Overall Utilization of Photoexcited Charges for Simultaneous Photocatalytic Redox Reactions
- Corresponding author: Jinfeng Zhang, jfzhang@chnu.edu.cn Kai Dai, daikai940@chnu.edu.cn †These authors contributed equally to this work.
Citation: Zhongliao Wang, Jing Wang, Jinfeng Zhang, Kai Dai. Overall Utilization of Photoexcited Charges for Simultaneous Photocatalytic Redox Reactions[J]. Acta Physico-Chimica Sinica, ;2023, 39(6): 220903. doi: 10.3866/PKU.WHXB202209037
Shen, H.; Peppel, T.; Stunk, J.; Sun, Z. Solar RRL 2020, 4, 1900546. doi: 10.1002/solr.201900546
doi: 10.1002/solr.201900546
Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43, 2111. doi: 10.1016/s1872-2067(22)64096-8
doi: 10.1016/s1872-2067(22)64096-8
Li, J. B.; Wu, X.; Liu, S. W. Acta Phys. -Chim. Sin. 2021, 37, 2009038.
doi: 10.3866/PKU.WHXB202009038
Wang, Q.; Hisatomi, T.; Jia, Q.; Tokudome, H.; Zhong, M.; Wang, C.; Pan, Z.; Takata, T.; Nakabayashi, M.; Shibata, N.; et al. Nat. Mater. 2016, 15, 611. doi: 10.1038/nmat4589
doi: 10.1038/nmat4589
Li, X.; Zhang, J.; Dai, K.; Fan, K.; Liang, C. Solar RRL 2021, 5, 2100788. doi: 10.1002/solr.202100788
doi: 10.1002/solr.202100788
Fei, X.; Tan, H.; Cheng, B.; Zhu, B.; Zhang, L. Acta Phys. -Chim. Sin. 2021, 37, 2010027.
doi: 10.3866/PKU.WHXB202010027
Liu, L.; Hu, T.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2021, 42, 46. doi: 10.1016/s1872-2067(20)63560-4
doi: 10.1016/s1872-2067(20)63560-4
Liu, D.; Chen, S.; Li, R.; Peng, T. Acta Phys. -Chim. Sin. 2021, 37, 2010017.
doi: 10.3866/PKU.WHXB202010017
Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci. Technol. 2022, 117, 109. doi: 10.1016/j.jmst.2021.11.046
doi: 10.1016/j.jmst.2021.11.046
Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
doi: 10.1038/238037a0
Yang, Y.; Zhu, B.; Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Appl. Catal. B: Environ. 2022, 317, 121788. doi: 10.1016/j.apcatb.2022.121788
doi: 10.1016/j.apcatb.2022.121788
Wang, Z. J.; Hong, J. J.; Ng, S.-F.; Liu, W.; Huang, J. J.; Chen, P. F.; Ong, W.-J. Acta Phys. -Chim. Sin. 2021, 37, 2011033.
doi: 10.3866/PKU.WHXB202011033
Zhang, J.; Fu, J.; Dai, K. J. Mater. Sci. Technol. 2022, 116, 192. doi: 10.1016/j.jmst.2021.10.045
doi: 10.1016/j.jmst.2021.10.045
Mei, Z. H.; Wang, G. H.; Yan, S. D.; Wang, J. Acta Phys. -Chim. Sin. 2021, 37, 2009097.
doi: 10.3866/PKU.WHXB202009097
Takata, T.; Jiang, J.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Nature 2020, 581, 411. doi: 10.1038/s41586-020-2278-9
doi: 10.1038/s41586-020-2278-9
Bie, C.; Zhu, B.; Wang, L.; Yu, H.; Jiang, C.; Chen, T.; Yu, J. Angew. Chem. Int. Ed. 2022, 61, 202212045. doi: 10.1002/anie.202212045
doi: 10.1002/anie.202212045
Liu, S. C.; Wang, K.; Yang, M. X.; Jin, Z. L. Acta Phys. -Chim. Sin. 2022, 38, 2109023.
doi: 10.3866/PKU.WHXB202109023
Wang, Z.; Hu, T.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2017, 38, 2021. doi: 10.1016/S1872-2067(17)62942-5
doi: 10.1016/S1872-2067(17)62942-5
Li, X.; Zhang, J.; Huo, Y.; Dai, K.; Li, S.; Chen, S. Appl. Catal. B: Environ. 2021, 280, 119452. doi: 10.1016/j.apcatb.2020.119452
doi: 10.1016/j.apcatb.2020.119452
Huang, Y.; Mei, F. F.; Zhang, J. F.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38, 2108028.
