Citation: Zhongliao Wang, Jing Wang, Jinfeng Zhang, Kai Dai. Overall Utilization of Photoexcited Charges for Simultaneous Photocatalytic Redox Reactions[J]. Acta Physico-Chimica Sinica, ;2023, 39(6): 220903. doi: 10.3866/PKU.WHXB202209037 shu

Overall Utilization of Photoexcited Charges for Simultaneous Photocatalytic Redox Reactions

  • Corresponding author: Jinfeng Zhang, jfzhang@chnu.edu.cn Kai Dai, daikai940@chnu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 26 September 2022
    Revised Date: 20 October 2022
    Accepted Date: 26 October 2022
    Available Online: 1 November 2022

    Fund Project: the National Natural Science Foundation of China 22278169the National Natural Science Foundation of China 51973078the Distinguished Young Scholar of Anhui Province, China 1808085J14the Major projects of Education Department of Anhui Province, China KJ2020ZD005

  • The photoconversion of CO2 to carbon-containing fuels, splitting water into H2, selective organic synthesis, reduction of N2 to NH3, and hazardous organic contaminant degradation represent feasible schemes for solving environmental and energy issues. In 1972, TiO2 was applied for decomposing water into H2 and O2 via photocatalysis. Owing to its the low visible-light utilization, fast charge recombination, and high energy barrier for water oxidation, overall photocatalytic water-splitting efficiency is extremely low. Because H2 is more economically valuable than O2, sacrificial agent-assisted photocatalytic H2 evolution has been extensively investigated. Because the sacrificial agent can quickly consume photoexcited holes and effectively reduce the water oxidation energy barrier, photocatalytic H2 evolution efficiency can be increased by 3–4 orders of magnitude compared to photocatalytic water splitting. However, the overuse of sacrificial agents contributes to wasted photoexcited holes and expensive processes, while presenting potential environmental issues. Recently, overall charge utilization and improved redox efficiency have been achieved by coupling photocatalytic reduction with oxidation reactions. Moreover, overall charge utilization can boost charge separation and increase photocatalyst durability. However, the photocatalytic mechanism of the overall redox reactions remains unclear, owing to the complex reaction processes and design difficulties. Herein, the basic principles of photocatalysis are discussed from the perspective of light harvesting, photoexcited charge separation, thermodynamics, and redox reaction kinetics. Photocatalytic redox reactions, including overall water photodecomposition, photocatalytic H2 evolution coupled with organic oxidation, photocatalytic CO2 reduction coupled with organic oxidation, photocatalytic H2O2 production coupled with organic oxidation, photocatalytic N2 reduction coupled with N2 oxidation, and photocatalytic organic reduction coupled with organic oxidation, can be systematically classified according to the coupling of photocatalytic oxidation reactions with photocatalytic reduction reactions. Subsequently, the design of photocatalytic redox reactions is considered in terms of the modulation of photocatalyst materials, reaction conditions, and diversity of reactants and products. In addition, the vital role of density functional theory (DFT) calculations for unveiling photoexcited charge transfer, rate-determining steps, and redox reaction barriers are discussed in the context of the work function, electron density difference, Bader charge, and variation in the intermediate adsorption free energy profiles. The activity and mechanism of various photocatalytic redox reactions were elaborately analyzed through in situ characterizations and DFT calculations using representative cases. Finally, the overall photocatalytic redox reactions were summarized with a focus on the construction of an S-scheme heterojunction photocatalyst, reasonable loading of co-catalysts, photocatalyst morphology regulation, novel photocatalyst development, reasonable selection of the oxidation half-reaction and reduction half-reaction for coupling, and combined in situ characterization and DFT calculations. This work provides a reference for promising design strategies and insight into the mechanism of overall photocatalytic redox reactions.
  • 加载中
    1. [1]

      Shen, H.; Peppel, T.; Stunk, J.; Sun, Z. Solar RRL 2020, 4, 1900546. doi: 10.1002/solr.201900546  doi: 10.1002/solr.201900546

    2. [2]

      Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43, 2111. doi: 10.1016/s1872-2067(22)64096-8  doi: 10.1016/s1872-2067(22)64096-8

    3. [3]

      Li, J. B.; Wu, X.; Liu, S. W. Acta Phys. -Chim. Sin. 2021, 37, 2009038.  doi: 10.3866/PKU.WHXB202009038

    4. [4]

      Wang, Q.; Hisatomi, T.; Jia, Q.; Tokudome, H.; Zhong, M.; Wang, C.; Pan, Z.; Takata, T.; Nakabayashi, M.; Shibata, N.; et al. Nat. Mater. 2016, 15, 611. doi: 10.1038/nmat4589  doi: 10.1038/nmat4589

    5. [5]

      Li, X.; Zhang, J.; Dai, K.; Fan, K.; Liang, C. Solar RRL 2021, 5, 2100788. doi: 10.1002/solr.202100788  doi: 10.1002/solr.202100788

    6. [6]

      Fei, X.; Tan, H.; Cheng, B.; Zhu, B.; Zhang, L. Acta Phys. -Chim. Sin. 2021, 37, 2010027.  doi: 10.3866/PKU.WHXB202010027

    7. [7]

      Liu, L.; Hu, T.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2021, 42, 46. doi: 10.1016/s1872-2067(20)63560-4  doi: 10.1016/s1872-2067(20)63560-4

    8. [8]

      Liu, D.; Chen, S.; Li, R.; Peng, T. Acta Phys. -Chim. Sin. 2021, 37, 2010017.  doi: 10.3866/PKU.WHXB202010017

    9. [9]

      Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci. Technol. 2022, 117, 109. doi: 10.1016/j.jmst.2021.11.046  doi: 10.1016/j.jmst.2021.11.046

    10. [10]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    11. [11]

      Yang, Y.; Zhu, B.; Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Appl. Catal. B: Environ. 2022, 317, 121788. doi: 10.1016/j.apcatb.2022.121788  doi: 10.1016/j.apcatb.2022.121788

    12. [12]

      Wang, Z. J.; Hong, J. J.; Ng, S.-F.; Liu, W.; Huang, J. J.; Chen, P. F.; Ong, W.-J. Acta Phys. -Chim. Sin. 2021, 37, 2011033.  doi: 10.3866/PKU.WHXB202011033

    13. [13]

      Zhang, J.; Fu, J.; Dai, K. J. Mater. Sci. Technol. 2022, 116, 192. doi: 10.1016/j.jmst.2021.10.045  doi: 10.1016/j.jmst.2021.10.045

    14. [14]

      Mei, Z. H.; Wang, G. H.; Yan, S. D.; Wang, J. Acta Phys. -Chim. Sin. 2021, 37, 2009097.  doi: 10.3866/PKU.WHXB202009097

    15. [15]

      Takata, T.; Jiang, J.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Nature 2020, 581, 411. doi: 10.1038/s41586-020-2278-9  doi: 10.1038/s41586-020-2278-9

    16. [16]

      Bie, C.; Zhu, B.; Wang, L.; Yu, H.; Jiang, C.; Chen, T.; Yu, J. Angew. Chem. Int. Ed. 2022, 61, 202212045. doi: 10.1002/anie.202212045  doi: 10.1002/anie.202212045

    17. [17]

      Liu, S. C.; Wang, K.; Yang, M. X.; Jin, Z. L. Acta Phys. -Chim. Sin. 2022, 38, 2109023.  doi: 10.3866/PKU.WHXB202109023

    18. [18]

      Wang, Z.; Hu, T.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2017, 38, 2021. doi: 10.1016/S1872-2067(17)62942-5  doi: 10.1016/S1872-2067(17)62942-5

    19. [19]

      Li, X.; Zhang, J.; Huo, Y.; Dai, K.; Li, S.; Chen, S. Appl. Catal. B: Environ. 2021, 280, 119452. doi: 10.1016/j.apcatb.2020.119452  doi: 10.1016/j.apcatb.2020.119452

    20. [20]

      Huang, Y.; Mei, F. F.; Zhang, J. F.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38, 2108028.  doi: 10.3866/PKU.WHXB202108028

    21. [21]

      Zhao, Z.; Bian, J.; Zhao, L.; Wu, H.; Xu, S.; Sun, L.; Li, Z.; Zhang, Z.; Jing, L. Chin. J. Catal. 2022, 43, 1331. doi: 10.1016/S1872-2067(21)64005-6  doi: 10.1016/S1872-2067(21)64005-6

    22. [22]

      Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J.; Wang, L. J. Mater. Sci. Technol. 2022, 124, 193. doi: 10.1016/j.jmst.2022.01.029  doi: 10.1016/j.jmst.2022.01.029

    23. [23]

      Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Li, Y.; Wageh, S.; Al-Ghamdi, A.A. Chin. J. Catal. 2022, 43, 1657. doi: 10.1016/s1872-2067(21)64010-x  doi: 10.1016/s1872-2067(21)64010-x

    24. [24]

      Huang, W.; Li, Z.; Wu, C.; Zhang, H.; Sun, J.; Li, Q. J. Mater. Sci. Technol. 2022, 120, 89. doi: 10.1016/j.jmst.2021.12.028  doi: 10.1016/j.jmst.2021.12.028

    25. [25]

      Wang, Z.; Wang, L.; Cheng, B.; Yu, H.; Yu, J. Small Methods 2021, 5, 2100979. doi: 10.1002/smtd.202100979  doi: 10.1002/smtd.202100979

    26. [26]

      Yang, H.; Zhang, J. F.; Dai, K. Chin. J. Catal. 2022, 43, 255. doi: 10.1016/s1872-2067(20)63784-6  doi: 10.1016/s1872-2067(20)63784-6

    27. [27]

      Zhang, S.; Cheng, G.; Guo, L.; Wang, N.; Tan, B.; Jin, S. Angew. Chem. Int. Ed. 2020, 59, 6007. doi: 10.1002/anie.201914424  doi: 10.1002/anie.201914424

    28. [28]

      Guan, X.; Fang, Q.; Yan, Y.; Qiu, S. Acc. Chem. Res. 2022, 55, 1912. doi: 10.1021/acs.accounts.2c00200  doi: 10.1021/acs.accounts.2c00200

    29. [29]

      Guan, Q.; Zhou, L. L.; Dong, Y. B. Chem. Soc. Rev. 2022, 51, 6307. doi: 10.1039/d1cs00983d  doi: 10.1039/d1cs00983d

    30. [30]

      Chen, W.-T.; Chan, A.; Sun-Waterhouse, D.; Moriga, T.; Idriss, H.; Waterhouse, G. I. N. J. Catal. 2015, 326, 43. doi: 10.1016/j.jcat.2015.03.008  doi: 10.1016/j.jcat.2015.03.008

    31. [31]

      Wen, Y.; Qu, D.; An, L.; Gao, X.; Jiang, W.; Wu, D.; Yang, D.; Sun, Z. ACS Sustain. Chem. Eng. 2018, 7, 2343. doi: 10.1021/acssuschemeng.8b05124  doi: 10.1021/acssuschemeng.8b05124

