Citation: Ji-Chao Wang, Xiu Qiao, Weina Shi, Jing He, Jun Chen, Wanqing Zhang. S-Scheme Heterojunction of Cu2O Polytope-Modified BiOI Sheet for Efficient Visible-Light-Driven CO2 Conversion under Water Vapor[J]. Acta Physico-Chimica Sinica, ;2023, 39(6): 221000. doi: 10.3866/PKU.WHXB202210003 shu

S-Scheme Heterojunction of Cu2O Polytope-Modified BiOI Sheet for Efficient Visible-Light-Driven CO2 Conversion under Water Vapor

  • Corresponding author: Ji-Chao Wang, wangjichao@hist.edu.cn Weina Shi, shiweina516@163.com
  • Received Date: 5 October 2022
    Revised Date: 30 October 2022
    Accepted Date: 14 November 2022
    Available Online: 17 November 2022

    Fund Project: the financial supports of National Natural Science Foundation of China 51802082Natural Science Foundation of Henan Province, China 212300410221Program for Science & Technology Innovation Talents in Universities of Henan Province, China 21HATIT016Key Scientific and Technological Project of Henan Province, China 222102320100Key Project of Science and Technology Program of Xinxiang City, China GC2021005National College Student Innovation and Entrepreneurship Training, China 202110467024

  • Excessive CO2 emissions have led to serious environmental problems. The photocatalytic reduction of CO2 to value-added chemicals is a promising strategy to reduce carbon emissions and alleviate the energy crisis simultaneously. Photocatalysts is crucial in the reduction process. Nanostructure engineering and heterojunction construction have been identified as prospective approaches to develop efficient photocatalysts for CO2 reduction. Step-scheme (S-scheme) heterojunctions are novel systems composed of a reduction catalyst and an oxidation catalyst. In these systems, the charge separation at the interface between the two catalysts could be enhanced by an internal electric field directed from the reduction photocatalyst to the oxidation photocatalyst on account of their matched Fermi levels (Ef). The S-scheme transfer mode can not only efficaciously inhibit the recombination of photoinduced carriers but also accumulate electrons and holes with greater redox potential. Cu2O and BiOI materials, as typical reduction and oxidation catalysts, are endowed with efficient visible-light absorption and favorable band position for catalyzing the coupling reaction of CO2 reduction and H2O oxidation. In this study, a series of S-scheme catalysts consisting of polyhedral Cu2O-modified BiOI flakes were synthesized onto a fluorine-doped tin oxide substrate via the electrodeposition method. The structure, morphology, and surface composition of the as-obtained samples were then studied using X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) measurements. 13C/18O isotope tracer experiments indicated that the BiOI/Cu2O composite achieved CO2 conversion with water vapor under visible-light irradiation (λ > 400 nm). The CO, CH4, H2, and O2 yields of the optimal BiOI/Cu2O-1500 catalyst reached 53.03, 30.75, 8.49, and 82.73 μmol∙m−2, respectively, after 11 h of visible-light illumination. The photocatalytic activity of BiOI/Cu2O-1500 slightly decreased at the eighth cycling, but its CO, CH4, and O2 yields still reached 27.38, 34.08, and 75.52 μmol∙m−2, respectively. The XPS and XRD results confirmed the excellent cycling stability of the catalysts, and analysis using the XPS core-level (CL) alignment method revealed that a staggered band structure was formed in the BiOI/Cu2O heterojunction. The direction of the built-in electric field in the heterojunction was determined using UPS measurements, and the S-scheme mechanism of charge transfer was verified via the in situ XPS results. In addition, the production of HCO3, CO32−, HCOO, and •CH3 species during CO2 reduction was confirmed using in situ diffuse reflectance Fourier transform spectrometry, and a possible mechanism of CO2 conversion under water vapor was proposed. Benefiting from its S-scheme BiOI/Cu2O heterojunction, the prepared catalyst showed improved photoinduced charge separation, and its photogenerated carriers with strong redox ability were preserved, thereby leading to enhanced photocatalytic performance.
  • 加载中
    1. [1]

      Chang, X.; Wang, T.; Gong, J. Energy Environ. Sci. 2016, 9 (7), 2177. doi: 10.1039/c6ee00383d  doi: 10.1039/c6ee00383d

    2. [2]

