Citation: Zhongqi Zan, Xibao Li, Xiaoming Gao, Juntong Huang, Yidan Luo, Lu Han. 0D/2D Carbon Nitride Quantum Dots (CNQDs)/BiOBr S-Scheme Heterojunction for Robust Photocatalytic Degradation and H2O2 Production[J]. Acta Physico-Chimica Sinica, ;2023, 39(6): 220901. doi: 10.3866/PKU.WHXB202209016 shu

0D/2D Carbon Nitride Quantum Dots (CNQDs)/BiOBr S-Scheme Heterojunction for Robust Photocatalytic Degradation and H2O2 Production

  • Corresponding author: Xibao Li, lixibao@nchu.edu.cn Juntong Huang, huangjt@nchu.edu.cn Lu Han, hanlu@ustl.edu.cn
  • Received Date: 12 September 2022
    Revised Date: 1 November 2022
    Accepted Date: 24 November 2022
    Available Online: 29 November 2022

    Fund Project: the National Natural Science Foundation of China 51962023the National Natural Science Foundation of China 22262024the National Natural Science Foundation of China 51862024the Natural Science Foundation of Jiangxi Province, China 20212BAB204045the Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, China (Nanchang Hangkong University) ES202002077

  • The construction of heterojunctions is a method employed to inhibit the rapid recombination of photogenerated carriers. In this work, zero-dimensional (0D) g-C3N4 quantum dots (CNQDs) were composited with two-dimensional (2D) BiOBr for the first time using the typical hydrothermal method under the conditions of a high temperature and high pressure, and a 0D/2D CNQD/BiOBr S-scheme heterojunction with an intimate-contact interface was formed. The π-electrons in the heterocycle of the CNQDs were bound to BiOBr by interaction. The apparent reaction rate constants generated by CNQDs/BiOB-1.50% for tetracycline (TC) and ciprofloxacin (CIP) degradation and H2O2 production were 2.02, 2.91, and 1.54 times that of the original BiOBr, respectively. In the cycle test, CNQDs/BiOBr-1.50% displayed a relatively high photocatalytic activity and structural stability. X-ray photoelectron spectroscopy (XPS) analysis showed that the π electrons in the CNQDs interacted with BiOBr, and also confirmed the flow of photogenerated electrons in this heterojunction. This successfully constructed S-scheme exhibited extraordinary photocatalytic activity and stability. The more active species and stable catalytic activity were attributed to the distinctive transfer mechanism of the carriers. This work will provide reference for constructing 0D/2D S-scheme heterojunctions for the degradation of organic pollutants and in situ production of H2O2.
  • 加载中
    1. [1]

      Dong, S. Y.; Zhao, Y. L.; Yang, J. Y.; Liu, X. D.; Li, W.; Zhang, L. Y.; Wu, Y. H.; Sun, J. H.; Feng, J. L.; Zhu, Y. F. Appl. Catal. B 2021, 291, 120127. doi: 10.1016/j.apcatb.2021.120127  doi: 10.1016/j.apcatb.2021.120127

    2. [2]

      Li, X. B.; Wang, W. W.; Dong, F.; Zhang, Z. Q.; Han, L.; Luo, X. D.; Huang, J. T.; Feng, Z. J.; Chen, Z.; Jia, G. H.; et al. ACS Catal. 2021, 11, 4739. doi: 10.1021/acscatal.0c05354  doi: 10.1021/acscatal.0c05354

    3. [3]

      Huo, J. R.; Fu, L.; Zhao, C. X.; He, C. Z. Chin. Chem. Lett. 2021, 32, 2269. doi: 10.1016/j.cclet.2020.12.059  doi: 10.1016/j.cclet.2020.12.059

    4. [4]

      Jiang, Y. J.; Wei, X. D.; He, H. P.; She, J. Y.; Liu, J.; Fang, F.; Zhang, W. H.; Liu, Y. Y.; Wang, J.; Xiao, T. F.; et al. J. Hazard. Mater. 2021, 423, 126997. doi: 10.1016/j.jhazmat.2021.126997  doi: 10.1016/j.jhazmat.2021.126997

    5. [5]

