Citation: Jizhou Jiang, Lianglang Yu, Fangyi Li, Wenming Deng, Cong Pan, Haitao Wang, Jing Zou, Yaobin Ding, Fengxia Deng, Jia Huang. Water Steam Bathed FeS2 for Highly Efficient Fenton Degradation of Alachlor[J]. Acta Physico-Chimica Sinica, ;2023, 39(3): 220903. doi: 10.3866/PKU.WHXB202209033 shu

Water Steam Bathed FeS2 for Highly Efficient Fenton Degradation of Alachlor

  • Corresponding author: Haitao Wang, wanghaitao@wit.edu.cn Jia Huang, 21070201@wit.edu.cn
  • Received Date: 21 September 2022
    Revised Date: 14 October 2022
    Accepted Date: 25 October 2022
    Available Online: 31 October 2022

    Fund Project: the National Natural Science Foundation of China 62004143the National Natural Science Foundation of China 21876209Key R & D Program of Hubei Province, China 2022BAA084Natural Science Foundation of Hubei Province, China 2021CFB133the Central Government Guided Local Science and Technology Development Special Fund Project, China 2020ZYYD033the Open Research Fund of Key Laboratory of Material Chemistry for Energy Conversion and Storage, China (HUST), Ministry of Education, China 2021JYBKF05the Innovation Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, China LCX2021003the Opening Fund of Key Laboratory for Green Chemical Process of Ministry of Education of Wuhan Institute of Technology, China GCP202101

  • Fenton-like activity of iron sulfides for the generation of reactive oxygen species and degradation of various organic pollutants has been extensively investigated due to its abundance in the natural environment. However, their Fenton-like activity is usually unsatisfactory due to the limited exposure of surface ferrous reactive sites. In this work, a new strategy to enhance the Fenton-like activity of iron sulfides, using pyrite (FeS2) as a model, was developed based on the heat treatment of FeS2 by water steam. It was found that the FeS2 heat-treated by water steam (Heat-FeS2) exhibited much higher heterogeneous Fenton activity in the degradation of alachlor (ACL) than its parent FeS2 prepared from hydrothermal reaction (Fresh-FeS2). At an initial pH of 6.3, the rate of degradation of ACL by Heat-FeS2 Fenton system was 0.48 min−1, which is ~23 times higher than that of Fresh-FeS2 Fenton system. Electron spin resonance analysis and benzoic acid probe experiments confirmed the production of more hydroxyl (•OH) and superoxide radicals (•O2) in Heat-FeS2 Fenton system than Fresh-FeS2 Fenton system. The increased Fenton-like activity of Heat-FeS2 can be attributed to the increased content of highly reactive surface bonded Fe2+/Fe3+ species, higher amount of leached Fe2+, and optimal reaction pH due to stronger acidification of Heat-FeS2. Characterization studies by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy showed that heat treatment remarkably promoted the transformation of lattice Fe2+ to surface reactive Fe2+, allowing the exposure of more surface reactive Fe2+ and leaching of Fe2+; simultaneously, heat treatment enhanced the generation of surface SO42−, creating a highly acidic surface. The surface Fe2+ percentage in the surface total iron was raised from 13% in Fresh-FeS2 to 29% in Heat-FeS2. Fe2+ leaching from Heat-FeS2 was 0.23 mmol·L−1, much higher than that (< 0.02 mmol·L−1) for Fresh-FeS2. The change in the surface Fe and S species in the Heat-FeS2 system during the Fenton-like reaction was monitored by XPS to elucidate the enhanced Fenton oxidation mechanism. The characterization results showed that after Fenton reaction with H2O2, the surface contents of Fe2+ and Fe3+ species on Fresh-FeS2 and Heat-FeS2 were remarkably raised, while the surface content of S22− species was reduced, confirming the crucial role of S22− in the reductive cycle of Fe3+ to Fe2+. These findings increase understanding of the oxidative transformation and corrosion of iron sulfides and its relevant transformation and degradation of toxic organics in natural environments. The results of this work also provide an efficient Fenton-like oxidation method based on iron sulfides for highly efficient degradation of organic pollutants (e.g. ACL) in aqueous solution.
  • 加载中
    1. [1]

      Tyohemba, R. L.; Humphries, M. S.; Schleyer, M. H.; Porter, S. N. Environ. Pollut. 2022, 294, 118665. doi: 10.1016/j.envpol.2021.118665  doi: 10.1016/j.envpol.2021.118665

    2. [2]

      Lou, Y. Y.; Geneste, F.; Soutrel, I.; Amrane, A.; Fourcade, F. Sep. Purif. Technol. 2020, 232, 115936. doi: 10.1016/j.seppur.2019.115936  doi: 10.1016/j.seppur.2019.115936

    3. [3]

      Lerro, C. C.; Andreotti, G.; Koutros, S.; Lee, W. J.; Hofmann, J. N.; Sandler, D. P.; Parks, C. G.; Blair, A.; Lubin, J. H.; Freeman, L. E. B. JNCI-J. Natl. Cancer Inst. 2018, 110, 950. doi: 10.1093/jnci/djy005  doi: 10.1093/jnci/djy005