      Xu, Z. -T.; Xie, K. Chin. J. Struct. Chem. 2021, 40 (1), 31. doi: 10.14102/j.cnki.0254–5861.2011–2744  doi: 10.14102/j.cnki.0254–5861.2011–2744

    3. [3]

      Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M. Mater. Today 2020, 32, 222. doi: 10.1016/j.mattod.2019.06.009  doi: 10.1016/j.mattod.2019.06.009

    4. [4]

      Fung, C. -M.; Tang, J. -Y.; Tan, L. -L.; Mohamed, A. R.; Chai, S. -P. Mater. Today Sustain. 2020, 9, 100037. doi: 10.1016/j.mtsust.2020.100037  doi: 10.1016/j.mtsust.2020.100037

    5. [5]

      Pan, R.; Liu, J.; Zhang, J. ChemNanoMat 2021, 7 (7), 737. doi: 10.1002/cnma.202100087  doi: 10.1002/cnma.202100087

    6. [6]

      Wang, Z.; Hong, J.; Ng, S. -F.; Liu, W.; Huang, J.; Chen, P.; Ong, W. -J. Acta Phys. -Chim. Sin. 2021, 37, 2011033.  doi: 10.3866/PKU.WHXB202011033

    7. [7]

      He, K.; Shen, R.; Hao, L.; Li, Y.; Zhang, P.; Jiang, J.; Xin, L. Acta Phys. -Chim. Sin. 2022, 38, 2201021.  doi: 10.3866/PKU.WHXB202201021

    8. [8]

      Li, N.; Peng, J.; Shi, Z.; Zhang, P.; Li, X. Chin. J. Catal. 2022, 43 (7), 1906. doi: 10.1016/s1872-2067(21)64018-4  doi: 10.1016/s1872-2067(21)64018-4

    9. [9]

      Liu, S. -H.; Li, Y.; Ding, K. -N.; Chen, W. -K.; Zhang, Y. -F.; Lin, W. Chin. J. Struct. Chem. 2020, 39 (12), 2068. doi: 10.14102/j.cnki.0254–5861.2011–3005  doi: 10.14102/j.cnki.0254–5861.2011–3005

    10. [10]

      Zhou, Y.; Wang, Z.; Huang, L.; Zaman, S.; Lei, K.; Yue, T.; Li, Z. A.; You, B.; Xia, B. Y. Adv. Energy Mater. 2021, 11 (8), 2003159. doi: 10.1002/aenm.202003159  doi: 10.1002/aenm.202003159

    11. [11]

      Ahmad, I.; Shukrullah, S.; Naz, M. Y.; Ahmad, M.; Ahmed, E.; Liu, Y.; Hussain, A.; Iqbal, S.; Ullah, S. Adv. Colloid Interface Sci. 2022, 304, 102661. doi: 10.1016/j.cis.2022.102661  doi: 10.1016/j.cis.2022.102661

    12. [12]

      Wu, J.; Wang, S.; Qi, J.; Li, D.; Zhang, Z.; Liu, G.; Feng, Y. Mater. Today Energy 2022, 28, 101065. doi: 10.1016/j.mtener.2022.101065  doi: 10.1016/j.mtener.2022.101065

    13. [13]

      Ye, L.; Jin, X.; Ji, X.; Liu, C.; Su, Y.; Xie, H.; Liu, C. Chem. Eng. J. 2016, 291, 39. doi: 10.1016/j.cej.2016.01.032  doi: 10.1016/j.cej.2016.01.032

    14. [14]

      Lan, M.; Wang, M.; Zheng, N.; Dong, X.; Wang, Y.; Gao, J. J. Ind. Eng. Chem. 2022, 108, 109. doi: 10.1016/j.jiec.2021.12.031  doi: 10.1016/j.jiec.2021.12.031

    15. [15]

      Li, H.; Wang, D.; Miao, C.; Xia, F.; Wang, Y.; Wang, Y.; Liu, C.; Che, G. J. Environ. Chem. Eng. 2022, 10 (4), 108201. doi: 10.1016/j.jece.2022.108201  doi: 10.1016/j.jece.2022.108201

    16. [16]

      Li, Y.; Luo, H.; Bao, Y.; Guo, S.; Lei, D.; Chen, Y. Sol. RRL 2021, 2100051. doi: 10.1002/solr.202100051  doi: 10.1002/solr.202100051

