Citation: Mingxu Zhang, Qisen Zhou, Xinyi Mei, Jingxuan Chen, Junming Qiu, Xiuzhi Li, Shuang Li, Mubing Yu, Chaochao Qin, Xiaoliang Zhang. Colloidal Quantum Dot Solids with a Diminished Epitaxial PbI2 Matrix for Efficient Infrared Solar Cells[J]. Acta Physico-Chimica Sinica, ;2023, 39(3): 221000. doi: 10.3866/PKU.WHXB202210002 shu

Colloidal Quantum Dot Solids with a Diminished Epitaxial PbI2 Matrix for Efficient Infrared Solar Cells

  • Corresponding author: Xiaoliang Zhang, xiaoliang.zhang@buaa.edu.cn
  • Received Date: 5 October 2022
    Revised Date: 11 November 2022
    Accepted Date: 24 November 2022
    Available Online: 2 December 2022

    Fund Project: the National Natural Science Foundation of China 51872014the National Natural Science Foundation of China 12074104the Fundamental Research Funds for the Central Universities, and the "111" project B17002

  • Colloidal quantum dots (CQDs) are extremely promising infrared optoelectronic materials for efficient solar cells owing to their strong infrared absorption with tunable spectra. However, the liquid-state ligand exchange of CQDs using ammonium acetate (AA) as an additive generally resulted in intensive charge-transport barriers within the CQD solids. This is induced by the high-bandgap PbI2 matrix, which considerably affects the charge-carrier extraction of CQD solar cells (CQDSCs), and thus their photovoltaic performance. Herein, dimethylammonium iodide (DMAI) was used as an additive instead for the liquid-state ligand exchange, substantially eliminating the PbI2 matrix capping the CQDs and simultaneously restraining CQD fusion during the ligand exchange, thereby reducing the barriers for the charge-carrier transport within the CQD solids. Extensive experimental studies and theoretical calculations were performed to link the surface chemistry of the CQDs with the charge-carrier dynamics within the CQD solids and full solar cell devices. The theoretical calculation results reveal that DMAI which possess small dissociation energy could finely regulate the ligand exchange of CQDs, resulting in the suppressed energetic disorder and diminished charge-transport barriers in the CQD solids compared to those of the CQD solids prepared using AA. The DMAI-treated quantum dots were characterized and analyzed by transmission electron microscopy, X-ray photoelectron spectroscopy, and 2D grazing-incidence wide-and small-angle X-ray scattering spectrometry. The results show PbI2-related Bragg peaks in the AA-treated CQD solid films, indicating a thick layer of PbI2 crystal matrix being formed in the CQD solids, whereas there was no obvious PbI2 signal observed in DMAI-treated CQD solids. These results also demonstrate that DMAI provides additional I, improving the surface passivation of the CQDs and reducing trap-assisted recombination. For the infrared photovoltaic applications, the CQDSC devices were fabricated, which shows that the photovoltaic performance of CQDSCs was significantly improved. The power conversion efficiency of DMAI-based CQDSCs was improved by 17.8% compared with that of the AA-based CQDSC. The charge-carrier dynamics in both CQD solids and full solar cell devices were analyzed in detail, revealing that the improved photovoltaic performance in DMAI-based CQDSCs was attributed to the facilitated charge-carrier transport within the CQD solids and suppressed trap-assisted recombination, resulting from eliminated charge-transport barriers and improved surface passivation of CQDs, respectively. This work provides a new avenue to controlling the surface chemistry of infrared CQDs and a feasible approach to substantially diminishing the charge transfer barriers of CQD solids for infrared solar cells.
  • 加载中
    1. [1]

      Chen, J.; Jia, D.; Johansson, E. M. J.; Hagfeldt, A.; Zhang, X. Energy Environ. Sci. 2021, 14, 224. doi: 10.1039/d0ee02900a  doi: 10.1039/d0ee02900a

    2. [2]

      Zhang, X.; Hägglund, C.; Johansson, E. M. J. Adv. Funct. Mater. 2016, 26, 1253. doi: 10.1002/adfm.201503338  doi: 10.1002/adfm.201503338

    3. [3]

