1997, 623 (9), 1352. doi: 10.1002/zaac.19976230905  doi: 10.1002/zaac.19976230905

    68. [68]

      Tomita, Y.; Fuji-i, A.; Ohki, H.; Yamada, K.; Okuda, T. Chem. Lett. 1998, 27 (3), 223. doi: 10.1246/cl.1998.223  doi: 10.1246/cl.1998.223

    69. [69]

      Wang, S.; Xu, X.; Cui, C.; Zeng, C.; Liang, J.; Fu, J.; Zhang, R.; Zhai, T.; Li, H. Adv. Funct. Mater. 2022, 32 (7), 2108805. doi: 10.1002/adfm.202108805  doi: 10.1002/adfm.202108805

    70. [70]

      Plichta, E. J.; Behl, W. K.; Vujic, D.; Chang, W. H. S.; Schleich, D. M. J. Electrochem. Soc. 1992, 139 (6), 1509. doi: 10.1149/1.2069446  doi: 10.1149/1.2069446

    71. [71]

      Zhu, Y.; He, X.; Mo, Y. J. Mater. Chem. A 2016, 4 (9), 3253. doi: 10.1039/C5TA08574H  doi: 10.1039/C5TA08574H

    72. [72]

      Han, Y.; Jung, S. H.; Kwak, H.; Jun, S.; Kwak, H. H.; Lee, J. H.; Hong, S. T.; Jung, Y. S. Adv. Energy Mater. 2021, 11 (21), 2100126. doi: 10.1002/aenm.202100126  doi: 10.1002/aenm.202100126

    73. [73]

      Deng, S.; Jiang, M.; Chen, N.; Li, W.; Zheng, M.; Chen, W.; Li, R.; Huang, H.; Wang, J.; Singh, C. V.; et al. Adv. Funct. Mater. 2022, 32 (45), 2205594. doi: 10.1002/adfm.202205594  doi: 10.1002/adfm.202205594

    74. [74]

      Kim, K.; Park, D.; Jung, H.-G.; Chung, K. Y.; Shim, J. H.; Wood, B. C.; Yu, S. Chem. Mater. 2021, 33 (10), 3669. doi: 10.1021/acs.chemmater.1c00555  doi: 10.1021/acs.chemmater.1c00555

    75. [75]

      Shao, Q.; Yan, C.; Gao, M.; Du, W.; Chen, J.; Yang, Y.; Gan, J.; Wu, Z.; Sun, W.; Jiang, Y.; et al. ACS Appl. Mater. Interfaces 2022, 14 (6), 8095. doi: 10.1021/acsami.1c25087  doi: 10.1021/acsami.1c25087

    76. [76]

      Shi, X.; Zeng, Z.; Zhang, H.; Huang, B.; Sun, M.; Wong, H. H.; Lu, Q.; Luo, W.; Huang, Y.; Du, Y.; et al. Small Methods 2021, 5 (11), 2101002. doi: 10.1002/smtd.202101002  doi: 10.1002/smtd.202101002

    77. [77]

      Li, X.; Liang, J.; Kim, J. T.; Fu, J.; Duan, H.; Chen, N.; Li, R.; Zhao, S.; Wang, J.; Huang, H.; et al. Adv. Mater. 2022, 34 (20), 2200856. doi: 10.1002/adma.202200856  doi: 10.1002/adma.202200856

    78. [78]

      Kang, J.; Deng, N.; Liu, Y.; Yan, Z.; Gao, L.; Xiang, H.; Zhang, L.; Wang, G.; Cheng, B.; Kang, W. Energy Storage Mater. 2022, 52, 130. doi: 10.1016/j.ensm.2022.07.037  doi: 10.1016/j.ensm.2022.07.037

    79. [79]

      Riegger, L. M.; Schlem, R.; Sann, J.; Zeier, W. G.; Janek, J. Angew. Chem. Int. Ed. 2021, 60 (12), 6718. doi: 10.1002/anie.202015238  doi: 10.1002/anie.202015238

    80. [80]

      Koç, T.; Hallot, M.; Quemin, E.; Hennequart, B.; Dugas, R.; Abakumov, A. M.; Lethien, C.; Tarascon, J.M. ACS Energy Lett. 2022, 7 (9), 2979. doi: 10.1021/acsenergylett.2c01668  doi: 10.1021/acsenergylett.2c01668

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    9. [9]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    14. [14]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    19. [19]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(133)
  • Abstract views(2038)
  • HTML views(891)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return