Citation: Huan Liu, Yu Ma, Bin Cao, Qizhen Zhu, Bin Xu. Recent Progress of MXenes in Aqueous Zinc-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2023, 39(5): 221002. doi: 10.3866/PKU.WHXB202210027 shu

Recent Progress of MXenes in Aqueous Zinc-Ion Batteries

  • Corresponding author: Bin Xu, xubin@mail.buct.edu.cn
  • Received Date: 20 October 2022
    Revised Date: 14 December 2022
    Accepted Date: 19 December 2022
    Available Online: 3 January 2023

    Fund Project: the National Natural Science Foundation of China 52273274the State Key Laboratory of Organic-Inorganic Composites oic-202101010the Natural Science Basic Research Project of Shaanxi Province 2022JQ-123

  • In recent years, aqueous zinc-ion batteries (AZIBs) have received considerable interest as a novel and promising alternative energy storage technology. Owing to their particular structural traits and physicochemical qualities, MXenes as cathodes impart significant beneficial properties to AZIBs, such as readily modifiable two-dimensional (2D) structure, high electrical conductivity, desirable chemical composition, and controllable surface chemical properties. This review includes a comprehensive discussion on the progression of MXenes in AZIBs in relation to the most sophisticated structural design and performance optimization methodologies available for the construction of cathodes and anodes. MXenes may be utilized directly as an active material or a precursor of an active material in cathodes to achieve a long cycle life and high rate performance because of their contribution, which is summarized as follow: (1) MXenes with a 2D layered structure and high conductivity can be employed as a conductive substrate in combination with manganese and vanadium oxides to enhance the cycle and rate performance of composite materials; (2) zinc ion transport kinetics is accelerated in manganese and vanadium oxide composites when 3D MXenes are used as a substrate; (3) MXenes allow excellent electrolyte penetration owing to the presence of abundant hydrophilic functional groups, which may enhance the electrochemical response of composite electrode materials; (4) MXene derivatives contain a broad range of surface functional groups and exhibit high activity and a wide voltage window; (5) MXenes possess remarkable mechanical flexibility, allowing for the production of flexible wearable AZIBs. Moreover, MXenes can be employed as a 2D/3D host, zincophilic seed matrix, and zinc interface protection layer to retard zinc metal corrosion and dendrite formation when zinc metal is used as the anode because of the following advantages: (1) MXenes have a 2D structure and multi-functional surface, allow excellent water dispersion, and can be processed into various porous skeletons; (2) MXenes exhibit excellent electrical conductance and ion diffusion, allowing for rapid electrochemical kinetics during zinc plating/stripping; (3) lattice size compatibility between MXenes and zinc metal allows zinc metal to nucleate and deposit evenly; (4) the abundant functional groups on the MXene surface may serve as zincophilic and nucleation sites to promote the homogeneous nucleation and deposition of zinc. The review also highlights the electrochemical deposition (for zinc foil) and physical mixing techniques for using MXenes as a host to encapsulate zinc (for zinc powder). Moreover, the discussion is directed to the use of MXenes as an electrolyte additive for AZIBs and as an inorganic filler for solid electrolytes to prevent dendrite formation and corrosion issues in zinc anodes. Finally, the challenges and prospects of using MXenes in AZIBs are presented.
  • 加载中
    1. [1]

      Yang, H.; Wang, S.; Wang, X.; Zhang, P.; Yan, C.; Luo, Y.; Chen, L.; Li, M.; Fan, F.; Zhou, Z.; et al. J. Colloid Interface Sci. 2022, 609, 139. doi: 10.1016/j.jcis.2021.11.105  doi: 10.1016/j.jcis.2021.11.105

    2. [2]

      Geng, C.; Chen, Y.; Shi, L.; Sun, Z.; Zhang, L.; Xiao, A.; Jiang, J.; Zhuang, Q.; Ju, Z. New Carbon Mater. 2022, 37, 461. doi: 10.1016/s1872-5805(22)60612-7  doi: 10.1016/s1872-5805(22)60612-7

    3. [3]