doi: 10.3866/PKU.WHXB202108028
Zhao, Z.; Bian, J.; Zhao, L.; Wu, H.; Xu, S.; Sun, L.; Li, Z.; Zhang, Z.; Jing, L. Chin. J. Catal. 2022, 43, 1331. doi: 10.1016/S1872-2067(21)64005-6
doi: 10.1016/S1872-2067(21)64005-6
Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J.; Wang, L. J. Mater. Sci. Technol. 2022, 124, 193. doi: 10.1016/j.jmst.2022.01.029
doi: 10.1016/j.jmst.2022.01.029
Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Li, Y.; Wageh, S.; Al-Ghamdi, A.A. Chin. J. Catal. 2022, 43, 1657. doi: 10.1016/s1872-2067(21)64010-x
doi: 10.1016/s1872-2067(21)64010-x
Huang, W.; Li, Z.; Wu, C.; Zhang, H.; Sun, J.; Li, Q. J. Mater. Sci. Technol. 2022, 120, 89. doi: 10.1016/j.jmst.2021.12.028
doi: 10.1016/j.jmst.2021.12.028
Wang, Z.; Wang, L.; Cheng, B.; Yu, H.; Yu, J. Small Methods 2021, 5, 2100979. doi: 10.1002/smtd.202100979
doi: 10.1002/smtd.202100979
Yang, H.; Zhang, J. F.; Dai, K. Chin. J. Catal. 2022, 43, 255. doi: 10.1016/s1872-2067(20)63784-6
doi: 10.1016/s1872-2067(20)63784-6
Zhang, S.; Cheng, G.; Guo, L.; Wang, N.; Tan, B.; Jin, S. Angew. Chem. Int. Ed. 2020, 59, 6007. doi: 10.1002/anie.201914424
doi: 10.1002/anie.201914424
Guan, X.; Fang, Q.; Yan, Y.; Qiu, S. Acc. Chem. Res. 2022, 55, 1912. doi: 10.1021/acs.accounts.2c00200
doi: 10.1021/acs.accounts.2c00200
Guan, Q.; Zhou, L. L.; Dong, Y. B. Chem. Soc. Rev. 2022, 51, 6307. doi: 10.1039/d1cs00983d
doi: 10.1039/d1cs00983d
Chen, W.-T.; Chan, A.; Sun-Waterhouse, D.; Moriga, T.; Idriss, H.; Waterhouse, G. I. N. J. Catal. 2015, 326, 43. doi: 10.1016/j.jcat.2015.03.008
doi: 10.1016/j.jcat.2015.03.008
Wen, Y.; Qu, D.; An, L.; Gao, X.; Jiang, W.; Wu, D.; Yang, D.; Sun, Z. ACS Sustain. Chem. Eng. 2018, 7, 2343. doi: 10.1021/acssuschemeng.8b05124
doi: 10.1021/acssuschemeng.8b05124
Zhao, G.; Sun, Y.; Zhou, W.; Wang, X.; Chang, K.; Liu, G.; Liu, H.; Kako, T.; Ye, J. Adv. Mater. 2017, 29, 1703258. doi: 10.1002/adma.201703258
doi: 10.1002/adma.201703258
Mohamed, R. M.; Aazam, E. S. Chin. J. Catal. 2012, 33, 247. doi: 10.1016/s1872-2067(10)60276-8
doi: 10.1016/s1872-2067(10)60276-8
Xia, B.; Zhang, Y.; Shi, B.; Ran, J.; Davey, K.; Qiao, S.-Z. Small Methods 2020, 4, 2000063. doi: 10.1002/smtd.202000063
doi: 10.1002/smtd.202000063
He, B.; Bie, C.; Fei, X.; Cheng, B.; Yu, J.; Ho, W.; Al-Ghamdi, A. A.; Wageh, S. Appl. Catal. B: Environ. 2021, 288, 119994. doi: 10.1016/j.apcatb.2021.119994
doi: 10.1016/j.apcatb.2021.119994
Lei, Z. N.; Ma, X. Y.; Hu, X. Y.; Fan, J.; Liu, E. Z. Acta Phys. -Chim. Sin. 2022, 38, 2110049.
doi: 10.3866/PKU.WHXB202110049
Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. J. Am. Chem. Soc. 2005, 127, 8286. doi: 10.1021/ja0518777
doi: 10.1021/ja0518777
Shu, G.; Li, Y.; Wang, Z.; Jiang, J.-X.; Wang, F. Appl. Catal. B: Environ. 2020, 261, 118230. doi: 10.1016/j.apcatb.2019.118230
doi: 10.1016/j.apcatb.2019.118230
Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317
doi: 10.1002/adma.202100317
Zhang, Y.; Zhao, J.; Wang, H.; Xiao, B.; Zhang, W.; Zhao, X.; Lv, T.; Thangamuthu, M.; Zhang, J.; Guo, Y. Nat. Commun. 2022, 13, 58. doi: 10.1038/s41467-021-27698-3
doi: 10.1038/s41467-021-27698-3
Liu, Y.; Hao, X.; Hu, H.; Jin, Z. Acta Phys. -Chim. Sin. 2021, 37, 2008030.