    17. [17]

      Liu, X.; Xiao, J.; Ma, S.; Shi, C.; Pan, L.; Zou, J. J. ChemNanoMat 2021, 7 (7), 684. doi: 10.1002/cnma.202100105  doi: 10.1002/cnma.202100105

    18. [18]

      Huang, H.; Xiao, K.; He, Y.; Zhang, T.; Dong, F.; Du, X.; Zhang, Y. Appl. Catal. B 2016, 199, 75. doi: 10.1016/j.apcatb.2016.06.020  doi: 10.1016/j.apcatb.2016.06.020

    19. [19]

      Zhong, S.; Wang, B.; Zhou, H.; Li, C.; Peng, X.; Zhang, S. J. Alloy. Compd. 2019, 806, 401. doi: 10.1016/j.jallcom.2019.07.223  doi: 10.1016/j.jallcom.2019.07.223

    20. [20]

      Wang, X.; Zhou, C.; Yin, L.; Zhang, R.; Liu, G. ACS Sustainable Chem. Eng. 2019, 7 (8), 7900. doi: 10.1021/acssuschemeng.9b00548  doi: 10.1021/acssuschemeng.9b00548

    21. [21]

      Yang, X.; Chen, Z.; Zhao, W.; Liu, C.; Qian, X.; Chang, W.; Sun, T.; Shen, C.; Wei, G. J. Alloys Compd. 2021, 864, 15874. doi: 10.1016/j.jallcom.2021.158784  doi: 10.1016/j.jallcom.2021.158784

    22. [22]

      Alzamly, A.; Bakiro, M.; Ahmed, S. H.; Sallabi, S. M.; Al Ajeil, R. A.; Alawadhi, S. A.; Selem, H. A.; Al Meshayei, S. S. M.; Khaleel, A.; Al-Shamsi, N.; et al. J. Photochem. Photobiol. A 2019, 375, 30. doi: 10.1016/j.jphotochem.2019.01.031  doi: 10.1016/j.jphotochem.2019.01.031

    23. [23]

      Hou, J.; Jiang, K.; Shen, M.; Wei, R.; Wu, X.; Idrees, F.; Cao, C. Sci. Rep. 2017, 7 (1), 11665. doi: 10.1038/s41598-017-12266-x  doi: 10.1038/s41598-017-12266-x

    24. [24]

      Bhosale, A. H.; Narra, S.; Bhosale, S. S.; Diau, E. W. J. Phys. Chem. Lett. 2022, 7987. doi: 10.1021/acs.jpclett.2c02153  doi: 10.1021/acs.jpclett.2c02153

    25. [25]

      Han, S.; Li, B.; Huang, L.; Xi, H.; Ding, Z.; Long, J. Chin. J. Struct. Chem. 2022, 41, 2201007. doi: 10.14102/j.cnki.0254-5861.2021-0026  doi: 10.14102/j.cnki.0254-5861.2021-0026

    26. [26]

      Li, D.; Huang, Y.; Li, S.; Wang, C.; Li, Y.; Zhang, X.; Liu, Y. Chin. J. Catal. 2020, 41 (1), 154. doi: 10.1016/s1872-2067(19)63475-3  doi: 10.1016/s1872-2067(19)63475-3

    27. [27]

      Cheng, L.; Zhang, D.; Liao, Y.; Fan, J.; Xiang, Q. Chin. J. Catal. 2021, 42 (1), 131. doi: 10.1016/s1872-2067(20)63623-3  doi: 10.1016/s1872-2067(20)63623-3

    28. [28]

      Liu, Y.; Yu, F.; Wang, F.; Bai, S.; He, G. Chin. J. Struct. Chem. 2022, 41, 2201034. doi: 10.14102/j.cnki.0254-5861.2021-0046  doi: 10.14102/j.cnki.0254-5861.2021-0046

    29. [29]

      Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Chem. Rev. 2019, 119 (6), 3962. doi: 10.1021/acs.chemrev.8b00400  doi: 10.1021/acs.chemrev.8b00400

    30. [30]

      Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011  doi: 10.1016/j.apcatb.2018.11.011

    31. [31]

      Xu. Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6 (7), 1543. doi: 10.1016/j.chempr.2020.06.010.  doi: 10.1016/j.chempr.2020.06.010

    32. [32]