      Zheng, S.; Chen, J.; Johansson, E. M. J.; Zhang, X. I. Science 2020, 23, 101753. doi: 10.1016/j.isci.2020.101753  doi: 10.1016/j.isci.2020.101753

    4. [4]

      Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Nature 2006, 442, 180. doi: 10.1038/nature04855  doi: 10.1038/nature04855

    5. [5]

      Lee, J. S.; Kovalenko, M. V.; Huang, J.; Chung, D. S.; Talapin, D. V. Nat. Nanotechnol. 2011, 6, 348. doi: 10.1038/nnano.2011.46  doi: 10.1038/nnano.2011.46

    6. [6]

      Gao, L.; Quan, L. N.; García de Arquer, F. P.; Zhao, Y.; Munir, R.; Proppe, A.; Quintero-Bermudez, R.; Zou, C.; Yang, Z.; Saidaminov, M. I.; et al. Nat. Photonics 2020, 14, 459. doi: 10.1038/s41566-020-0635-8  doi: 10.1038/s41566-020-0635-8

    7. [7]

      McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Nat. Mater. 2005, 4, 138. doi: 10.1038/nmat1299  doi: 10.1038/nmat1299

    8. [8]

      Mei, X.; Jia, D.; Chen, J.; Zheng, S.; Zhang, X. Nano Today 2022, 43, 101449. doi: 10.1016/j.nantod.2022.101449  doi: 10.1016/j.nantod.2022.101449

    9. [9]

      Whitworth, G. L.; Dalmases, M.; Taghipour, N.; Konstantatos, G. Nat. Photonics 2021, 15, 738. doi: 10.1038/s41566-021-00878-9  doi: 10.1038/s41566-021-00878-9

    10. [10]

      Wang, C.; Zhang, C.; Li, R.; Chen, Q.; Qian, L.; Chen, L. Acta Phys. -Chim. Sin. 2022, 38, 2104030.  doi: 10.3866/PKU.WHXB202104030

    11. [11]

      Choi, M. J.; Garcia de Arquer, F. P.; Proppe, A. H.; Seifitokaldani, A.; Choi, J.; Kim, J.; Baek, S. W.; Liu, M.; Sun, B.; Biondi, M.; et al. Nat. Commun. 2020, 11, 103. doi: 10.1038/s41467-019-13437-2  doi: 10.1038/s41467-019-13437-2

    12. [12]

      Jia, D.; Chen, J.; Zheng, S.; Phuyal, D.; Yu, M.; Tian, L.; Liu, J.; Karis, O.; Rensmo, H.; Johansson, E. M. J.; et al. Adv. Energy Mater. 2019, 9, 1902809. doi: 10.1002/aenm.201902809  doi: 10.1002/aenm.201902809

    13. [13]

      Chen, J.; Zheng, S.; Jia, D.; Liu, W.; Andruszkiewicz, A.; Qin, C.; Yu, M.; Liu, J.; Johansson, E. M. J.; Zhang, X. ACS Energy Lett. 2021, 6, 1970. doi: 10.1021/acsenergylett.1c00475  doi: 10.1021/acsenergylett.1c00475

    14. [14]

      Zhang, X.; Zhang, J.; Phuyal, D.; Du, J.; Tian, L.; Öberg, V. A.; Johansson, M. B.; Cappel, U. B.; Karis, O.; Liu, J.; et al. Adv. Energy Mater. 2018, 8, 1702049. doi: 10.1002/aenm.201702049  doi: 10.1002/aenm.201702049

    15. [15]

      Zhang, X.; Cappel, U. B.; Jia, D.; Zhou, Q.; Du, J.; Sloboda, T.; Svanström, S.; Johansson, F. O. L.; Lindblad, A.; Giangrisostomi, E.; et al. Chem. Mater. 2019, 31, 4081. doi: 10.1021/acs.chemmater.9b00742  doi: 10.1021/acs.chemmater.9b00742

    16. [16]

      Zheng, S.; Wang, Y.; Jia, D.; Tian, L.; Chen, J.; Shan, L.; Dong, L.; Zhang, X. Adv. Mater. Interfaces 2021, 8, 2100489. doi: 10.1002/admi.202100489  doi: 10.1002/admi.202100489

    17. [17]