doi: 10.3866/PKU.WHXB202008030
Chen, Y.; Li, L.; Xu, Q.; Düren, T.; Fan, J.; Ma, D. Acta Phys. -Chim. Sin. 2021, 37, 2009080.
doi: 10.3866/PKU.WHXB202009080
Huo, Y.; Zhang, J.; Dai, K.; Liang, C. ACS Appl. Energy Mater. 2021, 4, 956. doi: 10.1021/acsaem.0c02896
doi: 10.1021/acsaem.0c02896
Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat. Commun. 2021, 12, 4936. doi: 10.1038/s41467-021-25007-6
doi: 10.1038/s41467-021-25007-6
Dong, G.; Huang, X.; Bi, Y. Angew. Chem. Int. Ed. 2022, 61, 202204271. doi: 10.1002/anie.202204271
doi: 10.1002/anie.202204271
Li, S.; Wang, C.; Cai, M.; Yang, F.; Liu, Y.; Chen, J.; Zhang, P.; Li, X.; Chen, X. Chem. Eng. J. 2022, 428, 131158. doi: 10.1016/j.cej.2021.131158
doi: 10.1016/j.cej.2021.131158
Feng, H.; Li, H.; Liu, X.; Huang, Y.; Pan, Q.; Peng, R.; Du, R.; Zheng, X.; Yin, Z.; Li, S. Chem. Eng. J. 2022, 428, 132045. doi: 10.1016/j.cej.2021.132045
doi: 10.1016/j.cej.2021.132045
Yang, Y.; Li, H.; Jing, X.; Wu, Y.; Shi, Y.; Duan, C. Chem. Commun. 2022, 58, 807. doi: 10.1039/D1CC06166F
doi: 10.1039/D1CC06166F
Wang, J.; Wang, M.; Li, X.; Gu, X.; Kong, P.; Wang, R.; Ke, X.; Yu, G.; Zheng, Z. Appl. Catal. B: Environ. 2022, 313, 121449. doi: 10.1016/j.apcatb.2022.121449
doi: 10.1016/j.apcatb.2022.121449
Li, X.; Liu, J.; Huang, J.; He, C.; Feng, Z.; Chen, Z.; Wan, L.; Deng, F. Acta Phys. -Chim. Sin. 2021, 37, 2010030.
doi: 10.3866/PKU.WHXB202010030
Lu, G.; Chu, F.; Huang, X.; Li, Y.; Liang, K.; Wang, G. Coord. Chem. Rev. 2022, 450, 214240. doi: 10.1016/j.ccr.2021.214240
doi: 10.1016/j.ccr.2021.214240
Wen, Y.; Rentería-Gómez, A. N.; Day, G. S.; Smith, M. F.; Yan, T.-H.; Ozdemir, R. O. K.; Gutierrez, O.; Sharma, V. K.; Ma, X.; Zhou, H.-C. J. Am. Chem. Soc. 2022, 144, 11840. doi: 10.1021/jacs.2c04341
doi: 10.1021/jacs.2c04341
Cheng, Y.-Z.; Ji, W.; Wu, X.; Ding, X.; Liu, X.-F.; Han, B.-H. Appl. Catal. B: Environ. 2022, 306, 121110. doi: 10.1016/j.apcatb.2022.121110
doi: 10.1016/j.apcatb.2022.121110
Zhang, B.; Wong, P. W.; An, A. K. Chem. Eng. J. 2022, 430, 133054. doi: 10.1016/j.cej.2021.133054
doi: 10.1016/j.cej.2021.133054
Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Adv. Mater. 2012, 24, 229. doi: 10.1002/adma.201102752
doi: 10.1002/adma.201102752
Zhou, X. Acta Phys. -Chim. Sin. 2021, 37, 2008064.
doi: 10.3866/PKU.WHXB202008064
Sun, S.; Hisatomi, T.; Wang, Q.; Chen, S. S.; Ma, G. J.; Liu, J. Y.; Nandy, S.; Minegishi, T.; Katayama, M.; Domen, K. ACS Catal. 2018, 8, 1690. doi: 10.1021/acscatal.7b03884
doi: 10.1021/acscatal.7b03884
Wang, L.; Zhang, J.; Zhang, Y.; Yu, H.; Qu, Y.; Yu, J. Small 2022, 18, 2104561. doi: 10.1002/smll.202104561
doi: 10.1002/smll.202104561
Chen, S. S.; Takata, T.; Domen, K. Nat. Rev. Mater. 2017, 2, 17050. doi: 10.1038/natrevmats.2017.50
doi: 10.1038/natrevmats.2017.50
Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668
doi: 10.1002/adma.202107668
Zhu, B.; Hong, X.; Tang, L.; Liu, Q.; Tang, H. Acta Phys. -Chim. Sin. 2022, 38, 2111008.
