Introduction to Electrocatalytic Kinetics
- Corresponding author: Bingjun Xu, b_xu@pku.edu.cn
Citation: Yifei Xu, Hanwen Yang, Xiaoxia Chang, Bingjun Xu. Introduction to Electrocatalytic Kinetics[J]. Acta Physico-Chimica Sinica, ;2023, 39(4): 221002. doi: 10.3866/PKU.WHXB202210025
Li, M. T.; Zheng, X. Q.; Wei, Z. D. Acta Phys. -Chim. Sin. 2021, 37, 2007054.
Liu, M. M.; Yang, M. M.; Shu, X. X.; Zhang, J. T. Acta Phys. -Chim. Sin. 2021, 37, 2007072.
Xu, T.; Ma, B. Y.; Liang, J.; Lu, Y. C.; Liu, Q.; Li, T. S.; Zhao, H. T.; Luo, Y. L.; Lu, S. Y.; Sun, X. P. Acta Phys. -Chim. Sin. 2021, 37, 2009043.
Shi, Y. X.; Hou, M.; Li, J. J.; Li, L.; Zhang, Z. C.; Acta Phys. -Chim. Sin. 2022, 38, 2206020.
Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Publisher: Wiley, New York, NY, USA, 2001; pp. 87–107.
Bockris, J. O'. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Publisher: Kluwer Academic Publishers, New York, NY, USA, 2000; pp. 1042–1055.
Zheng, J.; Yan, Y. S.; Xu, B. J. J. Electrochem. Soc. 2015, 162, F1470. doi: 10.1149/2.0501514jes
doi: 10.1149/2.0501514jes
Conway, B. E.; MacKinnon, D. J.; Tilak, B. V. Trans. Faraday Soc. 1970, 66, 1203. doi: 10.1039/TF9706601203
doi: 10.1039/TF9706601203
Conway, B. E.; Tessier, D. F.; Wilkinson, D. Chem. Phys. Lett. 1986, 125, 589. doi: 10.1016/0009-2614(86)87105-6
doi: 10.1016/0009-2614(86)87105-6
Conway, B. E.; Tessier, D. F.; Wilkinson, D. P. J. Electroanal. Chem. 1986, 199, 249. doi: 10.1016/0022-0728(86)80002-x
doi: 10.1016/0022-0728(86)80002-x
Conway, B. E.; Wilkinson, D. F. J. Electroanal. Chem. 1986, 214, 633. doi: 10.1016/0022-0728(86)80129-2
doi: 10.1016/0022-0728(86)80129-2
Bockris, J. O'. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers, New York, NY, USA, 2000; pp. 1479–1482.
Campbell, C. T. ACS Catal. 2017, 7, 2770. doi: 10.1021/acscatal.7b00115
doi: 10.1021/acscatal.7b00115
Prats, H.; Chan, K. Phys. Chem. Chem. Phys. 2021, 23, 27150. doi: 10.1039/d1cp04134g
doi: 10.1039/d1cp04134g
Exner, K. S. ACS Catal. 2020, 10, 12607. doi: 10.1021/acscatal.0c03865
doi: 10.1021/acscatal.0c03865
Durst, J.; Simon, C.; Hasche, F.; Gasteiger, H. A. J. Electrochem. Soc. 2015, 162, F190. doi: 10.1149/2.0981501jes
doi: 10.1149/2.0981501jes
Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; Nørskov, J. K.; et al. Chem. Rev. 2019, 119, 761. doi: 10.1021/acs.chemrev.8b00705
doi: 10.1021/acs.chemrev.8b00705
Li, J.; Chang, X. X.; Zhang, H. C.; Malkani, A. S.; Cheng, M. J.; Xu, B. J.; Lu, Q. Nat. Commun. 2021, 12, 3264. doi: 10.1038/s41467-021-23582-2
doi: 10.1038/s41467-021-23582-2
Chang, X. X.; Li, J.; Xiong, H. C.; Zhang, H. C.; Xu, Y. F.; Xiao, H.; Lu, Q.; Xu, B. J. Angew. Chem. Int. Ed. 2022, 61, e202111167. doi: 10.1002/anie.202111167
doi: 10.1002/anie.202111167
Schouten, K. J. P.; Gallent, E. P.; Koper, M. T. M. J. Electroanal. Chem. 2014, 716, 53. doi: 10.1016/j.jelechem.2013.08.033
doi: 10.1016/j.jelechem.2013.08.033
