Citation: Shanshan Shen, Xiaohui Liu, Yong Guo, Yanqin Wang. Performance Enhancement of Pt/Silicalite-1 by in situ Doped Fe for Propane Dehydrogenation[J]. Acta Physico-Chimica Sinica, ;2023, 39(7): 220904. doi: 10.3866/PKU.WHXB202209043 shu

Performance Enhancement of Pt/Silicalite-1 by in situ Doped Fe for Propane Dehydrogenation

  • Corresponding author: Yanqin Wang, wangyanqin@ecust.edu.cn
  • Received Date: 29 September 2022
    Revised Date: 21 November 2022
    Accepted Date: 21 November 2022
    Available Online: 24 November 2022

    Fund Project: the National Natural Science Foundation of China 21832002

  • As one of the most common bulk chemicals, propylene is widely used in industrial production. Given developments in shale gas exploration technology, propane direct dehydrogenation (PDH) has emerged as a potential route. Pt-based catalysts are considered highly active catalysts for PDH, but their use is limited by a number of challenges. Herein, in situ Fe-doped Silicalite-1 zeolite supports were synthesized using the hydrothermal method, after which the corresponding Pt-based catalysts were prepared by impregnation and used for PDH. For comparison, Pt/Silicalite-1 and co-impregnated Pt1Fe2/Silicalite-1 catalysts were also prepared. Compared with that of Pt/Silicalite-1, the catalytic performance of Pt/Fe-Silicalite-1 prepared by in situ Fe-doping was significantly enhanced, whereas that of the co-precipitated Pt1Fe2/Silicalite-1 catalyst decreased. The selectivity and catalytic stability of the reaction over the Pt/Fe-Silicalite-1 catalyst were greatly improved, although the initial conversion of propane was slightly low. After 8 h, the propane conversion rate stabilized at 43.7% and the propylene selectivity reached 98.0%. More importantly, the catalyst maintained its performance over 80 h without an obvious decline. Propane conversion increased with increasing reaction temperature, while propene selectivity was maintained at a comparable level. The reaction kinetics of PDH were determined, and the results demonstrated that the apparent activation energy of the Pt/Fe-Silicalite-1 catalyst was 97.0 kJ·mol−1; this value was the lowest obtained among the catalysts investigated and indicated the relative ease of propane activation over the catalyst. A series of characterization techniques, such as X-ray diffraction (XRD), N2 sorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM), were used to explore the structural characteristics of the catalysts. The in situ Fe-doped Silicalite-1 zeolite supports retained their MFI structure but had a small particle size. UV-Vis spectroscopy revealed a large amount of Fe2O3 particles on the Pt1Fe2/Silicalite-1 surface; by contrast, Pt/Fe-Silicalite-1 possessed isolated tetrahedrally and octahedrally coordinated Fe3+ in the Fe-Silicalite-1 framework, as well as small oligomeric Fe species, such as FexOy, inside the zeolite pores. H2-TPR revealed strong interactions between the Fe species and support in the Pt/Fe-Silicalite-1 catalyst. CO-DRIFT and X-ray photoelectron spectroscopy (XPS) indicated that the in situ incorporation of Fe not only improved the formation of Pt on the platform sites with high saturation, which prevented the deep-cracking of propane, but also enriched the electron cloud density on Pt by promoting electron transfer from Fe to Pt, thus enhancing the desorption of propylene and preventing coke formation. In addition, Fe sites in the support could anchor Pt to prevent their aggregation and improve the stability of Pt/Fe-Silicalite-1. Thus, high conversion and selectivity were obtained even after 80 h of reaction.
  • 加载中
    1. [1]

      Bhasin, M. M.; McCain, J. H.; Vora, B. V.; Imai, T.; Pujadó, P. R. Appl. Catal. A 2001, 221, 397. doi: 10.1016/S0926-860X(01)00816-X  doi: 10.1016/S0926-860X(01)00816-X

    2. [2]