doi: 10.3866/PKU.WHXB202111008
Meng, S.; Chen, C.; Gu, X.; Wu, H.; Meng, Q.; Zhang, J.; Chen, S.; Fu, X.; Liu, D.; Lei, W. Appl. Catal. B: Environ. 2021, 285, 119789. doi: 10.1016/j.apcatb.2020.119789
doi: 10.1016/j.apcatb.2020.119789
He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225
doi: 10.1002/adma.202203225
Xia, P.; Pan, X.; Jiang, S.; Yu, J.; He, B.; Ismail, P. M.; Bai, W.; Yang, J.; Yang, L.; Zhang, H.; et al. Adv. Mater. 2022, 34, 2200563. doi: 10.1002/adma.202200563
doi: 10.1002/adma.202200563
Meng, S.; Wu, H.; Cui, Y.; Zheng, X.; Wang, H.; Chen, S.; Wang, Y.; Fu, X. Appl. Catal. B: Environ. 2020, 266, 118617. doi: 10.1016/j.apcatb.2020.118617
doi: 10.1016/j.apcatb.2020.118617
Dai, X.; Xie, M.; Meng, S.; Fu, X.; Chen, S. Appl. Catal. B: Environ. 2014, 158–159, 382. doi: 10.1016/j.apcatb.2014.04.035
doi: 10.1016/j.apcatb.2014.04.035
Zhao, L. M.; Meng, Q. Y.; Fan, X. B.; Ye, C.; Li, X. B.; Chen, B.; Ramamurthy, V.; Tung, C. H.; Wu, L. Z. Angew. Chem. Int. Ed. 2017, 56, 3020. doi: 10.1002/anie.201700243
doi: 10.1002/anie.201700243
Wang, W.; Zhang, H.; Chen, Y.; Shi, H. Acta Phys. -Chim. Sin. 2022, 38, 2201008.
doi: 10.3866/PKU.WHXB202201008
Huo, Y.; Zhang, J.; Dai, K.; Li, Q.; Lv, J.; Zhu, G.; Liang, C. Appl. Catal. B: Environ. 2019, 241, 528. doi: 10.1016/j.apcatb.2018.09.073
doi: 10.1016/j.apcatb.2018.09.073
Lv, J.; Zhang, J.; Liu, J.; Li, Z.; Dai, K.; Liang, C. ACS Sustain. Chem. Eng. 2017, 6, 696. doi: 10.1021/acssuschemeng.7b03032
doi: 10.1021/acssuschemeng.7b03032
Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108
doi: 10.14102/j.cnki.0254-5861.2022-0108
Li, H.; Li, F.; Yu, J.; Cao, S. Acta Phys. -Chim. Sin. 2021, 37, 2010073.
doi: 10.3866/PKU.WHXB202010073
Bie, C.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. Energy Chem. 2021, 3, 100051. doi: 10.1016/j.enchem.2021.100051
doi: 10.1016/j.enchem.2021.100051
Sasmal, H.S.; Kumar Mahato, A.; Majumder, P.; Banerjee, R. J. Am. Chem. Soc. 2022, 144, 11482. doi: 10.1021/jacs.2c02301
doi: 10.1021/jacs.2c02301
Dai, K.; Lv, J.; Zhang, J.; Zhu, G.; Geng, L.; Liang, C. ACS Sustain. Chem. Eng. 2018, 6, 12817. doi: 10.1021/acssuschemeng.8b02064
doi: 10.1021/acssuschemeng.8b02064
Huo, Y.; Zhang, J.; Wang, Z.; Dai, K.; Pan, C.; Liang, C. J. Colloid Interface Sci. 2021, 585, 684. doi: 10.1016/j.jcis.2020.10.048
doi: 10.1016/j.jcis.2020.10.048
Zhang, L.; Hou, S.; Wang, T.; Liu, S.; Gao, X.; Wang, C.; Wang, G. Small 2022, 18, 2202252. doi: 10.1002/smll.202202252
doi: 10.1002/smll.202202252
Wang, G.; Huo, T.; Deng, Q.; Yu, F.; Xia, Y.; Li, H.; Hou, W. Appl. Catal. B: Environ. 2022, 310, 121319. doi: 10.1016/j.apcatb.2022.121319
doi: 10.1016/j.apcatb.2022.121319
Dong, X.; Cui, Z.; Shi, X.; Yan, P.; Wang, Z.; Co, A. C.; Dong, F. Angew. Chem. Int. Ed. 2022, 61, 202200937. doi: 10.1002/anie.202200937
doi: 10.1002/anie.202200937
Dai, K.; Lu, L.H.; Liang, C.H.; Liu, Q.; Zhu, G.P. Appl. Catal. B: Environ. 2014, 156, 331. doi: 10.1016/j.apcatb.2014.03.039
doi: 10.1016/j.apcatb.2014.03.039