      Sun, Z.; Chen, Y.; Xi, B.; Geng, C.; Guo, W.; Zhuang, Q.; An, X.; Liu, J.; Ju, Z.; Xiong, S. Energy Storage Mater. 2022, 53, 482. doi: 10.1016/j.ensm.2022.09.031  doi: 10.1016/j.ensm.2022.09.031

    4. [4]

      Zhang, P.; Soomro, R. A.; Guan, Z.; Sun, N.; Xu, B. Energy Storage Mater. 2020, 29, 163. doi: 10.1016/j.ensm.2020.04.016  doi: 10.1016/j.ensm.2020.04.016

    5. [5]

      Yang, H.; Zhang, P.; Yi, X.; Yan, C.; Pang, D.; Chen, L.; Wang, S.; Wang, C.; Liu, B.; Zhang, G.; et al. Chem. Eng. J. 2022, 440, 135749. doi: 10.1016/j.cej.2022.135749  doi: 10.1016/j.cej.2022.135749

    6. [6]

      Chen, Y.; Xi, B.; Huang, M.; Shi, L.; Huang, S.; Guo, N.; Li, D.; Ju, Z.; Xiong, S. Adv. Mater. 2022, 34, e2108621. doi: 10.1002/adma.202108621  doi: 10.1002/adma.202108621

    7. [7]

      Sun, N.; Qiu, J.; Xu, B. Adv. Energy Mater. 2022, 12, 2200715. doi: 10.1002/aenm.202200715  doi: 10.1002/aenm.202200715

    8. [8]

      Cao, B.; Li, X. F. Acta Phys. -Chim. Sin. 2020, 36, 1905003.  doi: 10.3866/PKU.WHXB201905003

    9. [9]

      Fang, G.; Zhou, J.; Pan, A.; Liang, S. ACS Energy Lett. 2018, 3, 2480. doi: 10.1021/acsenergylett.8b01426  doi: 10.1021/acsenergylett.8b01426

    10. [10]

      Liu, Z.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X.; Huang, Z.; Zhi, C. Chem. Soc. Rev. 2020, 49, 180. doi: 10.1039/c9cs00131j  doi: 10.1039/c9cs00131j

    11. [11]

      Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S.; Zhou, T.; Mao, J.; Pang, W. K.; Guo, Z.; Li, A.; et al. Adv. Energy Mater. 2018, 8, 1801149. doi: 10.1002/aenm.201801149  doi: 10.1002/aenm.201801149

    12. [12]

      Cao, B.; Liu, H.; Zhang, P.; Sun, N.; Zheng, B.; Li, Y.; Du, H.; Xu, B. Adv. Funct. Mater. 2021, 31, 2102126. doi: 10.1002/adfm.202102126  doi: 10.1002/adfm.202102126

    13. [13]

      Liu, H.; Du, H.; Zhao, W.; Qiang, X.; Zheng, B.; Li, Y.; Cao, B. Energy Storage Mater. 2021, 40, 490. doi: 10.1016/j.ensm.2021.05.037  doi: 10.1016/j.ensm.2021.05.037

    14. [14]

      Wang, X.; Zhang, S.; Shan, Y.; Chen, L.; Gao, G.; Zhu, X.; Cao, B.; He, X. Energy Storage Mater. 2021, 37, 55. doi: 10.1016/j.ensm.2021.01.027  doi: 10.1016/j.ensm.2021.01.027

    15. [15]

      Zhang, P.; Peng, Y.; Zhu, Q.; Soomro, R. A.; Sun, N.; Xu, B. Energy Environ. Mater. accepted. doi: 10.1002/eem2.12379

    16. [16]

      Xu, C.; Li, B.; Du, H.; Kang, F. Angew. Chem. Int. Ed. 2012, 51, 933. doi: 10.1002/anie.201106307  doi: 10.1002/anie.201106307

    17. [17]

      Huang, J.; Zhou, J.; Liang, S. Acta Phys. Chim. Sin. 2021, 37, 2005020  doi: 10.3866/PKU.WHXB202005020

    18. [18]