      Atanga, M. A.; Rezaei, F.; Jawad, A.; Fitch, M.; Rownaghi, A. A. Appl. Catal. B 2018, 220, 429. doi: 10.1016/j.apcatb.2017.08.052  doi: 10.1016/j.apcatb.2017.08.052

    3. [3]

      Qi, W.; Yan, P.; Su, D. S. Acc. Chem. Res. 2018, 51, 640. doi: 10.1021/acs.accounts.7b00475  doi: 10.1021/acs.accounts.7b00475

    4. [4]

      Zhao, Z.; Ge, G.; Li, W.; Guo, X.; Wang, G. Chin. J. Chem. 2016, 37, 644. doi: 10.1016/S1872-2067(15)61065-8  doi: 10.1016/S1872-2067(15)61065-8

    5. [5]

      Hu, Z. -P.; Yang, D.; Wang, Z.; Yuan, Z. -Y. Chin. J. Chem. 2019, 40, 1233. doi: 10.1016/S1872-2067(19)63360-7  doi: 10.1016/S1872-2067(19)63360-7

    6. [6]

      Carter, J. H.; Bere, T.; Pitchers, J. R.; Hewes, D. G.; Vandegehuchte, B. D.; Kiely, C. J.; Taylor, S. H.; Hutchings, G. J. Green Chem. 2021, 23, 9747. doi: 10.1039/D1GC03700E  doi: 10.1039/D1GC03700E

    7. [7]

      Shan, Y. -L.; Zhu, Y. -A.; Sui, Z. -J.; Chen, D.; Zhou, X. -G. Catal. Sci. Technol. 2015, 5, 3991. doi: 10.1039/C5CY00230C  doi: 10.1039/C5CY00230C

    8. [8]

      Zhu, J.; Yang, M. -L.; Yu, Y.; Zhu, Y. -A.; Sui, Z. -J.; Zhou, X. -G.; Holmen, A.; Chen, D. ACS Catal. 2015, 5, 6310. doi: 10.1021/acscatal.5b01423  doi: 10.1021/acscatal.5b01423

    9. [9]

      Jiang, F.; Zeng, L.; Li, S.; Liu, G.; Wang, S.; Gong, J. ACS Catal. 2015, 5, 438. doi: 10.1021/cs501279v  doi: 10.1021/cs501279v

    10. [10]

      Zhao, T.; Shen, S.; Liu, X.; Guo, Y.; Pao, C. -W.; Chen, J. -L.; Wang, Y. Catal. Sci. Technol. 2019, 9, 4451. doi: 10.1039/C9CY90066G  doi: 10.1039/C9CY90066G

    11. [11]

      Searles, K.; Chan, K. W.; Mendes Burak, J. A.; Zemlyanov, D.; Safonova, O.; Copéret, C. J. Am. Chem. Soc. 2018, 140, 11674. doi: 10.1021/jacs.8b05378  doi: 10.1021/jacs.8b05378

    12. [12]

      Shi, L.; Deng, G. -M.; Li, W. -C.; Miao, S.; Wang, Q. -N.; Zhang, W. -P.; Lu, A. -H. Angew. Chem., Int. Ed. 2015, 54, 13994. doi: 10.1002/anie.201507119  doi: 10.1002/anie.201507119

    13. [13]

      Sattler, J. J. H. B.; Gonzalez-Jimenez, I. D.; Luo, L.; Stears, B. A.; Malek, A.; Barton, D. G.; Kilos, B. A.; Kaminsky, M. P.; Verhoeven, T. W. G. M.; Koers, E. J.; et al. Angew. Chem. Int. Ed. 2014, 53, 9251. doi: 10.1002/anie.201404460  doi: 10.1002/anie.201404460

    14. [14]

      Sokolov, S.; Stoyanova, M.; Rodemerck, U.; Linke, D.; Kondratenko, E. V. J. Catal. 2012, 293, 67. doi: 10.1016/j.jcat.2012.06.005  doi: 10.1016/j.jcat.2012.06.005

    15. [15]