    32. [32]

      Zhao, G.; Sun, Y.; Zhou, W.; Wang, X.; Chang, K.; Liu, G.; Liu, H.; Kako, T.; Ye, J. Adv. Mater. 2017, 29, 1703258. doi: 10.1002/adma.201703258  doi: 10.1002/adma.201703258

    33. [33]

      Mohamed, R. M.; Aazam, E. S. Chin. J. Catal. 2012, 33, 247. doi: 10.1016/s1872-2067(10)60276-8  doi: 10.1016/s1872-2067(10)60276-8

    34. [34]

      Xia, B.; Zhang, Y.; Shi, B.; Ran, J.; Davey, K.; Qiao, S.-Z. Small Methods 2020, 4, 2000063. doi: 10.1002/smtd.202000063  doi: 10.1002/smtd.202000063

    35. [35]

      He, B.; Bie, C.; Fei, X.; Cheng, B.; Yu, J.; Ho, W.; Al-Ghamdi, A. A.; Wageh, S. Appl. Catal. B: Environ. 2021, 288, 119994. doi: 10.1016/j.apcatb.2021.119994  doi: 10.1016/j.apcatb.2021.119994

    36. [36]

      Lei, Z. N.; Ma, X. Y.; Hu, X. Y.; Fan, J.; Liu, E. Z. Acta Phys. -Chim. Sin. 2022, 38, 2110049.  doi: 10.3866/PKU.WHXB202110049

    37. [37]

      Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. J. Am. Chem. Soc. 2005, 127, 8286. doi: 10.1021/ja0518777  doi: 10.1021/ja0518777

    38. [38]

      Shu, G.; Li, Y.; Wang, Z.; Jiang, J.-X.; Wang, F. Appl. Catal. B: Environ. 2020, 261, 118230. doi: 10.1016/j.apcatb.2019.118230  doi: 10.1016/j.apcatb.2019.118230

    39. [39]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317  doi: 10.1002/adma.202100317

    40. [40]

      Zhang, Y.; Zhao, J.; Wang, H.; Xiao, B.; Zhang, W.; Zhao, X.; Lv, T.; Thangamuthu, M.; Zhang, J.; Guo, Y. Nat. Commun. 2022, 13, 58. doi: 10.1038/s41467-021-27698-3  doi: 10.1038/s41467-021-27698-3

    41. [41]

      Liu, Y.; Hao, X.; Hu, H.; Jin, Z. Acta Phys. -Chim. Sin. 2021, 37, 2008030.  doi: 10.3866/PKU.WHXB202008030

    42. [42]

      Chen, Y.; Li, L.; Xu, Q.; Düren, T.; Fan, J.; Ma, D. Acta Phys. -Chim. Sin. 2021, 37, 2009080.  doi: 10.3866/PKU.WHXB202009080

    43. [43]

      Huo, Y.; Zhang, J.; Dai, K.; Liang, C. ACS Appl. Energy Mater. 2021, 4, 956. doi: 10.1021/acsaem.0c02896  doi: 10.1021/acsaem.0c02896

    44. [44]

      Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat. Commun. 2021, 12, 4936. doi: 10.1038/s41467-021-25007-6  doi: 10.1038/s41467-021-25007-6

    45. [45]

      Dong, G.; Huang, X.; Bi, Y. Angew. Chem. Int. Ed. 2022, 61, 202204271. doi: 10.1002/anie.202204271  doi: 10.1002/anie.202204271

    46. [46]

      Li, S.; Wang, C.; Cai, M.; Yang, F.; Liu, Y.; Chen, J.; Zhang, P.; Li, X.; Chen, X. Chem. Eng. J. 2022, 428, 131158. doi: 10.1016/j.cej.2021.131158  doi: 10.1016/j.cej.2021.131158

    47. [47]

      Feng, H.; Li, H.; Liu, X.; Huang, Y.; Pan, Q.; Peng, R.; Du, R.; Zheng, X.; Yin, Z.; Li, S. Chem. Eng. J. 2022, 428, 132045. doi: 10.1016/j.cej.2021.132045  doi: 10.1016/j.cej.2021.132045

    48. [48]

      Yang, Y.; Li, H.; Jing, X.; Wu, Y.; Shi, Y.; Duan, C. Chem. Commun. 2022, 58, 807. doi: 10.1039/D1CC06166F  doi: 10.1039/D1CC06166F

    49. [49]

      Wang, J.; Wang, M.; Li, X.; Gu, X.; Kong, P.; Wang, R.; Ke, X.; Yu, G.; Zheng, Z. Appl. Catal. B: Environ. 2022, 313, 121449. doi: 10.1016/j.apcatb.2022.121449  doi: 10.1016/j.apcatb.2022.121449

    50. [50]

      Li, X.; Liu, J.; Huang, J.; He, C.; Feng, Z.; Chen, Z.; Wan, L.; Deng, F. Acta Phys. -Chim. Sin. 2021, 37, 2010030.  doi: 10.3866/PKU.WHXB202010030

    51. [51]

      Lu, G.; Chu, F.; Huang, X.; Li, Y.; Liang, K.; Wang, G. Coord. Chem. Rev. 2022, 450, 214240. doi: 10.1016/j.ccr.2021.214240  doi: 10.1016/j.ccr.2021.214240

    52. [52]

      Wen, Y.; Rentería-Gómez, A. N.; Day, G. S.; Smith, M. F.; Yan, T.-H.; Ozdemir, R. O. K.; Gutierrez, O.; Sharma, V. K.; Ma, X.; Zhou, H.-C. J. Am. Chem. Soc. 2022, 144, 11840. doi: 10.1021/jacs.2c04341  doi: 10.1021/jacs.2c04341