Liu, X. Y.; Schlexer, P.; Xiao, J. P.; Ji, Y. F.; Wang, L.; Sandberg, R. B.; Tang, M.; Brown, K. S.; Peng, H. J.; Ringe, S.; et al. Nat. Commun. 2019, 10, 32. doi: 10.1038/s41467-018-07970-9
doi: 10.1038/s41467-018-07970-9
Borguet, E.; Dai, H. L. J. Chem. Phys. 1994, 101, 9080. doi: 10.1063/1.468038
doi: 10.1063/1.468038
Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Lie, X. Y.; Higgins, D. C.; Chan, K.; Nørskov, J. K.; Hahn, C.; et al. ACS Catal. 2018, 8, 7445. doi: 10.1021/acscatal.8b01200
doi: 10.1021/acscatal.8b01200
Dunwell, M.; Luc, W.; Yan, Y. S.; Jiao, F.; Xu, B. J. ACS Catal. 2018, 8, 8121. doi: 10.1021/acscatal.8b02181
doi: 10.1021/acscatal.8b02181
Kastlunger, G.; Wang, L.; Govindarajan, N.; Heenen, H. H.; Ringe, S.; Jaramillo, T. F.; Hahn, C.; Chan, K. ACS Catal. 2022, 12, 4344. doi: 10.1021/acscatal.1c05520
doi: 10.1021/acscatal.1c05520
Tilak, B. V.; Conway, B. E. Electrochim. Acta 1992, 37, 51. doi: 10.1016/0013-4686(92)80011-a
doi: 10.1016/0013-4686(92)80011-a
Holewinski, A.; Linic, S. J. Electrochem. Soc. 2012, 159, H864. doi: 10.1149/2.022211jes
doi: 10.1149/2.022211jes
Kozuch, S.; Shaik, S. J. Am. Chem. Soc. 2006, 128, 3355. doi: 10.1021/ja0559146
doi: 10.1021/ja0559146
Kozuch, S.; Shaik, S. Acc. Chem. Res. 2011, 44, 101. doi: 10.1021/ar1000956
doi: 10.1021/ar1000956
Chen, J. X.; Chen, Y. T.; Li, P.; Wen, Z. H.; Chen, S. L. ACS Catal. 2018, 8, 10590. doi: 10.1021/acscatal.8b03008
doi: 10.1021/acscatal.8b03008
Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry; University Science Books: Herndon, VA, USA, 2006; pp. 421–441.
Liu, Y. S.; McCrory, C. C. L. Nat. Commun. 2019, 10, 1683. doi: 10.1038/s41467-019-09626-8
doi: 10.1038/s41467-019-09626-8
Weaver, M. J. J. Phys. Chem. 1976, 80, 2645. doi: 10.1021/j100565a005
doi: 10.1021/j100565a005
Weaver, M. J. J. Phys. Chem. 1979, 83, 1748. doi: 10.1021/j100476a013
doi: 10.1021/j100476a013
Hupp, J. T.; Weaver, M. J. J. Electroanal. Chem. 1983, 145, 43. doi: 10.1016/s0022-0728(83)80292-7
doi: 10.1016/s0022-0728(83)80292-7
Weaver, M. J. Compr. Chem. Kinet. 1988, 27, 1. doi: 10.1016/S0069-8040(08)70015-3
doi: 10.1016/S0069-8040(08)70015-3
Marcus, R. A.; Sutin, N. Biochimica Et Biophysica Acta 1985, 811, 265. doi: 10.1016/0304-4173(85)90014-x
doi: 10.1016/0304-4173(85)90014-x
Rubinstein, I. Physical Electrochemistry: Principles, Methods, and Applications; Marcel Dekker, Inc. : New York, NY, USA, 1995; pp. 42–44.
Bockris J. O'. M.; Khan, S. U. M. Quantum Electrochemistry; Plenum Press: New York, NY, USA, 1979; pp. 111–140.
Bockris, J. O'. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 1496–1499.
Conway, B. E. Theory and Principles of Electrode Processes; Publisher: The Ronald Press Company, New York, NY, USA, 1965; pp. 92–109.
Bockris, J. O'. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 806–848.
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
Xinghui Yao , Zhouyu Wang , Da-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228