Colloidal Quantum Dot Solids with a Diminished Epitaxial PbI2 Matrix for Efficient Infrared Solar Cells
- Corresponding author: Xiaoliang Zhang, xiaoliang.zhang@buaa.edu.cn
Citation: Mingxu Zhang, Qisen Zhou, Xinyi Mei, Jingxuan Chen, Junming Qiu, Xiuzhi Li, Shuang Li, Mubing Yu, Chaochao Qin, Xiaoliang Zhang. Colloidal Quantum Dot Solids with a Diminished Epitaxial PbI2 Matrix for Efficient Infrared Solar Cells[J]. Acta Physico-Chimica Sinica, ;2023, 39(3): 221000. doi: 10.3866/PKU.WHXB202210002
Chen, J.; Jia, D.; Johansson, E. M. J.; Hagfeldt, A.; Zhang, X. Energy Environ. Sci. 2021, 14, 224. doi: 10.1039/d0ee02900a
doi: 10.1039/d0ee02900a
Zhang, X.; Hägglund, C.; Johansson, E. M. J. Adv. Funct. Mater. 2016, 26, 1253. doi: 10.1002/adfm.201503338
doi: 10.1002/adfm.201503338
Zheng, S.; Chen, J.; Johansson, E. M. J.; Zhang, X. I. Science 2020, 23, 101753. doi: 10.1016/j.isci.2020.101753
doi: 10.1016/j.isci.2020.101753
Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Nature 2006, 442, 180. doi: 10.1038/nature04855
doi: 10.1038/nature04855
Lee, J. S.; Kovalenko, M. V.; Huang, J.; Chung, D. S.; Talapin, D. V. Nat. Nanotechnol. 2011, 6, 348. doi: 10.1038/nnano.2011.46
doi: 10.1038/nnano.2011.46
Gao, L.; Quan, L. N.; García de Arquer, F. P.; Zhao, Y.; Munir, R.; Proppe, A.; Quintero-Bermudez, R.; Zou, C.; Yang, Z.; Saidaminov, M. I.; et al. Nat. Photonics 2020, 14, 459. doi: 10.1038/s41566-020-0635-8
doi: 10.1038/s41566-020-0635-8
McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Nat. Mater. 2005, 4, 138. doi: 10.1038/nmat1299
doi: 10.1038/nmat1299
Mei, X.; Jia, D.; Chen, J.; Zheng, S.; Zhang, X. Nano Today 2022, 43, 101449. doi: 10.1016/j.nantod.2022.101449
doi: 10.1016/j.nantod.2022.101449
Whitworth, G. L.; Dalmases, M.; Taghipour, N.; Konstantatos, G. Nat. Photonics 2021, 15, 738. doi: 10.1038/s41566-021-00878-9
doi: 10.1038/s41566-021-00878-9
Wang, C.; Zhang, C.; Li, R.; Chen, Q.; Qian, L.; Chen, L. Acta Phys. -Chim. Sin. 2022, 38, 2104030.
doi: 10.3866/PKU.WHXB202104030
Choi, M. J.; Garcia de Arquer, F. P.; Proppe, A. H.; Seifitokaldani, A.; Choi, J.; Kim, J.; Baek, S. W.; Liu, M.; Sun, B.; Biondi, M.; et al. Nat. Commun. 2020, 11, 103. doi: 10.1038/s41467-019-13437-2
doi: 10.1038/s41467-019-13437-2
Jia, D.; Chen, J.; Zheng, S.; Phuyal, D.; Yu, M.; Tian, L.; Liu, J.; Karis, O.; Rensmo, H.; Johansson, E. M. J.; et al. Adv. Energy Mater. 2019, 9, 1902809. doi: 10.1002/aenm.201902809
doi: 10.1002/aenm.201902809
Chen, J.; Zheng, S.; Jia, D.; Liu, W.; Andruszkiewicz, A.; Qin, C.; Yu, M.; Liu, J.; Johansson, E. M. J.; Zhang, X. ACS Energy Lett. 2021, 6, 1970. doi: 10.1021/acsenergylett.1c00475
doi: 10.1021/acsenergylett.1c00475
Zhang, X.; Zhang, J.; Phuyal, D.; Du, J.; Tian, L.; Öberg, V. A.; Johansson, M. B.; Cappel, U. B.; Karis, O.; Liu, J.; et al. Adv. Energy Mater. 2018, 8, 1702049. doi: 10.1002/aenm.201702049