      Liu, W.; Zhang, X.; Huang, Y.; Jiang, B.; Chang, Z.; Xu, C.; Kang, F. J. Energy Chem. 2021, 56, 365. doi: 10.1016/j.jechem.2020.07.027  doi: 10.1016/j.jechem.2020.07.027

    19. [19]

      Shen, X.; Wang, X.; Zhou, Y.; Shi, Y.; Zhao, L.; Jin, H.; Di, J.; Li, Q. Adv. Funct. Mater. 2021, 31, 2101579. doi: 10.1002/adfm.202101579  doi: 10.1002/adfm.202101579

    20. [20]

      Zhang, S.; Chen, L.; Dong, D.; Kong, Y.; Zhang, J.; Liu, J.; Liu, Z. ACS Appl. Mater. Interfaces 2022, 14, 24415. doi: 10.1021/acsami.2c04252  doi: 10.1021/acsami.2c04252

    21. [21]

      Zhang, L.; Hu, J.; Zhang, B.; Liu, J.; Wan, H.; Miao, L.; Jiang, J. J. Mater. Chem. A 2021, 9, 7631. doi: 10.1039/d1ta00263e  doi: 10.1039/d1ta00263e

    22. [22]

      Zampardi, G.; La Mantia, F. Curr. Opin. Electrochem. 2020, 21, 84. doi: 10.1016/j.coelec.2020.01.014  doi: 10.1016/j.coelec.2020.01.014

    23. [23]

      Yi, H.; Qin, R.; Ding, S.; Wang, Y.; Li, S.; Zhao, Q.; Pan, F. Adv. Funct. Mater. 2020, 31, 2006970. doi: 10.1002/adfm.202006970  doi: 10.1002/adfm.202006970

    24. [24]

      Zhou, L. -F.; Gao, X. -W.; Du, T.; Gong, H.; Liu, L. -Y.; Luo, W. -B. J. Alloys Compd. 2022, 905, 163939. doi: 10.1016/j.jallcom.2022.163939  doi: 10.1016/j.jallcom.2022.163939

    25. [25]

      Zhou, L. F.; Gao, X. W.; Du, T.; Gong, H.; Liu, L. Y.; Luo, W. B. ACS Appl. Mater. Interfaces 2022, 14, 8888. doi: 10.1021/acsami.1c10380  doi: 10.1021/acsami.1c10380

    26. [26]

      Cheng, Y.; Luo, L.; Zhong, L.; Chen, J.; Li, B.; Wang, W.; Mao, S. X.; Wang, C.; Sprenkle, V. L.; Li, G.; et al. ACS Appl. Mater. Interfaces 2016, 8, 13673. doi: 10.1021/acsami.6b03197  doi: 10.1021/acsami.6b03197

    27. [27]

      Guo, C.; Zhang, K.; Zhao, Q.; Pei, L.; Chen, J. Chem. Commun. 2015, 51, 10244. doi: 10.1039/c5cc02251g  doi: 10.1039/c5cc02251g

    28. [28]

      Wang, X.; Wang, G.; He, X. J. Colloid Interface Sci. 2022, 629, 434. doi: 10.1016/j.jcis.2022.08.166  doi: 10.1016/j.jcis.2022.08.166

    29. [29]

      Chen, L.; An, Q.; Mai, L. Adv. Mater. Interfaces 2019, 6, 1900387. doi: 10.1002/admi.201900387  doi: 10.1002/admi.201900387

    30. [30]

      Qian, L.; Wei, T.; Ma, K.; Yang, G.; Wang, C. ACS Appl. Mater. Interfaces 2019, 11, 20888. doi: 10.1021/acsami.9b05362  doi: 10.1021/acsami.9b05362

    31. [31]

      Yuan, T.; Zhang, J.; Pu, X.; Chen, Z.; Tang, C.; Zhang, X.; Ai, X.; Huang, Y.; Yang, H.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10, 34108. doi: 10.1021/acsami.8b08297  doi: 10.1021/acsami.8b08297

    32. [32]