      Zhang, X.; Öberg, V. A.; Du, J.; Liu, J.; Johansson, E. M. J. Energy Environ. Sci. 2018, 11, 354. doi: 10.1039/c7ee02772a  doi: 10.1039/c7ee02772a

    18. [18]

      Zhang, X.; Zhang, J.; Liu, J.; Johansson, E. M. J. Nanoscale 2015, 7, 11520. doi: 10.1039/c5nr02617b  doi: 10.1039/c5nr02617b

    19. [19]

      Zhang, X.; Hägglund, C.; Johansson, M. B.; Sveinbjörnsson, K.; Johansson, E. M. J. Adv. Funct. Mater. 2016, 26, 1921. doi: 10.1002/adfm.201504038  doi: 10.1002/adfm.201504038

    20. [20]

      Chen, J.; Jia, D.; Qiu, J.; Zhuang, R.; Hua, Y.; Zhang, X. Nano Energy 2022, 96, 107140. doi: 10.1016/j.nanoen.2022.107140  doi: 10.1016/j.nanoen.2022.107140

    21. [21]

      Jia, D.; Chen, J.; Qiu, J.; Ma, H.; Yu, M.; Liu, J.; Zhang, X. Joule 2022, 6, 1632. doi: 10.1016/j.joule.2022.05.007  doi: 10.1016/j.joule.2022.05.007

    22. [22]

      Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H. Y.; Gao, J.; Nozik, A. J.; Beard, M. C. Science 2011, 334, 1530. doi: 10.1126/science.1209845  doi: 10.1126/science.1209845

    23. [23]

      Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Chem. Rev. 2010, 110, 6873. doi: 10.1021/cr900289f  doi: 10.1021/cr900289f

    24. [24]

      Han, B. Acta Phys. -Chim. Sin. 2020, 36, 1911025.  doi: 10.3866/PKU.WHXB201911025

    25. [25]

      Zhang, J.; Gao, J.; Miller, E. M.; Luther, J. M.; Beard, M. C. ACS Nano 2014, 8, 614. doi: 10.1021/nn405236k  doi: 10.1021/nn405236k

    26. [26]

      Yuan, M.; Kemp, K. W.; Thon, S. M.; Kim, J. Y.; Chou, K. W.; Amassian, A.; Sargent, E. H. Adv. Mater. 2014, 26, 3513. doi: 10.1002/adma.201305912  doi: 10.1002/adma.201305912

    27. [27]

      Wang, Y.; Lu, K.; Han, L.; Liu, Z.; Shi, G.; Fang, H.; Chen, S.; Wu, T.; Yang, F.; Gu, M.; et al. Adv. Mater. 2018, 30, 1704871. doi: 10.1002/adma.201704871  doi: 10.1002/adma.201704871

    28. [28]

      Wang, Y.; Liu, Z.; Huo, N.; Li, F.; Gu, M.; Ling, X.; Zhang, Y.; Lu, K.; Han, L.; Fang, H.; et al. Nat. Commun. 2019, 10, 5136. doi: 10.1038/s41467-019-13158-6  doi: 10.1038/s41467-019-13158-6

    29. [29]

      Xia, Y.; Liu, S.; Wang, K.; Yang, X.; Lian, L.; Zhang, Z.; He, J.; Liang, G.; Wang, S.; Tan, M.; et al. Adv. Funct. Mater. 2019, 30, 1907379. doi: 10.1002/adfm.201907379  doi: 10.1002/adfm.201907379

    30. [30]

      Voznyy, O.; Zhitomirsky, D.; Stadler, P.; Ning, Z.; Hoogland, S.; Sargent, E. H. ACS Nano 2012, 6, 8448. doi: 10.1021/nn303364d  doi: 10.1021/nn303364d

    31. [31]

      Choi, H.; Ko, J. H.; Kim, Y. H.; Jeong, S. J. Am. Chem. Soc. 2013, 135, 5278. doi: 10.1021/ja400948t  doi: 10.1021/ja400948t

    32. [32]

      Zherebetskyy, D.; Scheele, M.; Zhang, Y.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L. W. Science 2014, 344, 1380. doi: 10.1126/science.1252727  doi: 10.1126/science.1252727