doi: 10.1002/aenm.201702049
Zhang, X.; Cappel, U. B.; Jia, D.; Zhou, Q.; Du, J.; Sloboda, T.; Svanström, S.; Johansson, F. O. L.; Lindblad, A.; Giangrisostomi, E.; et al. Chem. Mater. 2019, 31, 4081. doi: 10.1021/acs.chemmater.9b00742
doi: 10.1021/acs.chemmater.9b00742
Zheng, S.; Wang, Y.; Jia, D.; Tian, L.; Chen, J.; Shan, L.; Dong, L.; Zhang, X. Adv. Mater. Interfaces 2021, 8, 2100489. doi: 10.1002/admi.202100489
doi: 10.1002/admi.202100489
Zhang, X.; Öberg, V. A.; Du, J.; Liu, J.; Johansson, E. M. J. Energy Environ. Sci. 2018, 11, 354. doi: 10.1039/c7ee02772a
doi: 10.1039/c7ee02772a
Zhang, X.; Zhang, J.; Liu, J.; Johansson, E. M. J. Nanoscale 2015, 7, 11520. doi: 10.1039/c5nr02617b
doi: 10.1039/c5nr02617b
Zhang, X.; Hägglund, C.; Johansson, M. B.; Sveinbjörnsson, K.; Johansson, E. M. J. Adv. Funct. Mater. 2016, 26, 1921. doi: 10.1002/adfm.201504038
doi: 10.1002/adfm.201504038
Chen, J.; Jia, D.; Qiu, J.; Zhuang, R.; Hua, Y.; Zhang, X. Nano Energy 2022, 96, 107140. doi: 10.1016/j.nanoen.2022.107140
doi: 10.1016/j.nanoen.2022.107140
Jia, D.; Chen, J.; Qiu, J.; Ma, H.; Yu, M.; Liu, J.; Zhang, X. Joule 2022, 6, 1632. doi: 10.1016/j.joule.2022.05.007
doi: 10.1016/j.joule.2022.05.007
Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H. Y.; Gao, J.; Nozik, A. J.; Beard, M. C. Science 2011, 334, 1530. doi: 10.1126/science.1209845
doi: 10.1126/science.1209845
Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Chem. Rev. 2010, 110, 6873. doi: 10.1021/cr900289f
doi: 10.1021/cr900289f
Han, B. Acta Phys. -Chim. Sin. 2020, 36, 1911025.
doi: 10.3866/PKU.WHXB201911025
Zhang, J.; Gao, J.; Miller, E. M.; Luther, J. M.; Beard, M. C. ACS Nano 2014, 8, 614. doi: 10.1021/nn405236k
doi: 10.1021/nn405236k
Yuan, M.; Kemp, K. W.; Thon, S. M.; Kim, J. Y.; Chou, K. W.; Amassian, A.; Sargent, E. H. Adv. Mater. 2014, 26, 3513. doi: 10.1002/adma.201305912
doi: 10.1002/adma.201305912
Wang, Y.; Lu, K.; Han, L.; Liu, Z.; Shi, G.; Fang, H.; Chen, S.; Wu, T.; Yang, F.; Gu, M.; et al. Adv. Mater. 2018, 30, 1704871. doi: 10.1002/adma.201704871
doi: 10.1002/adma.201704871
Wang, Y.; Liu, Z.; Huo, N.; Li, F.; Gu, M.; Ling, X.; Zhang, Y.; Lu, K.; Han, L.; Fang, H.; et al. Nat. Commun. 2019, 10, 5136. doi: 10.1038/s41467-019-13158-6
doi: 10.1038/s41467-019-13158-6
Xia, Y.; Liu, S.; Wang, K.; Yang, X.; Lian, L.; Zhang, Z.; He, J.; Liang, G.; Wang, S.; Tan, M.; et al. Adv. Funct. Mater. 2019, 30, 1907379. doi: 10.1002/adfm.201907379
doi: 10.1002/adfm.201907379
Voznyy, O.; Zhitomirsky, D.; Stadler, P.; Ning, Z.; Hoogland, S.; Sargent, E. H. ACS Nano 2012, 6, 8448. doi: 10.1021/nn303364d
doi: 10.1021/nn303364d
Choi, H.; Ko, J. H.; Kim, Y. H.; Jeong, S. J. Am. Chem. Soc. 2013, 135, 5278. doi: 10.1021/ja400948t
doi: 10.1021/ja400948t