      Cesar, L. G.; Yang, C.; Lu, Z.; Ren, Y.; Zhang, G.; Miller, J. T. ACS Catal. 2019, 9, 5231. doi: 10.1021/acscatal.9b00549  doi: 10.1021/acscatal.9b00549

    16. [16]

      Zhang, B.; Zheng, L.; Zhai, Z.; Li, G.; Liu, G. ACS Appl. Mater. Interfaces 2021, 13, 16259. doi: 10.1021/acsami.0c22865  doi: 10.1021/acsami.0c22865

    17. [17]

      Liu, X.; Wang, X.; Zhen, S.; Sun, G.; Pei, C.; Zhao, Z. -J.; Gong, J. Chem. Sci. 2022, 13, 9537. doi: 10.1039/D2SC03723H  doi: 10.1039/D2SC03723H

    18. [18]

      Ye, C.; Peng, M.; Wang, Y.; Zhang, N.; Wang, D.; Jiao, M.; Miller, J. T. ACS Appl. Mater. Interfaces 2020, 12, 25903. doi: 10.1021/acsami.0c05043  doi: 10.1021/acsami.0c05043

    19. [19]

      Iglesias-Juez, A.; Beale, A. M.; Maaijen, K.; Weng, T. C.; Glatzel, P.; Weckhuysen, B. M. J. Catal. 2010, 276, 268. doi: 10.1016/j.jcat.2010.09.018  doi: 10.1016/j.jcat.2010.09.018

    20. [20]

      Nykänen, L.; Honkala, K. ACS Catal. 2013, 3, 3026. doi: 10.1021/cs400566y  doi: 10.1021/cs400566y

    21. [21]

      Wang, Y.; Hu, Z. -P.; Lv, X.; Chen, L.; Yuan, Z. -Y. J. Catal. 2020, 385, 61. doi: 10.1016/j.jcat.2020.02.019  doi: 10.1016/j.jcat.2020.02.019

    22. [22]

      Liu, L.; Díaz, U.; Arenal, R.; Agostini, G.; Concepción, P.; Corma, A. Nat. Mater. 2017, 16, 132. doi: 10.1038/nmat4757  doi: 10.1038/nmat4757

    23. [23]

      Liu, L.; Liu, J.; Zeng, Y.; Tan, S. J.; Do, D. D.; Nicholson, D. Chem. Eng. J. 2019, 370, 866. doi: 10.1016/j.cej.2019.03.262  doi: 10.1016/j.cej.2019.03.262

    24. [24]

      Han, S. W.; Park, H.; Han, J.; Kim, J. -C.; Lee, J.; Jo, C.; Ryoo, R. ACS Catal. 2021, 11, 9233. doi: 10.1021/acscatal.1c01808  doi: 10.1021/acscatal.1c01808

    25. [25]

      Zhao, D.; Tian, X. X.; Doronkin, D. E.; Han, S. L.; Kondratenko, V. A.; Grunwaldt, J. -D.; Perechodjuk, A.; Vuong, T. H.; Rabeah, J.; Eckelt, E.; et al. Nature 2021, 599, 234. doi: 10.1038/s41586-021-03923-3  doi: 10.1038/s41586-021-03923-3

    26. [26]

      Song, S. J.; Yang, K.; Zhang, P.; Wu, Z. J.; Li, J.; Su, H.; Dai, H.; Xu, C. M.; Li, Z. X.; Liu, J.; et al. ACS Catal. 2022, 12, 5997. doi: 10.1021/acscatal.2c00928  doi: 10.1021/acscatal.2c00928

    27. [27]

      Sun, Q. M.; Wang, N.; Fan, Q. Y.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R.; Jiang, Z.; Zhou, W.; Zhang, J. C.; et al. Angew. Chem. Int. Ed. 2020, 59, 19450. doi: 10.1002/anie.202003349  doi: 10.1002/anie.202003349

    28. [28]