      Yin, M. L.; Zhou, Y. T.; Tsang, D. C. W.; Beiyuan, J. Z.; Song, L.; She, J. Y.; Wang, J.; Zhu, L.; Fang, F.; Wang, L. L.; et al. J. Hazard. Mater. 2020, 407, 124402. doi: 10.1016/j.jhazmat.2020.124402  doi: 10.1016/j.jhazmat.2020.124402

    6. [6]

      Zhang, L.; Hu, Z. H.; Huang, J. T.; Chen, Z.; Li, X. B.; Feng, Z. J.; Yang, H. Y.; Huang, S. F.; Luo, R. Y. J. Adv. Ceram. 2022, 11, 1294. doi: 10.1007/s40145-022-0610-6  doi: 10.1007/s40145-022-0610-6

    7. [7]

      Xia, B. H.; Deng, F.; Zhang, S. Q.; Hua, L.; Luo, X. B.; Ao, M. Y. J. Hazard. Mater. 2020, 392, 122345. doi: 10.1016/j.jhazmat.2020.122345  doi: 10.1016/j.jhazmat.2020.122345

    8. [8]

      Dong, S. Y.; Cui, L. F.; Tian, Y. I.; Xia, L. J.; Wu, Y. H.; Yu, J. J.; Bagley, D. M.; Sun, J. H.; Fan, M. H. J. Hazard. Mater. 2020, 399, 123017. doi: 10.1016/j.jhazmat.2020.123017  doi: 10.1016/j.jhazmat.2020.123017

    9. [9]

      Guo, L. X.; Chen, Y. D.; Ren, Z. Q.; Li, X.; Zhang, Q. W.; Wu, J. Z.; Li, Y. Q.; Liu, W. L.; Li, P.; Fu, Y. M.; et al. Ultrason. Sonochem. 2021, 81, 105849. doi: 10.1016/j.ultsonch.2021.105849  doi: 10.1016/j.ultsonch.2021.105849

    10. [10]

      Guo, R. B.; Zeng, D. D.; Xie, Y.; Ling, Y.; Zhou, D.; Jiang, L. S.; Jiao, W. Y.; Zhao, J. S.; Li, S. Q. Int. J. Hydrog. Energy 2020, 45, 22534. doi: 10.1016/j.ijhydene.2020.06.096  doi: 10.1016/j.ijhydene.2020.06.096

    11. [11]

      Wang, F. L.; Chen, P.; Feng, Y. P.; Xie, Z. J.; Liu, Y.; Su, Y. H.; Zhang, Q. X.; Wang, Y. F.; Yao, K.; Lv, W. Y.; et al. Appl. Catal. B 2017, 207, 103. doi: 10.1016/j.apcatb.2017.02.024  doi: 10.1016/j.apcatb.2017.02.024

    12. [12]

      An, R. S.; Zhao, Y.; Bai, H. C.; Wang, L.; Li, C. H. J. Solid State Chem. 2022, 306, 122722. doi: 10.1016/j.jssc.2021.122722  doi: 10.1016/j.jssc.2021.122722

    13. [13]

      Li, H.; Deng, F.; Zheng, Y.; Hua, L.; Qu, C. H.; Luo, X. B. Environ. Sci. : Nano 2019, 6, 3670. doi: 10.1039/C9EN00957D  doi: 10.1039/C9EN00957D

    14. [14]

      Dong, S. Y.; Xia, L. J.; Chen, X. Y.; Cui, L. F.; Zhu, W.; Lu, Z. S.; Sun, J. H.; Fan, M. H. Compos. Part B 2021, 215, 108765. doi: 10.1016/j.compositesb.2021.108765  doi: 10.1016/j.compositesb.2021.108765

    15. [15]

      Fu, Y. M.; Ren, Z. Q.; Wu, J. Z.; Li, Y. Q.; Liu, W. L.; Li, P.; Xing, L. L.; Ma, J.; Wang, H.; Xue, X. Y. Appl. Catal. B 2021, 285, 119785. doi: 10.1016/j.apcatb.2020.119785  doi: 10.1016/j.apcatb.2020.119785

    16. [16]

      Guo, J. Q.; Liao, X.; Lee, M. H.; Hyett, G.; Huang, C. C.; Hewak, D. W.; Mailis, S.; Zhou, W.; Jiang, Z. Appl. Catal. B 2019, 243, 502. doi: 10.1016/j.apcatb.2018.09.089  doi: 10.1016/j.apcatb.2018.09.089