    53. [53]

      Cheng, Y.-Z.; Ji, W.; Wu, X.; Ding, X.; Liu, X.-F.; Han, B.-H. Appl. Catal. B: Environ. 2022, 306, 121110. doi: 10.1016/j.apcatb.2022.121110  doi: 10.1016/j.apcatb.2022.121110

    54. [54]

      Zhang, B.; Wong, P. W.; An, A. K. Chem. Eng. J. 2022, 430, 133054. doi: 10.1016/j.cej.2021.133054  doi: 10.1016/j.cej.2021.133054

    55. [55]

      Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Adv. Mater. 2012, 24, 229. doi: 10.1002/adma.201102752  doi: 10.1002/adma.201102752

    56. [56]

      Zhou, X. Acta Phys. -Chim. Sin. 2021, 37, 2008064.  doi: 10.3866/PKU.WHXB202008064

    57. [57]

      Sun, S.; Hisatomi, T.; Wang, Q.; Chen, S. S.; Ma, G. J.; Liu, J. Y.; Nandy, S.; Minegishi, T.; Katayama, M.; Domen, K. ACS Catal. 2018, 8, 1690. doi: 10.1021/acscatal.7b03884  doi: 10.1021/acscatal.7b03884

    58. [58]

      Wang, L.; Zhang, J.; Zhang, Y.; Yu, H.; Qu, Y.; Yu, J. Small 2022, 18, 2104561. doi: 10.1002/smll.202104561  doi: 10.1002/smll.202104561

    59. [59]

      Chen, S. S.; Takata, T.; Domen, K. Nat. Rev. Mater. 2017, 2, 17050. doi: 10.1038/natrevmats.2017.50  doi: 10.1038/natrevmats.2017.50

    60. [60]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    61. [61]

      Zhu, B.; Hong, X.; Tang, L.; Liu, Q.; Tang, H. Acta Phys. -Chim. Sin. 2022, 38, 2111008.  doi: 10.3866/PKU.WHXB202111008

    62. [62]

      Meng, S.; Chen, C.; Gu, X.; Wu, H.; Meng, Q.; Zhang, J.; Chen, S.; Fu, X.; Liu, D.; Lei, W. Appl. Catal. B: Environ. 2021, 285, 119789. doi: 10.1016/j.apcatb.2020.119789  doi: 10.1016/j.apcatb.2020.119789

    63. [63]

      He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225  doi: 10.1002/adma.202203225

    64. [64]

      Xia, P.; Pan, X.; Jiang, S.; Yu, J.; He, B.; Ismail, P. M.; Bai, W.; Yang, J.; Yang, L.; Zhang, H.; et al. Adv. Mater. 2022, 34, 2200563. doi: 10.1002/adma.202200563  doi: 10.1002/adma.202200563

    65. [65]

      Meng, S.; Wu, H.; Cui, Y.; Zheng, X.; Wang, H.; Chen, S.; Wang, Y.; Fu, X. Appl. Catal. B: Environ. 2020, 266, 118617. doi: 10.1016/j.apcatb.2020.118617  doi: 10.1016/j.apcatb.2020.118617

    66. [66]

      Dai, X.; Xie, M.; Meng, S.; Fu, X.; Chen, S. Appl. Catal. B: Environ. 2014, 158–159, 382. doi: 10.1016/j.apcatb.2014.04.035  doi: 10.1016/j.apcatb.2014.04.035

    67. [67]

      Zhao, L. M.; Meng, Q. Y.; Fan, X. B.; Ye, C.; Li, X. B.; Chen, B.; Ramamurthy, V.; Tung, C. H.; Wu, L. Z. Angew. Chem. Int. Ed. 2017, 56, 3020. doi: 10.1002/anie.201700243  doi: 10.1002/anie.201700243

    68. [68]

      Wang, W.; Zhang, H.; Chen, Y.; Shi, H. Acta Phys. -Chim. Sin. 2022, 38, 2201008.  doi: 10.3866/PKU.WHXB202201008

    69. [69]

      Huo, Y.; Zhang, J.; Dai, K.; Li, Q.; Lv, J.; Zhu, G.; Liang, C. Appl. Catal. B: Environ. 2019, 241, 528. doi: 10.1016/j.apcatb.2018.09.073  doi: 10.1016/j.apcatb.2018.09.073

    70. [70]

      Lv, J.; Zhang, J.; Liu, J.; Li, Z.; Dai, K.; Liang, C. ACS Sustain. Chem. Eng. 2017, 6, 696. doi: 10.1021/acssuschemeng.7b03032  doi: 10.1021/acssuschemeng.7b03032

    71. [71]

      Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108  doi: 10.14102/j.cnki.0254-5861.2022-0108

    72. [72]

      Li, H.; Li, F.; Yu, J.; Cao, S. Acta Phys. -Chim. Sin. 2021, 37, 2010073.  doi: 10.3866/PKU.WHXB202010073

    73. [73]

      Bie, C.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. Energy Chem. 2021, 3, 100051. doi: 10.1016/j.enchem.2021.100051  doi: 10.1016/j.enchem.2021.100051

    74. [74]

      Sasmal, H.S.; Kumar Mahato, A.; Majumder, P.; Banerjee, R. J. Am. Chem. Soc. 2022, 144, 11482. doi: 10.1021/jacs.2c02301  doi: 10.1021/jacs.2c02301

    75. [75]