      Cao, T.; Zhang, F.; Chen, M.; Shao, T.; Li, Z.; Xu, Q.; Cheng, D.; Liu, H.; Xia, Y. ACS Appl. Mater. Interfaces 2021, 13, 26924. doi: 10.1021/acsami.1c04129  doi: 10.1021/acsami.1c04129

    33. [33]

      Wang, L.; Cao, Z.; Zhuang, P.; Li, J.; Chu, H.; Ye, Z.; Xu, D.; Zhang, H.; Shen, J.; Ye, M. ACS Appl. Mater. Interfaces 2021, 13, 13338. doi: 10.1021/acsami.1c01405  doi: 10.1021/acsami.1c01405

    34. [34]

      Zeng, Y.; Lai, Z.; Han, Y.; Zhang, H.; Xie, S.; Lu, X. Adv. Mater. 2018, 30, 1802396. doi: 10.1002/adma.201802396  doi: 10.1002/adma.201802396

    35. [35]

      Shen, C.; Li, X.; Li, N.; Xie, K.; Wang, J. G.; Liu, X.; Wei, B. ACS Appl. Mater. Interfaces 2018, 10, 25446. doi: 10.1021/acsami.8b07781  doi: 10.1021/acsami.8b07781

    36. [36]

      Wang, X.; Li, Y.; Wang, S.; Zhou, F.; Das, P.; Sun, C.; Zheng, S.; Wu, Z. S. Adv. Energy Mater. 2020, 10, 2000081. doi: 10.1002/aenm.202000081  doi: 10.1002/aenm.202000081

    37. [37]

      Chen, H.; Qin, H.; Chen, L.; Wu, J.; Yang, Z. J. Alloys Compd. 2020, 842, 155912. doi: 10.1016/j.jallcom.2020.155912  doi: 10.1016/j.jallcom.2020.155912

    38. [38]

      Yin, B.; Zhang, S.; Ke, K.; Xiong, T.; Wang, Y.; Lim, B. K. D.; Lee, W. S. V.; Wang, Z.; Xue, J. Nanoscale 2019, 11, 19723. doi: 10.1039/c9nr07458a  doi: 10.1039/c9nr07458a

    39. [39]

      Liu, S.; Zhu, H.; Zhang, B.; Li, G.; Zhu, H.; Ren, Y.; Geng, H.; Yang, Y.; Liu, Q.; Li, C. C. Adv. Mater. 2020, 32, 2001113. doi: 10.1002/adma.202001113  doi: 10.1002/adma.202001113

    40. [40]

      Zhang, T.; Tang, Y.; Guo, S.; Cao, X.; Pan, A.; Fang, G.; Zhou, J.; Liang, S. Energy Environ. Sci. 2020, 13, 4625. doi: 10.1039/d0ee02620d  doi: 10.1039/d0ee02620d

    41. [41]

      Liu, S.; Mao, J.; Pang, W. K.; Vongsvivut, J.; Zeng, X.; Thomsen, L.; Wang, Y.; Liu, J.; Li, D.; Guo, Z. Adv. Funct. Mater. 2021, 31, 2104281. doi: 10.1002/adfm.202104281  doi: 10.1002/adfm.202104281

    42. [42]

      Liu, M.; Yang, L.; Liu, H.; Amine, A.; Zhao, Q.; Song, Y.; Yang, J.; Wang, K.; Pan, F. ACS Appl. Mater. Interfaces 2019, 11, 32046. doi: 10.1021/acsami.9b11243  doi: 10.1021/acsami.9b11243

    43. [43]

      Yin, Y.; Wang, S.; Zhang, Q.; Song, Y.; Chang, N.; Pan, Y.; Zhang, H.; Li, X. Adv. Mater. 2020, 32, 1906803. doi: 10.1002/adma.201906803  doi: 10.1002/adma.201906803

    44. [44]

      Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 23, 4207. doi: 10.1002/adma.201190147  doi: 10.1002/adma.201190147

    45. [45]

      Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. Nat. Rev. Mater. 2017, 2, 16098. doi: 10.1038/natrevmats.2016.98  doi: 10.1038/natrevmats.2016.98

    46. [46]