    17. [17]

      Miao, Z. R.; Wang, Q. L.; Zhang, Y. F.; Meng, L. P.; Wang, X. X. Appl. Catal. B 2022, 301, 120802. doi: 10.1016/j.apcatb.2021.120802  doi: 10.1016/j.apcatb.2021.120802

    18. [18]

      Li, L. L.; Ma, D. K.; Xu, Q. L.; Huang, S. M. Chem. Eng. J. 2022, 437, 135153. doi: 10.1016/j.cej.2022.135153  doi: 10.1016/j.cej.2022.135153

    19. [19]

      Wu, Y. Y.; Ji, H. D.; Liu, Q. M.; Sun, Z. Y.; Li, P. S.; Ding, P. R.; Guo, M.; Yi, X. H.; Xu, W. L.; Wang, C. C.; et al. J. Hazard. Mater. 2022, 424, 127563. doi: 10.1016/j.jhazmat.2021.127563  doi: 10.1016/j.jhazmat.2021.127563

    20. [20]

      Li, N.; Han, L.; Zhang, H. N.; Huang, J. T.; Luo, X. D.; Li, X. B.; Wang, Y. H.; Qian, W. Q.; Yang, Y. Nano Res. 2022, 15, 8836. doi: 10.1007/s12274-022-4588-8  doi: 10.1007/s12274-022-4588-8

    21. [21]

      Li, X. B.; Liu, Q.; Deng, F.; Huang, J. T.; Han, L.; He, C. Z.; Chen, Z.; Luo, Y. D.; Zhu, Y. F. Appl. Catal. B 2022, 314, 121502. doi: 10.1016/j.apcatb.2022.121502  doi: 10.1016/j.apcatb.2022.121502

    22. [22]

      Li, X. B.; Luo, Q. N.; Han, L.; Deng, F.; Yang, Y.; Dong, F. J. Mater. Sci. Technol. 2022, 114, 222. doi: 10.1016/j.jmst.2021.10.030  doi: 10.1016/j.jmst.2021.10.030

    23. [23]

      Zhao, G. Q.; Hu, J.; Zou, J.; Long, X.; Jiao, F. P. J. Environ. Chem. Eng. 2022, 10, 107226. doi: 10.1016/j.jece.2022.107226  doi: 10.1016/j.jece.2022.107226

    24. [24]

      Li, S. J.; Cai, M. J.; Liu, Y. P.; Wang, C. C.; Lv, K. L.; Chen, X. B. Chin. J. Catal. 2022, 43, 2652. doi: 10.1016/S1872-2067(22)64106-8  doi: 10.1016/S1872-2067(22)64106-8

    25. [25]

      Guo, Y. C.; Yan, B. G.; Deng, F.; Shao, P. H.; Zou, J. P.; Luo, X. B.; Zhang, S. Q.; Li, X. B. Chin. Chem. Lett. 2022, doi: 10.1016/j.cclet.2022.04.066  doi: 10.1016/j.cclet.2022.04.066

    26. [26]

      Deng, J.; Lei, W. Y.; Fu, J. W.; Jin, H. L.; Xu, Q. L.; Wang, S. Sol. RRL 2022, 6, 202200279. doi: 10.1002/solr.202200279  doi: 10.1002/solr.202200279

    27. [27]

      Wang, W. L.; Zhang, H. C.; Chen, Y. G.; Shi, H. F. Acta Phys. - Chim. Sin. 2022, 38 (7), 2201008.
       

    28. [28]

      Li, S. J.; Cai, M. J.; Wang, C. C.; Liu, Y. P.; Li, N.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 123, 177. doi: 10.1016/j.jmst.2022.02.012  doi: 10.1016/j.jmst.2022.02.012

    29. [29]

      Li, S. J.; Cai, M. J.; Liu, Y. P.; Wang, C. C.; Yan, R. Y.; Chen, X. B. Adv. Powder Mater. 2023, 2, 100073. doi: 10.1016/j.apmate.2022.100073  doi: 10.1016/j.apmate.2022.100073

    30. [30]

      Li, S. J.; Wang, C. C.; Cai, M. J.; Yang, F.; Liu, Y. P.; Chen, J. L.; Zhang, P.; Li, X.; Chem. Eng. J. 2022, 428, 131158. doi: 10.1016/j.cej.2021.131158  doi: 10.1016/j.cej.2021.131158