Zherebetskyy, D.; Scheele, M.; Zhang, Y.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L. W. Science 2014, 344, 1380. doi: 10.1126/science.1252727
doi: 10.1126/science.1252727
Chen, W.; Guo, R.; Tang, H.; Wienhold, K. S.; Li, N.; Jiang, Z.; Tang, J.; Jiang, X.; Kreuzer, L. P.; Liu, H.; et al. Energy Environ. Sci. 2021, 14, 3420. doi: 10.1039/d1ee00832c
doi: 10.1039/d1ee00832c
Shi, G.; Wang, H.; Zhang, Y.; Cheng, C.; Zhai, T.; Chen, B.; Liu, X.; Jono, R.; Mao, X.; Liu, Y.; et al. Nat. Commun. 2021, 12, 4381. doi: 10.1038/s41467-021-24614-7
doi: 10.1038/s41467-021-24614-7
Zhang, Z.; Sung, J.; Toolan, D. T. W.; Han, S.; Pandya, R.; Weir, M. P.; Xiao, J.; Dowland, S.; Liu, M.; Ryan, A. J.; et al. Nat. Mater. 2022, 21, 533. doi: 10.1038/s41563-022-01204-6
doi: 10.1038/s41563-022-01204-6
Sánchez-Godoy, H. E.; Erazo, E. A.; Gualdrón-Reyes, A. F.; Khan, A. H.; Agouram, S.; Barea, E. M.; Rodriguez, R. A.; Zarazúa, I.; Ortiz, P.; Cortés, M. T.; et al. Adv. Energy Mater. 2020, 10, 2002422. doi: 10.1002/aenm.202002422
doi: 10.1002/aenm.202002422
Tavakoli, M. M.; Dastjerdi, H. T.; Yadav, P.; Prochowicz, D.; Si, H.; Tavakoli, R. Adv. Funct. Mater. 2021, 31, 2010623. doi: 10.1002/adfm.202010623
doi: 10.1002/adfm.202010623
Kim, H. I.; Baek, S. W.; Cheon, H. J.; Ryu, S. U.; Lee, S.; Choi, M. J.; Choi, K.; Biondi, M.; Hoogland, S.; de Arquer, F. P. G.; et al. Adv. Mater. 2020, 32, 2004985. doi: 10.1002/adma.202004985
doi: 10.1002/adma.202004985
Sun, B.; Johnston, A.; Xu, C.; Wei, M.; Huang, Z.; Jiang, Z.; Zhou, H.; Gao, Y.; Dong, Y.; Ouellette, O.; et al. Joule 2020, 4, 1542. doi: 10.1016/j.joule.2020.05.011
doi: 10.1016/j.joule.2020.05.011
Cao, Y. M.; Stavrinadis, A.; Lasanta, T.; So, D.; Konstantatos, G. Nat. Energy 2016, 1, 16035. doi: 10.1038/Nenergy.2016.35
doi: 10.1038/Nenergy.2016.35
Kagan, C. R.; Murray, C. B. Nat. Nanotechnol. 2015, 10, 1013. doi: 10.1038/nnano.2015.247
doi: 10.1038/nnano.2015.247
Balazs, D. M.; Dirin, D. N.; Fang, H. H.; Protesescu, L.; ten Brink, G. H.; Kooi, B. J.; Kovalenko, M. V.; Loi, M. A. ACS Nano 2015, 9, 11951. doi: 10.1021/acsnano.5b04547
doi: 10.1021/acsnano.5b04547
Gilmore, R. H.; Liu, Y.; Shcherbakov-Wu, W.; Dahod, N. S.; Lee, E. M. Y.; Weidman, M. C.; Li, H.; Jean, J.; Bulović, V.; Willard, A. P.; et al. Matter 2019, 1, 250. doi: 10.1016/j.matt.2019.05.015
doi: 10.1016/j.matt.2019.05.015
Liu, M.; Voznyy, O.; Sabatini, R.; Garcia de Arquer, F. P.; Munir, R.; Balawi, A. H.; Lan, X.; Fan, F.; Walters, G.; Kirmani, A. R.; et al. Nat. Mater. 2017, 16, 258. doi: 10.1038/nmat4800
doi: 10.1038/nmat4800
Jo, J. W.; Kim, Y.; Choi, J.; de Arquer, F. P. G.; Walters, G.; Sun, B.; Ouellette, O.; Kim, J.; Proppe, A. H.; Quintero-Bermudez, R.; et al. Adv. Mater. 2017, 29, 1703627. doi: 10.1002/adma.201703627
doi: 10.1002/adma.201703627