      Dai, K.; Lv, J.; Zhang, J.; Zhu, G.; Geng, L.; Liang, C. ACS Sustain. Chem. Eng. 2018, 6, 12817. doi: 10.1021/acssuschemeng.8b02064  doi: 10.1021/acssuschemeng.8b02064

    76. [76]

      Huo, Y.; Zhang, J.; Wang, Z.; Dai, K.; Pan, C.; Liang, C. J. Colloid Interface Sci. 2021, 585, 684. doi: 10.1016/j.jcis.2020.10.048  doi: 10.1016/j.jcis.2020.10.048

    77. [77]

      Zhang, L.; Hou, S.; Wang, T.; Liu, S.; Gao, X.; Wang, C.; Wang, G. Small 2022, 18, 2202252. doi: 10.1002/smll.202202252  doi: 10.1002/smll.202202252

    78. [78]

      Wang, G.; Huo, T.; Deng, Q.; Yu, F.; Xia, Y.; Li, H.; Hou, W. Appl. Catal. B: Environ. 2022, 310, 121319. doi: 10.1016/j.apcatb.2022.121319  doi: 10.1016/j.apcatb.2022.121319

    79. [79]

      Dong, X.; Cui, Z.; Shi, X.; Yan, P.; Wang, Z.; Co, A. C.; Dong, F. Angew. Chem. Int. Ed. 2022, 61, 202200937. doi: 10.1002/anie.202200937  doi: 10.1002/anie.202200937

    80. [80]

      Dai, K.; Lu, L.H.; Liang, C.H.; Liu, Q.; Zhu, G.P. Appl. Catal. B: Environ. 2014, 156, 331. doi: 10.1016/j.apcatb.2014.03.039  doi: 10.1016/j.apcatb.2014.03.039

    81. [81]

      Zhang, Q.; Wang, J.; Ye, X.; Hui, Z.; Ye, L.; Wang, X.; Chen, S. ACS Appl. Mater. Interfaces 2019, 11, 46735. doi: 10.1021/acsami.9b14450  doi: 10.1021/acsami.9b14450

    82. [82]

      Wang, L.; Yu, J. Chem Catal. 2022, 2, 428. doi: 10.1016/j.checat.2022.01.010  doi: 10.1016/j.checat.2022.01.010

    83. [83]

      Bie, C.; Wang, L.; Yu, J. Chem 2022, 8, 1567. doi: 10.1016/j.chempr.2022.04.013  doi: 10.1016/j.chempr.2022.04.013

    84. [84]

      Mei, F.; Zhang, J.; Liang, C.; Dai, K. Mater. Lett. 2021, 282, 128722. doi: 10.1016/j.matlet.2020.128722  doi: 10.1016/j.matlet.2020.128722

    85. [85]

      Lotfi, S.; Ouardi, M.E.; Ahsaine, H.A.; Assani, A. Catal. Rev. 2022, 64, 1. doi: 10.1080/01614940.2022.2057044  doi: 10.1080/01614940.2022.2057044

    86. [86]

      Chen, Y.; Li, Y.; Luo, N.; Shang, W.; Shi, S.; Li, H.; Liang, Y.; Zhou, A. Chem. Eng. J. 2022, 429, 132577. doi: 10.1016/j.cej.2021.132577  doi: 10.1016/j.cej.2021.132577

    87. [87]

      Zhao, R.; Wei, D.; Li, X.; Gao, J.; Xiong, C.; Yu, M. Mater. Lett. 2022, 327, 133003. doi: 10.1016/j.matlet.2022.133003  doi: 10.1016/j.matlet.2022.133003

    88. [88]

      Fragoso, J.; Barreca, D.; Bigiani, L.; Gasparotto, A.; Sada, C.; Lebedev, O. I.; Modin, E.; Pavlovic, I.; Sánchez, L.; Maccato, C. Chem. Eng. J. 2022, 430, 132757. doi: 10.1016/j.cej.2021.132757  doi: 10.1016/j.cej.2021.132757

    89. [89]

      Bie, C.; Zhu, B.; Xu, F.; Zhang, L.; Yu, J. Adv. Mater. 2019, 31, 1902868. doi: 10.1002/adma.201902868  doi: 10.1002/adma.201902868

    90. [90]

      Wang, L.; Fei, X.; Zhang, L.; Yu, J.; Cheng, B.; Ma, Y. J. Mater. Sci. Technol. 2022, 112, 1. doi: 10.1016/j.jmst.2021.10.016  doi: 10.1016/j.jmst.2021.10.016

    91. [91]

      Yang, Y.; Tan, H.; Cheng, B.; Fan, J.; Yu, J.; Ho, W. Small Methods 2021, 5, 2001042. doi: 10.1002/smtd.202001042  doi: 10.1002/smtd.202001042

    92. [92]

      Huang, Y.; Zhang, J.; Dai, K.; Liang, C.; Dawson, G. Ceram. Int. 2022, 48, 8423. doi: 10.1016/j.ceramint.2021.12.050  doi: 10.1016/j.ceramint.2021.12.050

    93. [93]

      Liu, L.; Dai, K.; Zhang, J.; Li, L. J. Colloid Interface Sci. 2021, 604, 844. doi: 10.1016/j.jcis.2021.07.064  doi: 10.1016/j.jcis.2021.07.064

    94. [94]

      Li, R. G.; Weng, Y. X.; Zhou, X.; Wang, X. L.; Mi, Y.; Chong, R. F.; Han, H. X.; Li, C. Energy Environ. Sci. 2015, 8, 2377. doi: 10.1039/c5ee01398d  doi: 10.1039/c5ee01398d

    95. [95]