    31. [31]

      Li, S. J.; Wang, C. C.; Cai, M. J.; Liu, Y. P.; Dong, K. X.; Zhang, J. L. J. Colloid Interface Sci. 2022, 624, 219. doi: 10.1016/j.jcis.2022.05.151  doi: 10.1016/j.jcis.2022.05.151

    32. [32]

      Liu, T. T.; Wang, Y. W. Inorg. Chem. Commun. 2020, 114, 107846. doi: 10.1016/j.inoche.2020.107846  doi: 10.1016/j.inoche.2020.107846

    33. [33]

      Han, G. W.; Xu, F. Y.; Cheng, B.; Li, Y. J.; Yu, J. G.; Zhang, L. Y. Acta Phys. -Chim. Sin. 2022, 38 (7), 2112037.
       

    34. [34]

      Liu, B. W.; Bie, C. B.; Zhang, Y.; Wang, L. X.; Li, Y. J.; Yu, J. G. Langmuir 2021, 37, 14114. doi: 10.1021/acs.langmuir.1c02360  doi: 10.1021/acs.langmuir.1c02360

    35. [35]

      Vinoth, S.; Pandikumar, A. Renew. Energy 2021, 173, 507. doi: 10.1016/j.renene.2021.03.121  doi: 10.1016/j.renene.2021.03.121

    36. [36]

      Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Angew. Chem. Int. Ed. 2020, 59, 4519. doi: 10.1002/anie.201914949  doi: 10.1002/anie.201914949

    37. [37]

      Wang, Z. L.; Cheng, B.; Zhang, L. Y.; Yu, J. G.; Tan, H. Y. Sol. RRL 2022, 6, 2100587. doi: 10.1002/solr.202100587  doi: 10.1002/solr.202100587

    38. [38]

      Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    39. [39]

      Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. Chem. 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    40. [40]

      Xu, Q. L.; Wageh, S.; Al-Ghamdi, A. A.; Li, X. J. Mater. Sci. Technol. 2022, 124, 171. doi: 10.1016/j.jmst.2022.02.016  doi: 10.1016/j.jmst.2022.02.016

    41. [41]

      Wageh, S.; Al-Ghamdi, A. A.; Jafer, R.; Xin, L.; Peng, Z. Chin. J. Catal. 2021, 42, 667. doi: 10.1016/s1872-2067(20)63705-6  doi: 10.1016/s1872-2067(20)63705-6

    42. [42]

      Li, X. B.; Xiong, J.; Gao, X. M.; Ma, J.; Chen, Z.; Kang, B. B.; Liu, J. Y.; Li, H.; Feng, Z. J.; Huang, J. T. J. Hazard. Mater. 2020, 387, 121690. doi: 10.1016/j.jhazmat.2019.121690  doi: 10.1016/j.jhazmat.2019.121690

    43. [43]

      Wang, L.; Chen, D. L.; Miao, S. Q.; Chen, F.; Guo, C. F.; Ye, P. C.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Chem. Eng. J. 2022, 434, 133867. doi: 10.1016/j.cej.2021.133867  doi: 10.1016/j.cej.2021.133867

    44. [44]

      Li, X. B.; Kang, B. B.; Dong, F.; Zhang, Z. Q.; Luo, X. D.; Han, L.; Huang, J. T.; Feng, Z. J.; Chen, Z.; Xu, J. L.; et al. Nano Energy 2021, 81, 105671. doi: 10.1016/j.nanoen.2020.105671  doi: 10.1016/j.nanoen.2020.105671

    45. [45]

      Liu, Y.; Hao, X. Q.; Hu, H. Q.; Jin, Z. L. Acta Phys. -Chim. Sin. 2021, 37, 2008030.
       

    46. [46]

      Li, X. B.; Liu, J. Y.; Huang, J. T.; He, C. Z.; Feng, Z. J.; Chen, Z.; Wan, L. Y.; Deng, F. Acta Phys. -Chim. Sin. 2021, 37, 2010030.
       