      Yu, L. Y.; Hu, L. F.; Anasori, B.; Liu, Y. T.; Zhu, Q. Z.; Zhang, P.; Gogotsi, Y.; Xu, B. ACS Energy Lett. 2018, 3, 1597. doi: 10.1021/acsenergylett.8b00718  doi: 10.1021/acsenergylett.8b00718

    47. [47]

      Liu, Y. T.; Zhang, P.; Sun, N.; Anasori, B.; Zhu, Q. Z.; Liu, H.; Gogotsi, Y.; Xu, B. Adv. Mater. 2018, 30, 1707334. doi: 10.1002/adma.201707334  doi: 10.1002/adma.201707334

    48. [48]

      Wang, X.; Wang, Y.; Jiang, Y.; Li, X.; Liu, Y.; Xiao, H.; Ma, Y.; Huang, Y. Y.; Yuan, G. Adv. Funct. Mater. 2021, 31, 2103210. doi: 10.1002/adfm.202103210  doi: 10.1002/adfm.202103210

    49. [49]

      Li, X.; Li, M.; Yang, Q.; Wang, D.; Ma, L.; Liang, G.; Huang, Z.; Dong, B.; Huang, Q.; Zhi, C. Adv. Energy Mater. 2020, 10, 2001394. doi: 10.1002/aenm.202001394  doi: 10.1002/aenm.202001394

    50. [50]

      Shi, W.; Lee, W. S. V.; Xue, J. ChemSusChem 2021, 14, 1634. doi: 10.1002/cssc.202002493  doi: 10.1002/cssc.202002493

    51. [51]

      Li, H.; Ma, L.; Han, C.; Wang, Z.; Liu, Z.; Tang, Z.; Zhi, C. Nano Energy 2019, 62, 550. doi: 10.1016/j.nanoen.2019.05.059  doi: 10.1016/j.nanoen.2019.05.059

    52. [52]

      Li, Y.; Zhang, D.; Huang, S.; Yang, H. Y. Nano Energy 2021, 85, 105969. doi: 10.1016/j.nanoen.2021.105969  doi: 10.1016/j.nanoen.2021.105969

    53. [53]

      Zeng, X.; Hao, J.; Wang, Z.; Mao, J.; Guo, Z. Energy Storage Mater. 2019, 20, 410. doi: 10.1016/j.ensm.2019.04.022  doi: 10.1016/j.ensm.2019.04.022

    54. [54]

      Luo, S.; Xie, L.; Han, F.; Wei, W.; Huang, Y.; Zhang, H.; Zhu, M.; Schmidt, O. G.; Wang, L. Adv. Funct. Mater. 2019, 29, 1901336. doi: 10.1002/adfm.201901336  doi: 10.1002/adfm.201901336

    55. [55]

      Shi, M.; Wang, B.; Chen, C.; Lang, J.; Yan, C.; Yan, X. J. Mater. Chem. A 2020, 8, 24635. doi: 10.1039/d0ta09085a  doi: 10.1039/d0ta09085a

    56. [56]

      Shi, M.; Wang, B.; Shen, Y.; Jiang, J.; Zhu, W.; Su, Y.; Narayanasamy, M.; Angaiah, S.; Yan, C.; Peng, Q. Chem. Eng. J. 2020, 399, 125627. doi: 10.1016/j.cej.2020.125627  doi: 10.1016/j.cej.2020.125627

    57. [57]

      Xu, G.; Zhang, Y.; Gong, Z.; Lu, T.; Pan, L. J. Colloid Interface Sci. 2021, 593, 417. doi: 10.1016/j.jcis.2021.02.090  doi: 10.1016/j.jcis.2021.02.090

    58. [58]

      Liu, C.; Xu, W.; Mei, C.; Li, M. -C.; Xu, X.; Wu, Q. Chem. Eng. J. 2021, 405, 126737. doi: 10.1016/j.cej.2020.126737  doi: 10.1016/j.cej.2020.126737

    59. [59]

      Liu, H.; Jiang, L.; Cao, B.; Du, H.; Lu, H.; Ma, Y.; Wang, H.; Guo, H.; Huang, Q.; Xu, B.; et al. ACS Nano 2022, 16, 14539. doi: 10.1021/acsnano.2c04968  doi: 10.1021/acsnano.2c04968