    33. [33]

      Chen, W.; Guo, R.; Tang, H.; Wienhold, K. S.; Li, N.; Jiang, Z.; Tang, J.; Jiang, X.; Kreuzer, L. P.; Liu, H.; et al. Energy Environ. Sci. 2021, 14, 3420. doi: 10.1039/d1ee00832c  doi: 10.1039/d1ee00832c

    34. [34]

      Shi, G.; Wang, H.; Zhang, Y.; Cheng, C.; Zhai, T.; Chen, B.; Liu, X.; Jono, R.; Mao, X.; Liu, Y.; et al. Nat. Commun. 2021, 12, 4381. doi: 10.1038/s41467-021-24614-7  doi: 10.1038/s41467-021-24614-7

    35. [35]

      Zhang, Z.; Sung, J.; Toolan, D. T. W.; Han, S.; Pandya, R.; Weir, M. P.; Xiao, J.; Dowland, S.; Liu, M.; Ryan, A. J.; et al. Nat. Mater. 2022, 21, 533. doi: 10.1038/s41563-022-01204-6  doi: 10.1038/s41563-022-01204-6

    36. [36]

      Sánchez-Godoy, H. E.; Erazo, E. A.; Gualdrón-Reyes, A. F.; Khan, A. H.; Agouram, S.; Barea, E. M.; Rodriguez, R. A.; Zarazúa, I.; Ortiz, P.; Cortés, M. T.; et al. Adv. Energy Mater. 2020, 10, 2002422. doi: 10.1002/aenm.202002422  doi: 10.1002/aenm.202002422

    37. [37]

      Tavakoli, M. M.; Dastjerdi, H. T.; Yadav, P.; Prochowicz, D.; Si, H.; Tavakoli, R. Adv. Funct. Mater. 2021, 31, 2010623. doi: 10.1002/adfm.202010623  doi: 10.1002/adfm.202010623

    38. [38]

      Kim, H. I.; Baek, S. W.; Cheon, H. J.; Ryu, S. U.; Lee, S.; Choi, M. J.; Choi, K.; Biondi, M.; Hoogland, S.; de Arquer, F. P. G.; et al. Adv. Mater. 2020, 32, 2004985. doi: 10.1002/adma.202004985  doi: 10.1002/adma.202004985

    39. [39]

      Sun, B.; Johnston, A.; Xu, C.; Wei, M.; Huang, Z.; Jiang, Z.; Zhou, H.; Gao, Y.; Dong, Y.; Ouellette, O.; et al. Joule 2020, 4, 1542. doi: 10.1016/j.joule.2020.05.011  doi: 10.1016/j.joule.2020.05.011

    40. [40]

      Cao, Y. M.; Stavrinadis, A.; Lasanta, T.; So, D.; Konstantatos, G. Nat. Energy 2016, 1, 16035. doi: 10.1038/Nenergy.2016.35  doi: 10.1038/Nenergy.2016.35

    41. [41]

      Kagan, C. R.; Murray, C. B. Nat. Nanotechnol. 2015, 10, 1013. doi: 10.1038/nnano.2015.247  doi: 10.1038/nnano.2015.247

    42. [42]

      Balazs, D. M.; Dirin, D. N.; Fang, H. H.; Protesescu, L.; ten Brink, G. H.; Kooi, B. J.; Kovalenko, M. V.; Loi, M. A. ACS Nano 2015, 9, 11951. doi: 10.1021/acsnano.5b04547  doi: 10.1021/acsnano.5b04547

    43. [43]

      Gilmore, R. H.; Liu, Y.; Shcherbakov-Wu, W.; Dahod, N. S.; Lee, E. M. Y.; Weidman, M. C.; Li, H.; Jean, J.; Bulović, V.; Willard, A. P.; et al. Matter 2019, 1, 250. doi: 10.1016/j.matt.2019.05.015  doi: 10.1016/j.matt.2019.05.015

    44. [44]

      Liu, M.; Voznyy, O.; Sabatini, R.; Garcia de Arquer, F. P.; Munir, R.; Balawi, A. H.; Lan, X.; Fan, F.; Walters, G.; Kirmani, A. R.; et al. Nat. Mater. 2017, 16, 258. doi: 10.1038/nmat4800  doi: 10.1038/nmat4800