      Zhang, J.; Zhang, L.; Wang, W.; Yu, J. J. Chem. Phys. Lett. 2022, 13 (36), 8462. doi: 10.1021/acs.jpclett.2c02125  doi: 10.1021/acs.jpclett.2c02125

    33. [33]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34 (11), 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    34. [34]

      Wageh, S.; Al-Ghamdi, A, A.; Liu, L. Acta Phys. -Chim. Sin. 2021, 37 (6), 2010024.  doi: 10.3866/PKU.WHXB202010024

    35. [35]

      Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim. Sin. 2021, 37 (6), 2009030.  doi: 10.3866/PKU.WHXB202009030

    36. [36]

      Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38 (7), 2108028.  doi: 10.3866/PKU.WHXB202108028

    37. [37]

      Li, S.; Cai, M.; Liu, Y.; Zhang, J.; Wang, C.; Zang, S.; Li, Y.; Zhang, P.; Li, X. Inorg. Chem. Front. 2022, 9 (11), 2479. doi: 10.1039/d2qi00317a  doi: 10.1039/d2qi00317a

    38. [38]

      Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43 (2), 359. doi: 10.1016/s1872-2067(21)63883-4  doi: 10.1016/s1872-2067(21)63883-4

    39. [39]

      Zhu, B.; Hong, X.; Tang, L.; Liu, Q.; Tang, H. Acta Phys. -Chim. Sin. 2022, 38 (7), 2111008.  doi: 10.3866/PKU.WHXB202111008

    40. [40]

      Zhang, B.; Wang, D.; Jiao, S.; Xu, Z.; Liu, Y.; Zhao, C.; Pan, J.; Liu, D.; Liu, G.; Jiang, B.; et al. Chem. Eng. J. 2022, 446, 137138. doi: 10.1016/j.cej.2022.137138  doi: 10.1016/j.cej.2022.137138

    41. [41]

      Xiao, Y.; Ji, Z.; Zou, C.; Xu, Y.; Wang, R.; Wu, J.; Liu, G.; He, P.; Wang, Q.; Jia, T. Appl. Surf. Sci. 2021, 556, 149767. doi: 10.1016/j.apsusc.2021.149767  doi: 10.1016/j.apsusc.2021.149767

    42. [42]

      Wang, J.; Li, S.; Yang, K.; Zhang, T.; Jiang, S.; Li, X.; Li, B. ACS Appl. Nano Mater. 2022, 5 (5), 6736. doi: 10.1021/acsanm.2c00760  doi: 10.1021/acsanm.2c00760

    43. [43]

      Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Li, Y.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2022, 43(7), 1657. doi: 10.1016/S1872-2067(21)64010-X.  doi: 10.1016/S1872-2067(21)64010-X

    44. [44]

      Guo, Y.; Dai, M.; Zhu, Z.; Chen, Y.; He, H.; Qin, T. Appl. Surf. Sci. 2019, 480, 601. doi: 10.1016/j.apsusc.2019.02.246  doi: 10.1016/j.apsusc.2019.02.246

    45. [45]

      Jiang, H.; Katsumata, K. -I.; Hong, J.; Yamaguchi, A.; Nakata, K.; Terashima, C.; Matsushita, N.; Miyauchi, M.; Fujishima, A. Appl. Catal. B 2018, 224, 783. doi: 10.1016/j.apcatb.2017.11.011  doi: 10.1016/j.apcatb.2017.11.011

    46. [46]

      Jiang, Y.; Xia, T.; Shen, L.; Ma, J.; Ma, H.; Sun, T.; Lv, F.; Zhu, N. ACS Catal. 2021, 11 (5), 2949. doi: 10.1021/acscatal.0c04797  doi: 10.1021/acscatal.0c04797

    47. [47]

      Li, L.; Zhang, R.; Vinson, J.; Shirley, E. L.; Greeley, J. P.; Guest, J. R.; Chan, M. K. Y. Chem. Mater. 2018, 30, 1912. doi: 10.1021/acs.chemmater.7b04803  doi: 10.1021/acs.chemmater.7b04803

    48. [48]

      Liu, B.; Yao, X.; Zhang, Z.; Li, C.; Zhang, J.; Wang, P.; Zhao, J.; Guo, Y.; Sun, J.; Zhao, C. ACS Appl. Mater. Interfaces 2021, 13 (33), 39165. doi: 10.1021/acsami.1c03850  doi: 10.1021/acsami.1c03850