    4. [4]

      Pipi, A. R. F.; De Andrade, A. R.; Brillas, E.; Sires, I. Sep. Purif. Technol. 2014, 132, 674. doi: 10.1016/j.seppur.2014.06.022  doi: 10.1016/j.seppur.2014.06.022

    5. [5]

      Gil, F. N.; Goncalves, A. C.; Jacinto, M. J.; Becker, J. D.; Viegas, C. A. Environ. Toxicol. Chem. 2011, 30, 2506. doi: 10.1002/etc.640  doi: 10.1002/etc.640

    6. [6]

      Kidak, R.; Dogan, S. Chem. Eng. Process. 2015, 89, 19. doi: 10.1016/j.cep.2014.12.010  doi: 10.1016/j.cep.2014.12.010

    7. [7]

      Pérez, M. H.; Vega, L. P.; Zúñiga-Benítez, H.; Peñuela, G. A. Water Air Soil Poll. 2018, 229, 346. doi: 10.1007/s11270-018-3996-6  doi: 10.1007/s11270-018-3996-6

    8. [8]

      Ghosh, A.; Meshram, N. K.; Saha, R. Environ. Sci. Pollut. Res. Int. 2019, 26, 11951. doi: 10.1007/s11356-019-04621-4  doi: 10.1007/s11356-019-04621-4

    9. [9]

      Vanraes, P.; Wardenier, N.; Surmont, P.; Lynen, F.; Nikiforov, A.; Van Hulle, S. W. H.; Leys, C.; Bogaerts, A. J. Hazard. Mater. 2018, 354, 180. doi: 10.1016/j.jhazmat.2018.05.007  doi: 10.1016/j.jhazmat.2018.05.007

    10. [10]

      De Luna, M. D. G.; Rivera, K. K. P.; Suwannaruang, T.; Wantala, K. Desalin. Water Treat. 2016, 57, 6712. doi: 10.1080/19443994.2015.1011706  doi: 10.1080/19443994.2015.1011706

    11. [11]

      Paul, B.; Martens, W. N.; Frost, R. L. J. Colloid. Interface Sci. 2011, 360, 132. doi: 10.1016/j.jcis.2011.04.055  doi: 10.1016/j.jcis.2011.04.055

    12. [12]

      Palanisamy, B.; Babu, C. M.; Sundaravel, B.; Shanthi, K.; Murugesan, V. Sci. Adv. Mater. 2015, 7, 746. doi: 10.1166/sam.2015.1914  doi: 10.1166/sam.2015.1914

    13. [13]

      Huang, X.; Hou, X.; Jia, F.; Song, F.; Zhao, J.; Zhang, L. ACS Appl. Mater. Interfaces 2017, 9, 8751. doi: 10.1021/acsami.6b16600  doi: 10.1021/acsami.6b16600

    14. [14]

      Xin, Y.; Liu, H.; Han, L.; Zhou, Y. J. Hazard. Mater. 2011, 192, 1812. doi: 10.1016/j.jhazmat.2011.07.005  doi: 10.1016/j.jhazmat.2011.07.005

    15. [15]

      Lauga, B.; Girardin, N.; Karama, S.; Menach, K. L.; Budzinski, H.; Duran, R. Environ. Sci. Pollut. Res. Int. 2013, 20, 1089. doi: 10.1007/s11356-012-0999-5  doi: 10.1007/s11356-012-0999-5

    16. [16]

      Qiang, Z.; Liu, C.; Dong, B.; Zhang, Y. Chemosphere 2010, 78, 517. doi: 10.1016/j.chemosphere.2009.11.037  doi: 10.1016/j.chemosphere.2009.11.037

    17. [17]

      Cheng, D.; Yuan, S.; Liao, P.; Zhang, P. Environ. Sci. Technol. 2016, 50, 11646. doi: 10.1021/acs.est.6b02833  doi: 10.1021/acs.est.6b02833

    18. [18]

      Zhang, P.; Yuan, S. Geochim. Cosmochim. Acta 2017, 218, 153. doi: 10.1016/j.gca.2017.08.032  doi: 10.1016/j.gca.2017.08.032

    19. [19]

      Jia, X.; Bai, X.; Ji, Z.; Li, Y.; Sun, Y.; Mi, X.; Zhan, S. Acta Phys. -Chim. Sin. 2021, 37, 2010042.  doi: 10.3866/PKU.WHXB202010042

    20. [20]

      Tabasum, A.; Bhatti, I. A.; Nadeem, N.; Zahid, M.; Rehan, Z. A.; Hussain, T.; Jilani, A. Water Sci. Technol. 2020, 81, 178. doi: 10.2166/wst.2020.098  doi: 10.2166/wst.2020.098

    21. [21]

      Shen, W.; Kang, H.; Ai, Z. J. Hazard. Mater. 2018, 357, 408. doi: 10.1016/j.jhazmat.2018.06.029  doi: 10.1016/j.jhazmat.2018.06.029

    22. [22]