    45. [45]

      Jo, J. W.; Kim, Y.; Choi, J.; de Arquer, F. P. G.; Walters, G.; Sun, B.; Ouellette, O.; Kim, J.; Proppe, A. H.; Quintero-Bermudez, R.; et al. Adv. Mater. 2017, 29, 1703627. doi: 10.1002/adma.201703627  doi: 10.1002/adma.201703627

    46. [46]

      Zhou, Q.; Qiu, J.; Wang, Y.; Yu, M.; Liu, J.; Zhang, X. ACS Energy Lett. 2021, 6, 1596. doi: 10.1021/acsenergylett.1c00291  doi: 10.1021/acsenergylett.1c00291

    47. [47]

      Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Science 2016, 352, aad4424. doi: 10.1126/science.aad4424  doi: 10.1126/science.aad4424

    48. [48]

      Xu, J.; Voznyy, O.; Liu, M.; Kirmani, A. R.; Walters, G.; Munir, R.; Abdelsamie, M.; Proppe, A. H.; Sarkar, A.; Garcia de Arquer, F. P.; et al. Nat. Nanotechnol. 2018, 13, 456. doi: 10.1038/s41565-018-0117-z  doi: 10.1038/s41565-018-0117-z

    49. [49]

      Qiu, J.; Zhou, Q.; Jia, D.; Wang, Y.; Li, S.; Zhang, X. J. Mater. Chem. A 2022, 10, 1821. doi: 10.1039/d1ta09756c  doi: 10.1039/d1ta09756c

    50. [50]

      Gao, J.; Johnson, J. C. ACS Nano 2012, 6, 3292. doi: 10.1021/nn300707d  doi: 10.1021/nn300707d

    51. [51]

      Kroupa, D. M.; Voros, M.; Brawand, N. P.; McNichols, B. W.; Miller, E. M.; Gu, J.; Nozik, A. J.; Sellinger, A.; Galli, G.; Beard, M. C. Nat. Commun. 2017, 8, 15257. doi: 10.1038/ncomms15257  doi: 10.1038/ncomms15257

    52. [52]

      Hu, L.; Lei, Q.; Guan, X.; Patterson, R.; Yuan, J.; Lin, C. H.; Kim, J.; Geng, X.; Younis, A.; Wu, X.; et al. Adv. Sci. 2021, 8, 2003138. doi: 10.1002/advs.202003138  doi: 10.1002/advs.202003138

    53. [53]

      Wang, Y.; Mei, X.; Qiu, J.; Zhou, Q.; Jia, D.; Yu, M.; Liu, J.; Zhang, X. J. Phys. Chem. Lett. 2021, 12, 11330. doi: 10.1021/acs.jpclett.1c03213  doi: 10.1021/acs.jpclett.1c03213

    54. [54]

      Li, F.; Liu, Y.; Shi, G. Z.; Chen, W.; Guo, R. J.; Liu, D.; Zhang, Y. H.; Wang, Y. J.; Meng, X.; Zhang, X. L.; et al. Adv. Funct. Mater. 2021, 31, 2104457. doi: 10.1002/adfm.202104457  doi: 10.1002/adfm.202104457

    55. [55]

      Wang, R.; Wu, X.; Xu, K.; Zhou, W.; Shang, Y.; Tang, H.; Chen, H.; Ning, Z. Adv. Mater. 2018, 30, 1704882. doi: 10.1002/adma.201704882  doi: 10.1002/adma.201704882

    56. [56]

      Xu, K.; Zhou, W.; Ning, Z. Small 2020, 16, 2003397. doi: 10.1002/smll.202003397  doi: 10.1002/smll.202003397

  • 加载中
    1. [1]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    2. [2]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    3. [3]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    4. [4]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    5. [5]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    6. [6]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    7. [7]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    8. [8]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    9. [9]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    10. [10]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    11. [11]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    12. [12]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    13. [13]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    14. [14]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    15. [15]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    16. [16]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    17. [17]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    18. [18]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    19. [19]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    20. [20]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

Metrics
  • PDF Downloads(14)
  • Abstract views(911)
  • HTML views(130)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return