      Tao, X. P.; Zhao, Y.; Mu, L. C.; Wang, S. Y.; Li, R. G.; Li, C. Adv. Energy Mater. 2018, 8, 1701392. doi: 10.1002/aenm.201701392  doi: 10.1002/aenm.201701392

    96. [96]

      Wang, D.; Hisatomi, T.; Takata, T.; Pan, C.; Katayama, M.; Kubota, J.; Domen, K. Angew. Chem. Int. Ed. 2013, 52, 11252. doi: 10.1002/anie.201303693  doi: 10.1002/anie.201303693

    97. [97]

      Wang, Q.; Hisatomi, T.; Suzuki, Y.; Pan, Z.; Seo, J.; Katayama, M.; Minegishi, T.; Nishiyama, H.; Takata, T.; Seki, K.; et al. J. Am. Chem. Soc. 2017, 139, 1675. doi: 10.1021/jacs.6b12164  doi: 10.1021/jacs.6b12164

    98. [98]

      Bie, C.; Yu, H.; Cheng, B.; Ho, W.; Fan, J.; Yu, J. Adv. Mater. 2021, 33, 2003521. doi: 10.1002/adma.202003521  doi: 10.1002/adma.202003521

    99. [99]

      Wang, Z.; Fan, J.; Cheng, B.; Yu, J.; Xu, J. Mater. Today Phys. 2020, 15, 100279. doi: 10.1016/j.mtphys.2020.100279  doi: 10.1016/j.mtphys.2020.100279

    100. [100]

      Gao, D.; Liu, W.; Xu, Y.; Wang, P.; Fan, J.; Yu, H. Appl. Catal. B: Environ. 2020, 260, 118190. doi: 10.1016/j.apcatb.2019.118190  doi: 10.1016/j.apcatb.2019.118190

    101. [101]

      Xu, J.; Zhong, W.; Gao, D.; Wang, X.; Wang, P.; Yu, H. Chem. Eng. J. 2022, 439, 135758. doi: 10.1016/j.cej.2022.135758  doi: 10.1016/j.cej.2022.135758

    102. [102]

      Liu, J.; Zheng, X.; Pan, L.; Fu, X.; Zhang, S.; Meng, S.; Chen, S. Appl. Catal. B: Environ. 2021, 298, 120619. doi: 10.1016/j.apcatb.2021.120619  doi: 10.1016/j.apcatb.2021.120619

    103. [103]

      He, H.; Cao, J.; Guo, M.; Lin, H.; Zhang, J.; Chen, Y.; Chen, S. Appl. Catal. B: Environ. 2019, 249, 246. doi: 10.1016/j.apcatb.2019.02.055  doi: 10.1016/j.apcatb.2019.02.055

    104. [104]

      Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Tan, H. Solar RRL 2022, 6, 2100587. doi: 10.1002/solr.202100587  doi: 10.1002/solr.202100587

    105. [105]

      Wang, Z.; Chen, Y.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 143. doi: 10.1016/j.jmst.2020.02.062  doi: 10.1016/j.jmst.2020.02.062

    106. [106]

      Yang, Y.; Chen, X.; Pan, Y.; Song, H.; Zhu, B.; Wu, Y. Catal. Today 2021, 374, 4. doi: 10.1016/j.cattod.2020.10.032  doi: 10.1016/j.cattod.2020.10.032

    107. [107]

      Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Chin. J. Catal. 2021, 42, 56. doi: 10.1016/s1872-2067(20)63634-8  doi: 10.1016/s1872-2067(20)63634-8

    108. [108]

      Pan, J.; Dong, Z.; Wang, B.; Jiang, Z.; Zhao, C.; Wang, J.; Song, C.; Zheng, Y.; Li, C. Appl. Catal. B: Environ. 2019, 242, 92. doi: 10.1016/j.apcatb.2018.09.079  doi: 10.1016/j.apcatb.2018.09.079

    109. [109]

      Li, X.; Xiong, J.; Xu, Y.; Feng, Z.; Huang, J. Chin. J. Catal. 2019, 40, 424. doi: 10.1016/s1872-2067(18)63183-3  doi: 10.1016/s1872-2067(18)63183-3

    110. [110]

      Wang, Y.; Yang, W.; Chen, X.; Wang, J.; Zhu, Y. Appl. Catal. B: Environ. 2018, 220, 337. doi: 10.1016/j.apcatb.2017.08.004  doi: 10.1016/j.apcatb.2017.08.004

    111. [111]

      Nie, Y.-C.; Yu, F.; Wang, L.-C.; Xing, Q.-J.; Liu, X.; Pei, Y.; Zou, J.-P.; Dai, W.-L.; Li, Y.; Suib, S. L. Appl. Catal. B: Environ. 2018, 227, 312. doi: 10.1016/j.apcatb.2018.01.033  doi: 10.1016/j.apcatb.2018.01.033

    112. [112]

      Guo, N.; Zeng, Y.; Li, H.; Xu, X.; Yu, H.; Han, X. J. Hazard. Mater. 2018, 353, 80. doi: 10.1016/j.jhazmat.2018.03.044  doi: 10.1016/j.jhazmat.2018.03.044

    113. [113]

      Yang, C.; Qin, J.; Xue, Z.; Ma, M.; Zhang, X.; Liu, R. Nano Energy 2017, 41, 1. doi: 10.1016/j.nanoen.2017.09.012  doi: 10.1016/j.nanoen.2017.09.012

    114. [114]