    49. [49]

      Mandal, L.; Yang, K. R.; Motapothula, M. R.; Ren, D.; Lobaccaro, P.; Patra, A.; Sherburne, M.; Batista, V. S.; Yeo, B. S.; Ager, J. W.; et al. ACS Appl. Mater. Interfaces 2018, 10 (10), 8574. doi: 10.1021/acsami.7b15418  doi: 10.1021/acsami.7b15418

    50. [50]

      Zhang, Y.; Wang, Q.; Liu, D.; Wang, Q.; Li, T.; Wang, Z. Appl. Surf. Sci. 2020, 521, 146434. doi: 10.1016/j.apsusc.2020.146434  doi: 10.1016/j.apsusc.2020.146434

    51. [51]

      Ponnaiah, S. K.; Prakash, P.; Arumuganathan, T.; Jeyaprabha, B. J. Photochem. Photobiol. A 2019, 380, 111860. doi: 10.1016/j.jphotochem.2019.111860  doi: 10.1016/j.jphotochem.2019.111860

    52. [52]

      Cai, J.; Xiao, Y.; Tursun, Y.; Abulizi, A. Mater. Sci. Semicond. Process. 2022, 149, 106891. doi: 10.1016/j.mssp.2022.106891  doi: 10.1016/j.mssp.2022.106891

    53. [53]

      Chen, D.; Yang, J.; Zhu, Y.; Zhang, Y.; Zhu, Y. Appl. Catal. B 2018, 233, 202. doi: 10.1016/j.apcatb.2018.04.004  doi: 10.1016/j.apcatb.2018.04.004

    54. [54]

      Shi, W.; Wang, J. C.; Chen, A.; Xu, X.; Wang, S.; Li, R.; Zhang, W.; Hou, Y. Nanomaterials 2022, 12 (13), 2284. doi: 10.3390/nano12132284  doi: 10.3390/nano12132284

    55. [55]

      Nogueira, A. C.; Gomes, L. E.; Ferencz, J. A. P.; Rodrigues, J. E. F. S.; Gonçalves, R. V.; Wender, H. J. Phys. Chem. C 2019, 123 (42), 25680. doi: 10.1021/acs.jpcc.9b06907  doi: 10.1021/acs.jpcc.9b06907

    56. [56]

      Kramm, B.; Laufer, A.; Reppin, D.; Kronenberger, A.; Hering, P.; Polity, A.; Meyer, B. K. Appl. Phys. Lett. 2012, 100 (9), 094102. doi: 10.1063/1.3685719  doi: 10.1063/1.3685719

    57. [57]

      Huang, Z.; Wu, J.; Ma, M.; Wang, J.; Wu, S.; Hu, X.; Yuan, C.; Zhou, Y. New J. Chem. 2022, 46 (35), 16889. doi: 10.1039/d2nj02725a  doi: 10.1039/d2nj02725a

    58. [58]

      Su, F.; Chen, Y.; Wang, R.; Zhang, S.; Liu, K.; Zhang, Y.; Zhao, W.; Ding, C.; Xie, H.; Ye, L. Sustainable Energy Fuels 2021, 5 (4), 1034. doi: 10.1039/d0se01561j  doi: 10.1039/d0se01561j

    59. [59]

      Kang, S.; Li, Z.; Xu, Z.; Zhang, Z.; Sun, J.; Bian, J.; Bai, L.; Qu, Y.; Jing, L. Catal. Sci. Technol. 2022, 12 (15), 4817. doi: 10.1039/d2cy00713d  doi: 10.1039/d2cy00713d

    60. [60]

      Li, N.; Wang, B.; Si, Y.; Xue, F.; Zhou, J.; Lu, Y.; Liu, M. ACS Catal. 2019, 9 (6), 5590. doi: 10.1021/acscatal.9b00223  doi: 10.1021/acscatal.9b00223

  • 加载中
    1. [1]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    2. [2]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    3. [3]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    4. [4]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    5. [5]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    6. [6]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    7. [7]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    8. [8]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    12. [12]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    14. [14]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    16. [16]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    17. [17]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    18. [18]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    19. [19]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    20. [20]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

Metrics
  • PDF Downloads(12)
  • Abstract views(502)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return