Zhang, Q.; Wang, J.; Ye, X.; Hui, Z.; Ye, L.; Wang, X.; Chen, S. ACS Appl. Mater. Interfaces 2019, 11, 46735. doi: 10.1021/acsami.9b14450
doi: 10.1021/acsami.9b14450
Wang, L.; Yu, J. Chem Catal. 2022, 2, 428. doi: 10.1016/j.checat.2022.01.010
doi: 10.1016/j.checat.2022.01.010
Bie, C.; Wang, L.; Yu, J. Chem 2022, 8, 1567. doi: 10.1016/j.chempr.2022.04.013
doi: 10.1016/j.chempr.2022.04.013
Mei, F.; Zhang, J.; Liang, C.; Dai, K. Mater. Lett. 2021, 282, 128722. doi: 10.1016/j.matlet.2020.128722
doi: 10.1016/j.matlet.2020.128722
Lotfi, S.; Ouardi, M.E.; Ahsaine, H.A.; Assani, A. Catal. Rev. 2022, 64, 1. doi: 10.1080/01614940.2022.2057044
doi: 10.1080/01614940.2022.2057044
Chen, Y.; Li, Y.; Luo, N.; Shang, W.; Shi, S.; Li, H.; Liang, Y.; Zhou, A. Chem. Eng. J. 2022, 429, 132577. doi: 10.1016/j.cej.2021.132577
doi: 10.1016/j.cej.2021.132577
Zhao, R.; Wei, D.; Li, X.; Gao, J.; Xiong, C.; Yu, M. Mater. Lett. 2022, 327, 133003. doi: 10.1016/j.matlet.2022.133003
doi: 10.1016/j.matlet.2022.133003
Fragoso, J.; Barreca, D.; Bigiani, L.; Gasparotto, A.; Sada, C.; Lebedev, O. I.; Modin, E.; Pavlovic, I.; Sánchez, L.; Maccato, C. Chem. Eng. J. 2022, 430, 132757. doi: 10.1016/j.cej.2021.132757
doi: 10.1016/j.cej.2021.132757
Bie, C.; Zhu, B.; Xu, F.; Zhang, L.; Yu, J. Adv. Mater. 2019, 31, 1902868. doi: 10.1002/adma.201902868
doi: 10.1002/adma.201902868
Wang, L.; Fei, X.; Zhang, L.; Yu, J.; Cheng, B.; Ma, Y. J. Mater. Sci. Technol. 2022, 112, 1. doi: 10.1016/j.jmst.2021.10.016
doi: 10.1016/j.jmst.2021.10.016
Yang, Y.; Tan, H.; Cheng, B.; Fan, J.; Yu, J.; Ho, W. Small Methods 2021, 5, 2001042. doi: 10.1002/smtd.202001042
doi: 10.1002/smtd.202001042
Huang, Y.; Zhang, J.; Dai, K.; Liang, C.; Dawson, G. Ceram. Int. 2022, 48, 8423. doi: 10.1016/j.ceramint.2021.12.050
doi: 10.1016/j.ceramint.2021.12.050
Liu, L.; Dai, K.; Zhang, J.; Li, L. J. Colloid Interface Sci. 2021, 604, 844. doi: 10.1016/j.jcis.2021.07.064
doi: 10.1016/j.jcis.2021.07.064
Li, R. G.; Weng, Y. X.; Zhou, X.; Wang, X. L.; Mi, Y.; Chong, R. F.; Han, H. X.; Li, C. Energy Environ. Sci. 2015, 8, 2377. doi: 10.1039/c5ee01398d
doi: 10.1039/c5ee01398d
Tao, X. P.; Zhao, Y.; Mu, L. C.; Wang, S. Y.; Li, R. G.; Li, C. Adv. Energy Mater. 2018, 8, 1701392. doi: 10.1002/aenm.201701392
doi: 10.1002/aenm.201701392
Wang, D.; Hisatomi, T.; Takata, T.; Pan, C.; Katayama, M.; Kubota, J.; Domen, K. Angew. Chem. Int. Ed. 2013, 52, 11252. doi: 10.1002/anie.201303693
doi: 10.1002/anie.201303693
Wang, Q.; Hisatomi, T.; Suzuki, Y.; Pan, Z.; Seo, J.; Katayama, M.; Minegishi, T.; Nishiyama, H.; Takata, T.; Seki, K.; et al. J. Am. Chem. Soc. 2017, 139, 1675. doi: 10.1021/jacs.6b12164
doi: 10.1021/jacs.6b12164
Bie, C.; Yu, H.; Cheng, B.; Ho, W.; Fan, J.; Yu, J. Adv. Mater. 2021, 33, 2003521. doi: 10.1002/adma.202003521
doi: 10.1002/adma.202003521
Wang, Z.; Fan, J.; Cheng, B.; Yu, J.; Xu, J. Mater. Today Phys. 2020, 15, 100279. doi: 10.1016/j.mtphys.2020.100279
doi: 10.1016/j.mtphys.2020.100279