    47. [47]

      Lian, X. Y.; Chen, S. H.; He, F. Y.; Dong, S.; Liu, E. Z.; Li, H.; Xu, K. Z. Sep. Purif. Technol. 2022, 286, 120449. doi: 10.1016/j.seppur.2022.120449  doi: 10.1016/j.seppur.2022.120449

    48. [48]

      Li, X. B.; Xiong, J.; Gao, X. M.; Huang, J. T.; Feng, Z. J.; Chen, Z.; Zhu, Y. F. J. Alloy. Compd. 2019, 802, 196. doi: 10.1016/j.jallcom.2019.06.185  doi: 10.1016/j.jallcom.2019.06.185

    49. [49]

      Hu, Y.; Li, X. B.; Wang, W. W.; Deng, F.; Han, L.; Gao, X. M.; Feng, Z. J.; Chen, Z.; Huang, J. T.; Zeng, F. Y.; et al. Chin. J. Struct. Chem. 2022, 41 (6), 2206069. doi: 10.14102/j.cnki.0254-5861.2022-0103  doi: 10.14102/j.cnki.0254-5861.2022-0103

    50. [50]

      Shen, R. C.; Hao, L.; Chen, Q.; Zheng, Q. Q.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2022, 38, 2110014.
       

    51. [51]

      Shen, R. C.; He, K. L.; Zhang, A. P.; Li, N.; Ng, Y. H.; Zhang, P.; Hu, J.; Li, X. Appl. Catal. B 2021, 291, 120104. doi: 10.1016/j.apcatb.2021.120104  doi: 10.1016/j.apcatb.2021.120104

    52. [52]

      Zou, J.; Liao, G. D.; Jiang, J. Z.; Xiong, Z. G.; Bai, S. S.; Wang, H. T.; Wu, P. X.; Zhang, P.; Li, X. Chin. J. Struct. Chem. 2022, 41, 25. doi: 10.14102/j.cnki.0254-5861.2021-0039  doi: 10.14102/j.cnki.0254-5861.2021-0039

    53. [53]

      Liu, J. J.; Fu, W.; Liao, Y. L.; Fan, J. J.; Xiang, Q. J. J. Mater. Sci. Technol. 2021, 91, 224. doi: 10.1016/j.jmst.2021.03.017  doi: 10.1016/j.jmst.2021.03.017

    54. [54]

      Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Adv Mater. 2015, 27. doi: 10.1002/adma.201500033  doi: 10.1002/adma.201500033

    55. [55]

      Wang, Y.; Yu, H. T.; Wang, D. B.; Xing, M. M.; Zhang, Y. N.; Song, C. X. Chem. Eng. J. 2022, 437, 135321. doi: 10.1016/j.cej.2022.135321  doi: 10.1016/j.cej.2022.135321

    56. [56]

      Lee, J. S.; Kumar, A.; Yang, T.; Liu, X. H.; Jadhav, A. R.; Park, G. H.; Hwang, Y.; Yu, J. M.; Nguyen, T. K. C.; Liu, Y.; et al. Energy Environ. Sci. 2020, 13, 5152. doi: 10.1039/d0ee03183f  doi: 10.1039/d0ee03183f

    57. [57]

      Zhou, J.; Yang, Y.; Zhang, C. Y. Chem. Commun. 2013, 49, 8605. doi: 10.1039/c3cc42266f  doi: 10.1039/c3cc42266f

    58. [58]

      Lin, X.; Liu, C.; Wang, J. B.; Yang, S.; Shi, J. Y.; Hong, Y. Z. Sep. Purif. Technol. 2019, 226, 117. doi: 10.1016/j.seppur.2019.05.093  doi: 10.1016/j.seppur.2019.05.093

    59. [59]

      Moon, G. H.; Kim, W.; Bokare, A. D.; Sung, N. E.; Choi, W. Energy Environ. Sci. 2014, 7, 4023. doi: 10.1039/C4EE02757D  doi: 10.1039/C4EE02757D

    60. [60]

      Ong, W. J.; Putri, L. K.; Tan, Y. C.; Tan, L. L.; Li, N.; Ng, Y. H.; Wen, X.; Chai, S. Nano Res. 2017, 10, 1673. doi: 10.1007/s12274-016-1391-4  doi: 10.1007/s12274-016-1391-4

    61. [61]