      Lu, D.; Fang, P.; Wu, W.; Ding, J.; Jiang, L.; Zhao, X.; Li, C.; Yang, M.; Li, Y.; Wang, D. Nanoscale 2017, 9, 3231. doi: 10.1039/c6nr09137g  doi: 10.1039/c6nr09137g

    115. [115]

      Jiang, Z.; Zhu, C.; Wan, W.; Qian, K.; Xie, J. J. Mater. Chem. A 2016, 4, 1806. doi: 10.1039/c5ta09919f  doi: 10.1039/c5ta09919f

    116. [116]

      Liu, J.; Cheng, B.; Yu, J. Phys. Chem. Chem. Phys. 2016, 18, 31175. doi: 10.1039/c6cp06147h  doi: 10.1039/c6cp06147h

    117. [117]

      Wang, Y.; Tian, Y.; Yan, L.; Su, Z. J. Phys. Chem. C 2018, 122, 7712. doi: 10.1021/acs.jpcc.8b00098  doi: 10.1021/acs.jpcc.8b00098

    118. [118]

      Wang, K.; Wang, T.; Islam, Q. A.; Wu, Y. Chin. J. Catal. 2021, 42, 1944. doi: 10.1016/s1872-2067(21)63861-5  doi: 10.1016/s1872-2067(21)63861-5

    119. [119]

      Wang, K.; Yang, S.; Wu, Y. J. Environ. Chem. Eng. 2022, 10, 108353. doi: 10.1016/j.jece.2022.108353  doi: 10.1016/j.jece.2022.108353

    120. [120]

      Bai, Y.; Li, C.; Liu, L.; Yamaguchi, Y.; Bahri, M.; Yang, H.; Gardner, A.; Zwijnenburg, M. A.; Browning, N. D.; Cowan, A. J.; et al. Angew. Chem. Int. Ed. 2022, 61, 202201299. doi: 10.1002/anie.202201299  doi: 10.1002/anie.202201299

    121. [121]

      Xu, M. L.; Lu, M.; Qin, G. Y.; Wu, X. M.; Yu, T.; Zhang, L. N.; Li, K.; Cheng, X.; Lan, Y. Q. Angew. Chem. Int. Ed. 2022, 61, 202210700. doi: 10.1002/anie.202210700  doi: 10.1002/anie.202210700

    122. [122]

      Qin, Y.; Fang, F.; Xie, Z.; Lin, H.; Zhang, K.; Yu, X.; Chang, K. ACS Catal. 2021, 11, 11429. doi: 10.1021/acscatal.1c02874  doi: 10.1021/acscatal.1c02874

    123. [123]

      Zhang, B.; Liu, K.; Xiang, Y.; Wang, J.; Lin, W.; Guo, M.; Ma, G. ACS Catal. 2022, 12, 2415. doi: 10.1021/acscatal.2c00306  doi: 10.1021/acscatal.2c00306

    124. [124]

      Chang, S.; Yu, J.; Wang, R.; Fu, Q.; Xu, X. ACS Nano 2021, 15, 18153. doi: 10.1021/acsnano.1c06871  doi: 10.1021/acsnano.1c06871

    125. [125]

      Hu, H.; Wang, Z.; Cao, L.; Zeng, L.; Zhang, C.; Lin, W.; Wang, C. Nat. Chem. 2021, 13, 358. doi: 10.1038/s41557-020-00635-5  doi: 10.1038/s41557-020-00635-5

    126. [126]

      Remiro-Buenamañana, S.; Cabrero-Antonino, M.; Martínez-Guanter, M.; Álvaro, M.; Navalón, S.; García, H. Appl. Catal. B: Environ. 2019, 254, 677. doi: 10.1016/j.apcatb.2019.05.027  doi: 10.1016/j.apcatb.2019.05.027

    127. [127]

      Ning, X.; Zhen, W.; Zhang, X.; Lu, G. ChemSusChem 2019, 12, 1410. doi: 10.1002/cssc.201802926  doi: 10.1002/cssc.201802926

    128. [128]

      Zheng, X.; Feng, L.; Dou, Y.; Guo, H.; Liang, Y.; Li, G.; He, J.; Liu, P.; He, J. ACS Nano 2021, 15, 13209. doi: 10.1021/acsnano.1c02884  doi: 10.1021/acsnano.1c02884

    129. [129]

      Liu, Y.; Xu, X.; Zheng, S.; Lv, S.; Li, H.; Si, Z.; Wu, X.; Ran, R.; Weng, D.; Kang, F. Carbon 2021, 183, 763. doi: 10.1016/j.carbon.2021.07.064  doi: 10.1016/j.carbon.2021.07.064

    130. [130]

      Fu, W.; Guan, X.; Huang, Z.; Liu, M.; Guo, L. Appl. Catal. B: Environ. 2019, 255, 117741. doi: 10.1016/j.apcatb.2019.05.043  doi: 10.1016/j.apcatb.2019.05.043

    131. [131]

      Dai, D.; Liang, X.; Zhang, B.; Wang, Y.; Wu, Q.; Bao, X.; Wang, Z.; Zheng, Z.; Cheng, H.; Dai, Y.; et al. Adv. Sci. 2022, 9, 2105299. doi: 10.1002/advs.202105299  doi: 10.1002/advs.202105299

    132. [132]

      Lin, Y.; Su, W.; Wang, X.; Fu, X.; Wang, X. Angew. Chem. Int. Ed. 2020, 59, 20919. doi: 10.1002/anie.202008397  doi: 10.1002/anie.202008397

    133. [133]

      Liu, Y.; Zhang, M.; Wang, Z.; He, J.; Zhang, J.; Ye, S.; Wang, X.; Li, D.; Yin, H.; Zhu, Q.; et al. Nat. Commun. 2022, 13, 4245. doi: 10.1038/s41467-022-32002-y  doi: 10.1038/s41467-022-32002-y