Gao, D.; Liu, W.; Xu, Y.; Wang, P.; Fan, J.; Yu, H. Appl. Catal. B: Environ. 2020, 260, 118190. doi: 10.1016/j.apcatb.2019.118190
doi: 10.1016/j.apcatb.2019.118190
Xu, J.; Zhong, W.; Gao, D.; Wang, X.; Wang, P.; Yu, H. Chem. Eng. J. 2022, 439, 135758. doi: 10.1016/j.cej.2022.135758
doi: 10.1016/j.cej.2022.135758
Liu, J.; Zheng, X.; Pan, L.; Fu, X.; Zhang, S.; Meng, S.; Chen, S. Appl. Catal. B: Environ. 2021, 298, 120619. doi: 10.1016/j.apcatb.2021.120619
doi: 10.1016/j.apcatb.2021.120619
He, H.; Cao, J.; Guo, M.; Lin, H.; Zhang, J.; Chen, Y.; Chen, S. Appl. Catal. B: Environ. 2019, 249, 246. doi: 10.1016/j.apcatb.2019.02.055
doi: 10.1016/j.apcatb.2019.02.055
Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Tan, H. Solar RRL 2022, 6, 2100587. doi: 10.1002/solr.202100587
doi: 10.1002/solr.202100587
Wang, Z.; Chen, Y.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 143. doi: 10.1016/j.jmst.2020.02.062
doi: 10.1016/j.jmst.2020.02.062
Yang, Y.; Chen, X.; Pan, Y.; Song, H.; Zhu, B.; Wu, Y. Catal. Today 2021, 374, 4. doi: 10.1016/j.cattod.2020.10.032
doi: 10.1016/j.cattod.2020.10.032
Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Chin. J. Catal. 2021, 42, 56. doi: 10.1016/s1872-2067(20)63634-8
doi: 10.1016/s1872-2067(20)63634-8
Pan, J.; Dong, Z.; Wang, B.; Jiang, Z.; Zhao, C.; Wang, J.; Song, C.; Zheng, Y.; Li, C. Appl. Catal. B: Environ. 2019, 242, 92. doi: 10.1016/j.apcatb.2018.09.079
doi: 10.1016/j.apcatb.2018.09.079
Li, X.; Xiong, J.; Xu, Y.; Feng, Z.; Huang, J. Chin. J. Catal. 2019, 40, 424. doi: 10.1016/s1872-2067(18)63183-3
doi: 10.1016/s1872-2067(18)63183-3
Wang, Y.; Yang, W.; Chen, X.; Wang, J.; Zhu, Y. Appl. Catal. B: Environ. 2018, 220, 337. doi: 10.1016/j.apcatb.2017.08.004
doi: 10.1016/j.apcatb.2017.08.004
Nie, Y.-C.; Yu, F.; Wang, L.-C.; Xing, Q.-J.; Liu, X.; Pei, Y.; Zou, J.-P.; Dai, W.-L.; Li, Y.; Suib, S. L. Appl. Catal. B: Environ. 2018, 227, 312. doi: 10.1016/j.apcatb.2018.01.033
doi: 10.1016/j.apcatb.2018.01.033
Guo, N.; Zeng, Y.; Li, H.; Xu, X.; Yu, H.; Han, X. J. Hazard. Mater. 2018, 353, 80. doi: 10.1016/j.jhazmat.2018.03.044
doi: 10.1016/j.jhazmat.2018.03.044
Yang, C.; Qin, J.; Xue, Z.; Ma, M.; Zhang, X.; Liu, R. Nano Energy 2017, 41, 1. doi: 10.1016/j.nanoen.2017.09.012
doi: 10.1016/j.nanoen.2017.09.012
Lu, D.; Fang, P.; Wu, W.; Ding, J.; Jiang, L.; Zhao, X.; Li, C.; Yang, M.; Li, Y.; Wang, D. Nanoscale 2017, 9, 3231. doi: 10.1039/c6nr09137g
doi: 10.1039/c6nr09137g
Jiang, Z.; Zhu, C.; Wan, W.; Qian, K.; Xie, J. J. Mater. Chem. A 2016, 4, 1806. doi: 10.1039/c5ta09919f
doi: 10.1039/c5ta09919f
Liu, J.; Cheng, B.; Yu, J. Phys. Chem. Chem. Phys. 2016, 18, 31175. doi: 10.1039/c6cp06147h
doi: 10.1039/c6cp06147h
Wang, Y.; Tian, Y.; Yan, L.; Su, Z. J. Phys. Chem. C 2018, 122, 7712. doi: 10.1021/acs.jpcc.8b00098
doi: 10.1021/acs.jpcc.8b00098
Wang, K.; Wang, T.; Islam, Q. A.; Wu, Y. Chin. J. Catal. 2021, 42, 1944. doi: 10.1016/s1872-2067(21)63861-5
doi: 10.1016/s1872-2067(21)63861-5
Wang, K.; Yang, S.; Wu, Y. J. Environ. Chem. Eng. 2022, 10, 108353. doi: 10.1016/j.jece.2022.108353