      Xiong, J.; Li, X. B.; Huang, J. T.; Gao, X. M.; Chen, Z.; Liu, J. Y.; Li, H.; Kang, B. B.; Yao, W. Q.; Zhu, Y. F. Appl. Catal. B 2020, 266, 118602. doi: 10.1016/j.apcatb.2020.118602  doi: 10.1016/j.apcatb.2020.118602

    62. [62]

      Chen, G. H.; Wang, Y.; Shen, Q. Y.; Xiong, X. Q.; Ren, S. B.; Dai, G. L.; Wu, C. C. Ceram. Int. 2020, 46, 21304. doi: 10.1016/j.ceramint.2020.05.224  doi: 10.1016/j.ceramint.2020.05.224

    63. [63]

      Liu, X.; Wang, P.; Liang, X.; Zhang, Q.; Wang, Z.; Liu, Y.; Zheng, Z.; Dai, Y.; Huang, B. Today Energy 2020, 18, 100524. doi: 10.1016/j.mtener.2020.100524  doi: 10.1016/j.mtener.2020.100524

    64. [64]

      Chen, J. Y.; Xiao, X. Y.; Wang, Y.; Lu, M. L.; Zeng, X. Y. J. Alloy. Compd. 2019, 800, 88. doi: 10.1016/j.jallcom.2019.06.004  doi: 10.1016/j.jallcom.2019.06.004

    65. [65]

      Li, Y. B.; Zhang, H. M.; Liu, P. R.; Wang, D.; Li, Y.; Zhao, H. J. Small 2013, 9, 3336. doi: 10.1002/smll.201203135  doi: 10.1002/smll.201203135

    66. [66]

      Wang, W. W.; Li, X. B.; Deng, F.; Liu, J. Y.; Gao, X. M.; Huang, J. T.; Xu, J. L.; Feng, Z. J.; Chen, Z.; Han, L. Chin. Chem. Lett. 2022, 33, 5200. doi: 10.1016/j.cclet.2022.01.058  doi: 10.1016/j.cclet.2022.01.058

    67. [67]

      Xu, Q. L.; Ma, D. K.; Yang, S. B.; Tian, Z. F.; Cheng, B.; Fan, J. J. Appl. Surf. Sci. 2019, 495, 143555. doi: 10.1016/j.apsusc.2019.143555  doi: 10.1016/j.apsusc.2019.143555

    68. [68]

      Xian, T.; Li, H. Q.; Gao, Y. S.; Sun, X. F.; Di, L. J.; Yang, H. Opt. Mater. 2022, 123, 111842. doi: 10.1016/j.optmat.2021.111842  doi: 10.1016/j.optmat.2021.111842

    69. [69]

      Li, H. P.; Hu, T. X.; Du, N.; Zhang, R. J.; Liu, J. Q.; Hou, W. G. Appl. Catal. B 2016, 187, 342. doi: 10.1016/j.apcatb.2016.01.053  doi: 10.1016/j.apcatb.2016.01.053

    70. [70]

      Mei, F. F.; Dai, K.; Zhang, J. F.; Li, W. Y.; Liang, C. H. Appl. Surf. Sci. 2019, 488, 151. doi: 10.1016/j.apsusc.2019.05.257  doi: 10.1016/j.apsusc.2019.05.257

    71. [71]

      Wang, Y.; Liu, Q.; Wong, N. H.; Sunarso, J.; Huang, J. T.; Dai, G. L.; Hou, X. F.; Li, X. B. Ceram. Int. 2022, 48, 2459. doi: 10.1016/j.ceramint.2021.10.027  doi: 10.1016/j.ceramint.2021.10.027

    72. [72]

      Dang, L. Y.; Liu, M. Q.; Wang, G. G.; Zhao, D. Q.; Han, J. C.; Zhu, J. Q.; Liu, Z. Adv. Funct. Mater. 2022, 32. 2201020 doi: 10.1002/adfm.202201020  doi: 10.1002/adfm.202201020

  • 加载中
    1. [1]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    2. [2]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    3. [3]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    4. [4]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    5. [5]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    6. [6]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    7. [7]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    8. [8]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    9. [9]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    10. [10]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    11. [11]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    12. [12]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    13. [13]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    14. [14]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    15. [15]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    16. [16]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    17. [17]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    18. [18]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    19. [19]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    20. [20]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(20)
  • Abstract views(576)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return