    60. [60]

      Shi, Z.; Ru, Q.; Pan, Z.; Zheng, M.; Chi-Chun Ling, F.; Wei, L. ChemElectroChem 2021, 8, 1091. doi: 10.1002/celc.202100036  doi: 10.1002/celc.202100036

    61. [61]

      Liu, Y.; Dai, Z.; Zhang, W.; Jiang, Y.; Peng, J.; Wu, D.; Chen, B.; Wei, W.; Chen, X.; Liu, Z.; et al. ACS Nano 2021, 15, 9065. doi: 10.1021/acsnano.1c02215  doi: 10.1021/acsnano.1c02215

    62. [62]

      Li, M.; Li, X.; Qin, G.; Luo, K.; Lu, J.; Li, Y.; Liang, G.; Huang, Z.; Zhou, J.; Hultman, L.; et al. ACS Nano 2021, 15, 1077. doi: 10.1021/acsnano.0c07972  doi: 10.1021/acsnano.0c07972

    63. [63]

      Venkatkarthick, R.; Rodthongkum, N.; Zhang, X.; Wang, S.; Pattananuwat, P.; Zhao, Y.; Liu, R.; Qin, J. ACS Appl. Energy Mater. 2020, 3, 4677. doi: 10.1021/acsaem.0c00309  doi: 10.1021/acsaem.0c00309

    64. [64]

      Li, X.; Li, M.; Yang, Q.; Li, H.; Xu, H.; Chai, Z.; Chen, K.; Liu, Z.; Tang, Z.; Ma, L.; et al. ACS Nano 2020, 14, 541. doi: 10.1021/acsnano.9b06866  doi: 10.1021/acsnano.9b06866

    65. [65]

      Li, X.; Li, M.; Yang, Q.; Liang, G.; Huang, Z.; Ma, L.; Wang, D.; Mo, F.; Dong, B.; Huang, Q.; et al. Adv. Energy Mater. 2020, 10, 2001791. doi: 10.1002/aenm.202001791  doi: 10.1002/aenm.202001791

    66. [66]

      Liu, Y.; Jiang, Y.; Hu, Z.; Peng, J.; Lai, W.; Wu, D.; Zuo, S.; Zhang, J.; Chen, B.; Dai, Z.; et al. Adv. Funct. Mater. 2020, 31, 2008033. doi: 10.1002/adfm.202008033  doi: 10.1002/adfm.202008033

    67. [67]

      Tian, Y.; An, Y.; Wei, H.; Wei, C.; Tao, Y.; Li, Y.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y. Chem. Mater. 2020, 32, 4054. doi: 10.1021/acs.chemmater.0c00787  doi: 10.1021/acs.chemmater.0c00787

    68. [68]

      Narayanasamy, M.; Kirubasankar, B.; Shi, M.; Velayutham, S.; Wang, B.; Angaiah, S.; Yan, C. Chem. Commun. 2020, 56, 6412. doi: 10.1039/d0cc01802c  doi: 10.1039/d0cc01802c

    69. [69]

      Zhu, X.; Wang, W.; Cao, Z.; Gao, S.; Chee, M. O. L.; Zhang, X.; Dong, P.; Ajayan, P. M.; Ye, M.; Shen, J. J. Mater. Chem. A 2021, 9, 17994. doi: 10.1039/d1ta05526g  doi: 10.1039/d1ta05526g

    70. [70]

      Zhu, X.; Cao, Z.; Wang, W.; Li, H.; Dong, J.; Gao, S.; Xu, D.; Li, L.; Shen, J.; Ye, M. ACS Nano 2021, 15, 2971. doi: 10.1021/acsnano.0c09205  doi: 10.1021/acsnano.0c09205

    71. [71]

      Zhang, Y.; Cao, J.; Li, J.; Yuan, Z.; Li, D.; Wang, L.; Han, W. Chem. Eng. J. 2022, 430, 132992. doi: 10.1016/j.cej.2021.132992  doi: 10.1016/j.cej.2021.132992