doi: 10.1016/j.jece.2022.108353
Bai, Y.; Li, C.; Liu, L.; Yamaguchi, Y.; Bahri, M.; Yang, H.; Gardner, A.; Zwijnenburg, M. A.; Browning, N. D.; Cowan, A. J.; et al. Angew. Chem. Int. Ed. 2022, 61, 202201299. doi: 10.1002/anie.202201299
doi: 10.1002/anie.202201299
Xu, M. L.; Lu, M.; Qin, G. Y.; Wu, X. M.; Yu, T.; Zhang, L. N.; Li, K.; Cheng, X.; Lan, Y. Q. Angew. Chem. Int. Ed. 2022, 61, 202210700. doi: 10.1002/anie.202210700
doi: 10.1002/anie.202210700
Qin, Y.; Fang, F.; Xie, Z.; Lin, H.; Zhang, K.; Yu, X.; Chang, K. ACS Catal. 2021, 11, 11429. doi: 10.1021/acscatal.1c02874
doi: 10.1021/acscatal.1c02874
Zhang, B.; Liu, K.; Xiang, Y.; Wang, J.; Lin, W.; Guo, M.; Ma, G. ACS Catal. 2022, 12, 2415. doi: 10.1021/acscatal.2c00306
doi: 10.1021/acscatal.2c00306
Chang, S.; Yu, J.; Wang, R.; Fu, Q.; Xu, X. ACS Nano 2021, 15, 18153. doi: 10.1021/acsnano.1c06871
doi: 10.1021/acsnano.1c06871
Hu, H.; Wang, Z.; Cao, L.; Zeng, L.; Zhang, C.; Lin, W.; Wang, C. Nat. Chem. 2021, 13, 358. doi: 10.1038/s41557-020-00635-5
doi: 10.1038/s41557-020-00635-5
Remiro-Buenamañana, S.; Cabrero-Antonino, M.; Martínez-Guanter, M.; Álvaro, M.; Navalón, S.; García, H. Appl. Catal. B: Environ. 2019, 254, 677. doi: 10.1016/j.apcatb.2019.05.027
doi: 10.1016/j.apcatb.2019.05.027
Ning, X.; Zhen, W.; Zhang, X.; Lu, G. ChemSusChem 2019, 12, 1410. doi: 10.1002/cssc.201802926
doi: 10.1002/cssc.201802926
Zheng, X.; Feng, L.; Dou, Y.; Guo, H.; Liang, Y.; Li, G.; He, J.; Liu, P.; He, J. ACS Nano 2021, 15, 13209. doi: 10.1021/acsnano.1c02884
doi: 10.1021/acsnano.1c02884
Liu, Y.; Xu, X.; Zheng, S.; Lv, S.; Li, H.; Si, Z.; Wu, X.; Ran, R.; Weng, D.; Kang, F. Carbon 2021, 183, 763. doi: 10.1016/j.carbon.2021.07.064
doi: 10.1016/j.carbon.2021.07.064
Fu, W.; Guan, X.; Huang, Z.; Liu, M.; Guo, L. Appl. Catal. B: Environ. 2019, 255, 117741. doi: 10.1016/j.apcatb.2019.05.043
doi: 10.1016/j.apcatb.2019.05.043
Dai, D.; Liang, X.; Zhang, B.; Wang, Y.; Wu, Q.; Bao, X.; Wang, Z.; Zheng, Z.; Cheng, H.; Dai, Y.; et al. Adv. Sci. 2022, 9, 2105299. doi: 10.1002/advs.202105299
doi: 10.1002/advs.202105299
Lin, Y.; Su, W.; Wang, X.; Fu, X.; Wang, X. Angew. Chem. Int. Ed. 2020, 59, 20919. doi: 10.1002/anie.202008397
doi: 10.1002/anie.202008397
Liu, Y.; Zhang, M.; Wang, Z.; He, J.; Zhang, J.; Ye, S.; Wang, X.; Li, D.; Yin, H.; Zhu, Q.; et al. Nat. Commun. 2022, 13, 4245. doi: 10.1038/s41467-022-32002-y
doi: 10.1038/s41467-022-32002-y
Ding, Y.; Wei, D.; He, R.; Yuan, R.; Xie, T.; Li, Z. Appl. Catal. B: Environ. 2019, 258, 117948. doi: 10.1016/j.apcatb.2019.117948
doi: 10.1016/j.apcatb.2019.117948
Wei, S.; Chang, S.; Qian, J.; Xu, X. Small 2021, 17, 2100084. doi: 10.1002/smll.202100084
doi: 10.1002/smll.202100084
Li, Y.; Liu, Y.; Xing, D.; Wang, J.; Zheng, L.; Wang, Z.; Wang, P.; Zheng, Z.; Cheng, H.; Dai, Y.; et al. Appl. Catal. B: Environ. 2021, 285, 119855. doi: 10.1016/j.apcatb.2020.119855
doi: 10.1016/j.apcatb.2020.119855