    134. [134]

      Ding, Y.; Wei, D.; He, R.; Yuan, R.; Xie, T.; Li, Z. Appl. Catal. B: Environ. 2019, 258, 117948. doi: 10.1016/j.apcatb.2019.117948  doi: 10.1016/j.apcatb.2019.117948

    135. [135]

      Wei, S.; Chang, S.; Qian, J.; Xu, X. Small 2021, 17, 2100084. doi: 10.1002/smll.202100084  doi: 10.1002/smll.202100084

    136. [136]

      Li, Y.; Liu, Y.; Xing, D.; Wang, J.; Zheng, L.; Wang, Z.; Wang, P.; Zheng, Z.; Cheng, H.; Dai, Y.; et al. Appl. Catal. B: Environ. 2021, 285, 119855. doi: 10.1016/j.apcatb.2020.119855  doi: 10.1016/j.apcatb.2020.119855

    137. [137]

      Wang, L.; Liu, J.; Wang, H.; Cheng, H.; Wu, X.; Zhang, Q.; Xu, H. Sci. Bull. 2021, 66, 265. doi: 10.1016/j.scib.2020.08.009  doi: 10.1016/j.scib.2020.08.009

    138. [138]

      Mu, L.; Zhao, Y.; Li, A.; Wang, S.; Wang, Z.; Yang, J.; Wang, Y.; Liu, T.; Chen, R.; Zhu, J.; et al. Energy Environ. Sci. 2016, 9, 2463. doi: 10.1039/c6ee00526h  doi: 10.1039/c6ee00526h

    139. [139]

      Wang, L.; Wan, Y.; Ding, Y.; Wu, S.; Zhang, Y.; Zhang, X.; Zhang, G.; Xiong, Y.; Wu, X.; Yang, J.; et al. Adv. Mater. 2017, 29, 1702428. doi: 10.1002/adma.201702428  doi: 10.1002/adma.201702428

    140. [140]

      Jiao, L.; Zhang, D.; Hao, Z.; Yu, F.; Lv, X.-J. ACS Catal. 2021, 11, 8727. doi: 10.1021/acscatal.1c01520  doi: 10.1021/acscatal.1c01520

    141. [141]

      Liu, X.; Dai, D.; Cui, Z.; Zhang, Q.; Gong, X.; Wang, Z.; Liu, Y.; Zheng, Z.; Cheng, H.; Dai, Y.; et al. ACS Catal. 2022, 12, 12386. doi: 10.1021/acscatal.2c03550  doi: 10.1021/acscatal.2c03550

    142. [142]

      Niu, F.; Tu, W.; Lu, X.; Chi, H.; Zhu, H.; Zhu, X.; Wang, L.; Xiong, Y.; Yao, Y.; Zhou, Y.; et al. ACS Catal. 2022, 12, 4481. doi: 10.1021/acscatal.2c00433  doi: 10.1021/acscatal.2c00433

    143. [143]

      Wang, E.; Mahmood, A.; Chen, S.-G.; Sun, W.; Muhmood, T.; Yang, X.; Chen, Z. ACS Catal. 2022, 12, 11206. doi: 10.1021/acscatal.2c02624  doi: 10.1021/acscatal.2c02624

    144. [144]

      Liu, H.; Xu, C.; Li, D.; Jiang, H. L. Angew. Chem. Int. Ed. 2018, 57, 5379. doi: 10.1002/anie.201800320  doi: 10.1002/anie.201800320

    145. [145]

      Zou, J.; Zhou, W.; Huang, L.; Guo, B.; Yang, C.; Hou, Y.; Zhang, J.; Wu, L. J. Catal. 2021, 400, 347. doi: 10.1016/j.jcat.2021.07.003  doi: 10.1016/j.jcat.2021.07.003

    146. [146]

      Li, X.; Hu, J.; Yang, T.; Yang, X.; Qu, J.; Li, C.M. Nano Energy 2022, 92, 106714. doi: 10.1016/j.nanoen.2021.106714  doi: 10.1016/j.nanoen.2021.106714

    147. [147]

      Meng, S.; Ye, X.; Zhang, J.; Fu, X.; Chen, S. J. Catal. 2018, 367, 159. doi: 10.1016/j.jcat.2018.09.003  doi: 10.1016/j.jcat.2018.09.003

    148. [148]

      Zhang, S.; Huang, W.; Fu, X.; Zheng, X.; Meng, S.; Ye, X.; Chen, S. Appl. Catal. B: Environ. 2018, 233, 1. doi: 10.1016/j.apcatb.2018.03.084  doi: 10.1016/j.apcatb.2018.03.084

    149. [149]

      Meng, S.; Ning, X.; Chang, S.; Fu, X.; Ye, X.; Chen, S. J. Catal. 2018, 357, 247. doi: 10.1016/j.jcat.2017.11.015  doi: 10.1016/j.jcat.2017.11.015

  • 加载中
    1. [1]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    2. [2]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    3. [3]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    4. [4]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    5. [5]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    6. [6]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    7. [7]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    8. [8]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    9. [9]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    10. [10]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    11. [11]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    12. [12]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    13. [13]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    14. [14]

      Ke GongJinghan LiaoJiangtao LinQuan WangZhihua WuLiting WangJiali ZhangYi DongYourong DuanJianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888

    15. [15]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    16. [16]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    20. [20]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

Metrics
  • PDF Downloads(16)
  • Abstract views(640)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return