    72. [72]

      Byeon, A.; Glushenkov, A. M.; Anasori, B.; Urbankowski, P.; Li, J.; Byles, B. W.; Blake, B.; Van Aken, K. L.; Kota, S.; Pomerantseva, E.; et al. J. Power Sources 2016, 326, 686. doi: 10.1016/j.jpowsour.2016.03.066  doi: 10.1016/j.jpowsour.2016.03.066

    73. [73]

      Li, X.; Ma, X.; Hou, Y.; Zhang, Z.; Lu, Y.; Huang, Z.; Liang, G.; Li, M.; Yang, Q.; Ma, J.; et al. Joule 2021, 5, 2993. doi: 10.1016/j.joule.2021.09.006  doi: 10.1016/j.joule.2021.09.006

    74. [74]

      Wang, T.; Li, C.; Xie, X.; Lu, B.; He, Z.; Liang, S.; Zhou, J. ACS Nano 2020, 14, 16321. doi: 10.1021/acsnano.0c07041  doi: 10.1021/acsnano.0c07041

    75. [75]

      Wang, L.; Han, S.; Zhang, H.; Wang, W.; Zhang, L. Acta Chim. Sin. 2021, 79, 158.  doi: 10.6023/a20090409

    76. [76]

      Cao, Z.; Zhuang, P.; Zhang, X.; Ye, M.; Shen, J.; Ajayan, P. M. Adv. Energy Mater. 2020, 10, 2001599. doi: 10.1002/aenm.202001599  doi: 10.1002/aenm.202001599

    77. [77]

      Zeng, Y.; Zhang, X.; Qin, R.; Liu, X.; Fang, P.; Zheng, D.; Tong, Y.; Lu, X. Adv. Mater. 2019, 31, e1903675. doi: 10.1002/adma.201903675  doi: 10.1002/adma.201903675

    78. [78]

      Cai, Z.; Ou, Y.; Wang, J.; Xiao, R.; Fu, L.; Yuan, Z.; Zhan, R.; Sun, Y. Energy Storage Mater. 2020, 27, 205. doi: 10.1016/j.ensm.2020.01.032  doi: 10.1016/j.ensm.2020.01.032

    79. [79]

      Lu, W.; Zhang, C.; Zhang, H.; Li, X. ACS Energy Lett. 2021, 6, 2765. doi: 10.1021/acsenergylett.1c00939  doi: 10.1021/acsenergylett.1c00939

    80. [80]

      Wan, F.; Zhou, X.; Lu, Y.; Niu, Z.; Chen, J. ACS Energy Lett. 2020, 5, 3569. doi: 10.1021/acsenergylett.0c02028  doi: 10.1021/acsenergylett.0c02028

    81. [81]

      Tian, Y.; An, Y.; Wei, C.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y. ACS Nano 2019, 13, 11676. doi: 10.1021/acsnano.9b05599  doi: 10.1021/acsnano.9b05599

    82. [82]

      Zhou, J.; Xie, M.; Wu, F.; Mei, Y.; Hao, Y.; Li, L.; Chen, R. Adv. Mater. 2022, 34, 2106897. doi: 10.1002/adma.202106897  doi: 10.1002/adma.202106897

    83. [83]

      Xie, F.; Li, H.; Wang, X.; Zhi, X.; Chao, D.; Davey, K.; Qiao, S. Z. Adv. Energy Mater. 2021, 11, 2003419. doi: 10.1002/aenm.202003419  doi: 10.1002/aenm.202003419

    84. [84]

      Zhang, Y.; Howe, J. D.; Ben-Yoseph, S.; Wu, Y.; Liu, N. ACS Energy Lett. 2021, 6, 404. doi: 10.1021/acsenergylett.0c02343  doi: 10.1021/acsenergylett.0c02343

    85. [85]

      Tian, Y.; An, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y. Energy Storage Mater. 2021, 41, 343. doi: 10.1016/j.ensm.2021.06.019  doi: 10.1016/j.ensm.2021.06.019

    86. [86]