Wang, L.; Liu, J.; Wang, H.; Cheng, H.; Wu, X.; Zhang, Q.; Xu, H. Sci. Bull. 2021, 66, 265. doi: 10.1016/j.scib.2020.08.009
doi: 10.1016/j.scib.2020.08.009
Mu, L.; Zhao, Y.; Li, A.; Wang, S.; Wang, Z.; Yang, J.; Wang, Y.; Liu, T.; Chen, R.; Zhu, J.; et al. Energy Environ. Sci. 2016, 9, 2463. doi: 10.1039/c6ee00526h
doi: 10.1039/c6ee00526h
Wang, L.; Wan, Y.; Ding, Y.; Wu, S.; Zhang, Y.; Zhang, X.; Zhang, G.; Xiong, Y.; Wu, X.; Yang, J.; et al. Adv. Mater. 2017, 29, 1702428. doi: 10.1002/adma.201702428
doi: 10.1002/adma.201702428
Jiao, L.; Zhang, D.; Hao, Z.; Yu, F.; Lv, X.-J. ACS Catal. 2021, 11, 8727. doi: 10.1021/acscatal.1c01520
doi: 10.1021/acscatal.1c01520
Liu, X.; Dai, D.; Cui, Z.; Zhang, Q.; Gong, X.; Wang, Z.; Liu, Y.; Zheng, Z.; Cheng, H.; Dai, Y.; et al. ACS Catal. 2022, 12, 12386. doi: 10.1021/acscatal.2c03550
doi: 10.1021/acscatal.2c03550
Niu, F.; Tu, W.; Lu, X.; Chi, H.; Zhu, H.; Zhu, X.; Wang, L.; Xiong, Y.; Yao, Y.; Zhou, Y.; et al. ACS Catal. 2022, 12, 4481. doi: 10.1021/acscatal.2c00433
doi: 10.1021/acscatal.2c00433
Wang, E.; Mahmood, A.; Chen, S.-G.; Sun, W.; Muhmood, T.; Yang, X.; Chen, Z. ACS Catal. 2022, 12, 11206. doi: 10.1021/acscatal.2c02624
doi: 10.1021/acscatal.2c02624
Liu, H.; Xu, C.; Li, D.; Jiang, H. L. Angew. Chem. Int. Ed. 2018, 57, 5379. doi: 10.1002/anie.201800320
doi: 10.1002/anie.201800320
Zou, J.; Zhou, W.; Huang, L.; Guo, B.; Yang, C.; Hou, Y.; Zhang, J.; Wu, L. J. Catal. 2021, 400, 347. doi: 10.1016/j.jcat.2021.07.003
doi: 10.1016/j.jcat.2021.07.003
Li, X.; Hu, J.; Yang, T.; Yang, X.; Qu, J.; Li, C.M. Nano Energy 2022, 92, 106714. doi: 10.1016/j.nanoen.2021.106714
doi: 10.1016/j.nanoen.2021.106714
Meng, S.; Ye, X.; Zhang, J.; Fu, X.; Chen, S. J. Catal. 2018, 367, 159. doi: 10.1016/j.jcat.2018.09.003
doi: 10.1016/j.jcat.2018.09.003
Zhang, S.; Huang, W.; Fu, X.; Zheng, X.; Meng, S.; Ye, X.; Chen, S. Appl. Catal. B: Environ. 2018, 233, 1. doi: 10.1016/j.apcatb.2018.03.084
doi: 10.1016/j.apcatb.2018.03.084
Meng, S.; Ning, X.; Chang, S.; Fu, X.; Ye, X.; Chen, S. J. Catal. 2018, 357, 247. doi: 10.1016/j.jcat.2017.11.015
doi: 10.1016/j.jcat.2017.11.015
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Zimo Peng , Quan Zhang , Gaocan Qi , Hao Zhang , Qian Liu , Guangzhi Hu , Jun Luo , Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
Ke Gong , Jinghan Liao , Jiangtao Lin , Quan Wang , Zhihua Wu , Liting Wang , Jiali Zhang , Yi Dong , Yourong Duan , Jianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888
Liping Zhao , Xixi Guo , Zhimeng Zhang , Xi Lu , Qingxuan Zeng , Tianyun Fan , Xintong Zhang , Fenbei Chen , Mengyi Xu , Min Yuan , Zhenjun Li , Jiandong Jiang , Jing Pang , Xuefu You , Yanxiang Wang , Danqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506
Xuejie Gao , Xinyang Chen , Ming Jiang , Hanyan Wu , Wenfeng Ren , Xiaofei Yang , Runcang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Lihua Ma , Song Guo , Zhi-Ming Zhang , Jin-Zhong Wang , Tong-Bu Lu , Xian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251