Zhou, Q.; Qiu, J.; Wang, Y.; Yu, M.; Liu, J.; Zhang, X. ACS Energy Lett. 2021, 6, 1596. doi: 10.1021/acsenergylett.1c00291
doi: 10.1021/acsenergylett.1c00291
Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Science 2016, 352, aad4424. doi: 10.1126/science.aad4424
doi: 10.1126/science.aad4424
Xu, J.; Voznyy, O.; Liu, M.; Kirmani, A. R.; Walters, G.; Munir, R.; Abdelsamie, M.; Proppe, A. H.; Sarkar, A.; Garcia de Arquer, F. P.; et al. Nat. Nanotechnol. 2018, 13, 456. doi: 10.1038/s41565-018-0117-z
doi: 10.1038/s41565-018-0117-z
Qiu, J.; Zhou, Q.; Jia, D.; Wang, Y.; Li, S.; Zhang, X. J. Mater. Chem. A 2022, 10, 1821. doi: 10.1039/d1ta09756c
doi: 10.1039/d1ta09756c
Gao, J.; Johnson, J. C. ACS Nano 2012, 6, 3292. doi: 10.1021/nn300707d
doi: 10.1021/nn300707d
Kroupa, D. M.; Voros, M.; Brawand, N. P.; McNichols, B. W.; Miller, E. M.; Gu, J.; Nozik, A. J.; Sellinger, A.; Galli, G.; Beard, M. C. Nat. Commun. 2017, 8, 15257. doi: 10.1038/ncomms15257
doi: 10.1038/ncomms15257
Hu, L.; Lei, Q.; Guan, X.; Patterson, R.; Yuan, J.; Lin, C. H.; Kim, J.; Geng, X.; Younis, A.; Wu, X.; et al. Adv. Sci. 2021, 8, 2003138. doi: 10.1002/advs.202003138
doi: 10.1002/advs.202003138
Wang, Y.; Mei, X.; Qiu, J.; Zhou, Q.; Jia, D.; Yu, M.; Liu, J.; Zhang, X. J. Phys. Chem. Lett. 2021, 12, 11330. doi: 10.1021/acs.jpclett.1c03213
doi: 10.1021/acs.jpclett.1c03213
Li, F.; Liu, Y.; Shi, G. Z.; Chen, W.; Guo, R. J.; Liu, D.; Zhang, Y. H.; Wang, Y. J.; Meng, X.; Zhang, X. L.; et al. Adv. Funct. Mater. 2021, 31, 2104457. doi: 10.1002/adfm.202104457
doi: 10.1002/adfm.202104457
Wang, R.; Wu, X.; Xu, K.; Zhou, W.; Shang, Y.; Tang, H.; Chen, H.; Ning, Z. Adv. Mater. 2018, 30, 1704882. doi: 10.1002/adma.201704882
doi: 10.1002/adma.201704882
Xu, K.; Zhou, W.; Ning, Z. Small 2020, 16, 2003397. doi: 10.1002/smll.202003397
doi: 10.1002/smll.202003397
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
Xinxiu Yan , Xizhe Huang , Yangyang Liu , Weishang Jia , Hualin Chen , Qi Yao , Tao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Lixian Fu , Yiyun Tan , Yue Ding , Weixia Qing , Yong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
Yikun Wang , Qiaomei Chen , Shijie Liang , Dongdong Xia , Chaowei Zhao , Christopher R. McNeill , Weiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Jieqiong Xu , Wenbin Chen , Shengkai Li , Qian Chen , Tao Wang , Yadong Shi , Shengyong Deng , Mingde Li , Peifa Wei , Zhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Peiwen Liu , Fang Zhao , Jing Zhang , Yunpeng Bai , Jinxing Ye , Bo Bao , Xinggui Zhou , Li Zhang , Changlu Zhou , Xinhai Yu , Peng Zuo , Jianye Xia , Lian Cen , Yangyang Yang , Guoyue Shi , Lin Xu , Weiping Zhu , Yufang Xu , Xuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020
Junchuan Sun , Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330