      Zheng, J.; Gao, Z.; He, H.; Yang, S.; Sun, C. Chemosphere 2016, 150, 40. doi: 10.1016/j.chemosphere.2016.02.001  doi: 10.1016/j.chemosphere.2016.02.001

    23. [23]

      Yang, X.; Xu, X.; Xu, J.; Han, Y. J. Am. Chem. Soc. 2013, 135, 16058. doi: 10.1021/ja409130c  doi: 10.1021/ja409130c

    24. [24]

      Li, Y.; Hu, X.; Huang, J.; Wang, L.; She, H.; Wang, Q. Acta Phys. -Chim. Sin. 2021, 37, 2009022.  doi: 10.3866/PKU.WHXB202009022

    25. [25]

      Feng, H.; Ju, Y.; Chen, B.; Fang, W.; Zhu, H.; Li, W.; Ju, L.; Qiao, P. J. Nanosci. Nanotechnol. 2021, 21, 246. doi: 10.1166/jnn.2021.18744  doi: 10.1166/jnn.2021.18744

    26. [26]

      Kantar, C.; Oral, O.; Urken, O.; Oz, N. A. J. Hazard. Mater. 2019, 373, 160. doi: 10.1016/j.jhazmat.2019.03.065  doi: 10.1016/j.jhazmat.2019.03.065

    27. [27]

      Matta, R.; Hanna, K.; Chiron, S. Sci. Total Environ. 2007, 385, 24. doi: 10.1016/j.scitotenv.2007.06.030  doi: 10.1016/j.scitotenv.2007.06.030

    28. [28]

      Che, H.; Bae, S.; Lee, W. J. Hazard. Mater. 2011, 185, 1355. doi: 10.1016/j.jhazmat.2010.10.055  doi: 10.1016/j.jhazmat.2010.10.055

    29. [29]

      Kantar, C.; Oral, O.; Oz, N. A. Chemosphere 2019, 237, 124440. doi: 10.1016/j.chemosphere.2019.124440  doi: 10.1016/j.chemosphere.2019.124440

    30. [30]

      Liu, W.; Wang, Y.; Ai, Z.; Zhang, L. ACS Appl. Mater. Interfaces 2015, 7, 28534. doi: 10.1021/acsami.5b09919  doi: 10.1021/acsami.5b09919

    31. [31]

      Sun, L.; Hu, D.; Zhang, Z.; Deng, X. Int. J. Environ. Res. Public Health 2019, 16, 4773. doi: 10.3390/ijerph16234773  doi: 10.3390/ijerph16234773

    32. [32]

      Ye, Y.; Shan, C.; Zhang, X.; Liu, H.; Wang, D.; Lv, L.; Pan, B. Environ. Sci. Technol. 2018, 52, 10657. doi: 10.1021/acs.est.8b01693  doi: 10.1021/acs.est.8b01693

    33. [33]

      Fathinia, S.; Fathinia, M.; Rahmani, A. A.; Khataee, A. Appl. Surf. Sci. 2015, 327, 190. doi: 10.1016/j.apsusc.2014.11.157  doi: 10.1016/j.apsusc.2014.11.157

    34. [34]

      Nie, W.; Mao, Q.; Ding, Y.; Hu, Y.; Tang, H. J. Hazard. Mater. 2019, 364, 59. doi: 10.1016/j.jhazmat.2018.09.078  doi: 10.1016/j.jhazmat.2018.09.078

    35. [35]

      Zhao, L.; Chen, Y.; Liu, Y.; Luo, C.; Wu, D. Chemosphere 2017, 188, 557. doi: 10.1016/j.chemosphere.2017.09.019  doi: 10.1016/j.chemosphere.2017.09.019

    36. [36]

      Khataee, A.; Gholami, P.; Vahid, B.; Joo, S. W. Ultrason. Sonochem. 2016, 32, 357. doi: 10.1016/j.ultsonch.2016.04.002  doi: 10.1016/j.ultsonch.2016.04.002

    37. [37]

      Kantar, C.; Oral, O.; Urken, O.; Oz, N. A.; Keskin, S. Environ. Pollut. 2019, 247, 349. doi: 10.1016/j.envpol.2019.01.017  doi: 10.1016/j.envpol.2019.01.017

    38. [38]

      Atalla, S. L.; Toledo-Pereyra, L. H.; MacKenzie, G. H.; Cederna, J. P. Transplantation 1985, 40, 584. doi: 10.1097/00007890-198512000-00002  doi: 10.1097/00007890-198512000-00002

    39. [39]

      Phulkar, S.; Rao, B.; Schuchmann, H.; Sonntag, C. Z. für Naturforschung B 1990, 45, 1425. doi: 10.1515/znb-1990-1012  doi: 10.1515/znb-1990-1012

  • 加载中
    1. [1]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    2. [2]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    3. [3]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    4. [4]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    5. [5]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    6. [6]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    7. [7]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    8. [8]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    9. [9]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    10. [10]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    11. [11]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    12. [12]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    13. [13]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    14. [14]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    15. [15]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    16. [16]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    17. [17]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    18. [18]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    19. [19]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    20. [20]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

Metrics
  • PDF Downloads(7)
  • Abstract views(694)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return