      Li, J.; Zhao, Z.; Fan, X.; Liu, J.; Wei, Y.; Duan, A.; Xie, Z.; Liu, Q. J. Catal. 2017, 352, 361. doi: 10.1016/j.jcat.2017.05.024  doi: 10.1016/j.jcat.2017.05.024

    29. [29]

      Zhu, H.; Anjum, D. H.; Wang, Q.; Abou-Hamad, E.; Emsley, L.; Dong, H.; Laveille, P.; Li, L.; Samal, A. K.; Basset, J. -M. J. Catal. 2014, 320, 52. doi: 10.1016/j.jcat.2014.09.013  doi: 10.1016/j.jcat.2014.09.013

    30. [30]

      Tolek, W.; Suriye, K.; Praserthdam, P.; Panpranot, J. Catal. Today 2020, 358, 100. doi: 10.1016/j.cattod.2019.08.047  doi: 10.1016/j.cattod.2019.08.047

    31. [31]

      Wang, T.; Jiang, F.; Liu, G.; Zeng, L.; Zhao, Z. -J.; Gong, J. AIChE J. 2016, 62, 4365. doi: 10.1002/aic.15339  doi: 10.1002/aic.15339

    32. [32]

      Hu, P.; Lang, W. -Z.; Yan, X.; Chu, L. -F.; Guo, Y. -J. J. Catal. 2018, 358, 108. doi: 10.1016/j.jcat.2017.12.004  doi: 10.1016/j.jcat.2017.12.004

    33. [33]

      Tang, Y.; Wei, Y. C.; Wang, Z. Y.; Zhang, S. R.; Li, Y. T.; Nguyen, L.; Li, Y. X.; Zhou, Y.; Shen, W. J.; Tao F. F.; et al. J. Am. Chem. Soc. 2019, 141, 7283. doi: 10.1021/jacs.8b10910  doi: 10.1021/jacs.8b10910

    34. [34]

      Wu, L.; Ren, Z.; He, Y.; Yang, M.; Yu, Y.; Liu, Y.; Tan, L.; Tang, Y. ACS Appl. Mater. Interfaces 2021, 13, 48934. doi: 10.1021/acsami.1c15892  doi: 10.1021/acsami.1c15892

    35. [35]

      Iwasaki, M.; Yamazaki, K.; Banno, K.; Shinjoh, H. J. Catal. 2008, 260, 205. doi: 10.1016/j.jcat.2008.10.009  doi: 10.1016/j.jcat.2008.10.009

    36. [36]

      Santhosh Kumar, M.; Schwidder, M.; Grünert, W.; Bentrup, U.; Brückner, A. J. Catal. 2006, 239, 173. doi: 10.1016/j.jcat.2006.01.024  doi: 10.1016/j.jcat.2006.01.024

    37. [37]

      Xu, Z.; Yue, Y.; Bao, X.; Xie, Z.; Zhu, H. ACS Catal. 2020, 10, 818. doi: 10.1021/acscatal.9b03527  doi: 10.1021/acscatal.9b03527

    38. [38]

      Lundwall, M. J.; McClure, S. M.; Goodman, D. W. J. Phys. Chem. C 2010, 114, 7904. doi: 10.1021/jp9119292  doi: 10.1021/jp9119292

    39. [39]

      Aksoy, M.; Metin, Ö. ACS Appl. Nano Mater. 2020, 3, 6836. doi: 10.1021/acsanm.0c01208  doi: 10.1021/acsanm.0c01208

    40. [40]

      Liao, T. -W.; Yadav, A.; Ferrari, P.; Niu, Y.; Wei, X. -K.; Vernieres, J.; Hu, K. -J.; Heggen, M.; Dunin-Borkowski, R. E.; Palmer, R. E.; et al. Chem. Mater. 2019, 31, 10040. doi: 10.1021/acs.chemmater.9b02824  doi: 10.1021/acs.chemmater.9b02824

  • 加载中
    1. [1]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    2. [2]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    8. [8]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    19. [19]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    20. [20]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

Metrics
  • PDF Downloads(13)
  • Abstract views(1394)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return