      Li, X.; Li, Q.; Hou, Y.; Yang, Q.; Chen, Z.; Huang, Z.; Liang, G.; Zhao, Y.; Ma, L.; Li, M.; et al. ACS Nano 2021, 15, 14631. doi: 10.1021/acsnano.1c04354  doi: 10.1021/acsnano.1c04354

    87. [87]

      Zhang, N.; Huang, S.; Yuan, Z.; Zhu, J.; Zhao, Z.; Niu, Z. Angew. Chem. Int. Ed. 2021, 60, 2861. doi: 10.1002/anie.202012322  doi: 10.1002/anie.202012322

    88. [88]

      Li, X.; Li, M.; Luo, K.; Hou, Y.; Li, P.; Yang, Q.; Huang, Z.; Liang, G.; Chen, Z.; Du, S.; et al. ACS Nano 2021, 16, 813. doi: 10.1021/acsnano.1c08358  doi: 10.1021/acsnano.1c08358

    89. [89]

      An, Y.; Tian, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y. ACS Nano 2021, 15, 15259. doi: 10.1021/acsnano.1c05934  doi: 10.1021/acsnano.1c05934

    90. [90]

      Wu, K.; Huang, J.; Yi, J.; Liu, X.; Liu, Y.; Wang, Y.; Zhang, J.; Xia, Y. Adv. Energy Mater. 2020, 10, 1903977. doi: 10.1002/aenm.201903977  doi: 10.1002/aenm.201903977

    91. [91]

      Kang, L.; Cui, M.; Zhang, Z.; Jiang, F. Batteries Supercaps 2020, 3, 966. doi: 10.1002/batt.202000060  doi: 10.1002/batt.202000060

    92. [92]

      Du, Y.; Li, Y.; Xu, B. B.; Liu, T. X.; Liu, X.; Ma, F.; Gu, X.; Lai, C. Small 2022, 18, 2104640. doi: 10.1002/smll.202104640  doi: 10.1002/smll.202104640

    93. [93]

      Wang, Y.; Wang, Z.; Yang, F.; Liu, S.; Zhang, S.; Mao, J.; Guo, Z. Small 2022, 18, 2107033. doi: 10.1002/smll.202107033  doi: 10.1002/smll.202107033

    94. [94]

      Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Small Methods 2019, 3, 1800272. doi: 10.1002/smtd.201800272  doi: 10.1002/smtd.201800272

    95. [95]

      Pan, Q.; Zheng, Y.; Kota, S.; Huang, W.; Wang, S.; Qi, H.; Kim, S.; Tu, Y.; Barsoum, M. W.; Li, C. Y. Nanoscale Adv. 2019, 1, 395. doi: 10.1039/c8na00206a  doi: 10.1039/c8na00206a

    96. [96]

      Sun, C.; Wu, C.; Gu, X.; Wang, C.; Wang, Q. Nano-Micro Lett. 2021, 13, 89. doi: 10.1007/s40820-021-00612-8  doi: 10.1007/s40820-021-00612-8

    97. [97]

      Ma, L.; Li, Q.; Ying, Y.; Ma, F.; Chen, S.; Li, Y.; Huang, H.; Zhi, C. Adv. Mater. 2021, 33, 2007406. doi: 10.1002/adma.202007406  doi: 10.1002/adma.202007406

    98. [98]

      Yuan, D.; Manalastas, W., Jr.; Zhang, L.; Chan, J. J.; Meng, S.; Chen, Y.; Srinivasan, M. ChemSusChem 2019, 12, 4889. doi: 10.1002/cssc.201901409  doi: 10.1002/cssc.201901409

    99. [99]

      Chen, Z.; Li, X.; Wang, D.; Yang, Q.; Ma, L.; Huang, Z.; Liang, G.; Chen, A.; Guo, Y.; Dong, B.; et al. Energy Environ. Sci. 2021, 14, 3492. doi: 10.1039/d1ee00409c  doi: 10.1039/d1ee00409c

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    15. [15]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    16. [16]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    17. [17]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    18. [18]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    19. [19]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    20. [20]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

Metrics
  • PDF Downloads(8)
  • Abstract views(578)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return