Citation: Ruyao Chen, Jiazeng Xia, Yigang Chen, Haifeng Shi. S-Scheme-Enhanced PMS Activation for Rapidly Degrading Tetracycline Using CuWO4−x/Bi12O17Cl2 Heterostructures[J]. Acta Physico-Chimica Sinica, ;2023, 39(6): 220901. doi: 10.3866/PKU.WHXB202209012 shu

S-Scheme-Enhanced PMS Activation for Rapidly Degrading Tetracycline Using CuWO4−x/Bi12O17Cl2 Heterostructures

  • Corresponding author: Yigang Chen, hfshi@jiangnan.edu.cn Haifeng Shi, wuxichen2512@njmu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 9 September 2022
    Revised Date: 23 September 2022
    Accepted Date: 30 September 2022
    Available Online: 8 October 2022

    Fund Project: the National Natural Science Foundation of China 22136002the National Natural Science Foundation of China 22172064the Special Fund Project of Jiangsu Province for Scientific and Technological Innovation in Carbon Peaking and Carbon Neutrality, China BK20220023the Project of Wuxi Science and Technology Development Fund, China Y20212004National Laboratory of Solid State Microstructures, Nanjing University, China M34047

  • The peroxymonosulfate (PMS) activation reaction based on photocatalysts has been widely employed for the removal of tetracycline (TC) and other antibiotics. The photocatalyst comprising CuWO4 decorated with oxygen vacancies has attracted research attention owing to its narrow band gap, favorable oxidation ability, and good charge transfer efficiency. A single-component photocatalyst can influence the PMS activation efficiency due to the rapid recombination between photogenerated electron and hole pairs. Herein, oxygen vacancy-decorated CuWO4−x/Bi12O17Cl2 (CovB) photocatalysts were fabricated, and enabled an enhancement in the PMS activation efficiency for TC removal under visible-light irradiation. The crystalline structures and optical properties of CovB were measured by field-emission scanning electron microscopy, transmission electron microscopy, and UV-visible diffuse reflectance spectroscopy. Characterization of the O 1s bond by electron paramagnetic resonance (EPR) analyses and X-ray photoelectron spectra (XPS) showed that the oxygen vacancies were successfully introduced into the composites. CovB-30 (mass ratio of CuWO4−x to Bi12O17Cl2 was 3 : 7) achieved a TC removal rate of 94.74% in 30 min in the PMS activation system. The degradation efficiencies of CovB-30 were 2.67 and 2.21 times higher than those of CuWO4 and Bi12O17Cl2, respectively. The enhanced TC elimination performance can be ascribed to the synergetic effect between photocatalysis and the PMS activation reaction, which were promoted by the S-scheme heterojunction. The S-scheme heterojunction structure could maintain an excellent redox ability under light irradiation and generate an internal electric field, which possessed the ability to prevent the recombination of photogenerated carriers. The photoluminescence (PL) measurements and time-resolved photoluminescence (TRPL) spectra confirmed that the formation of the S-scheme heterojunction effectively increased the migration rates and separation efficiency of photogenerated hole and electron pairs, facilitating the activation of PMS for TC removal. CovB-30 retained the ability to eliminate TC in a wide pH range of 3.0–11.0 and different inorganic anion systems. The XPS profiles of fresh and used samples indicated that the Cu2+/Cu+ redox cycle and oxygen vacancies both participated in the activation of PMS. XPS analysis and experimental capture results illustrated that the charge transfer mechanism of the CovB composite followed that of an S-scheme heterojunction photocatalyst. CovB-30 maintained excellent PMS activation ability over a wide pH range of 3.0–11.0. This paper discusses the possible TC degradation pathways in the PMS activation system on the basis of the generated intermediates. Quenching experiments were conducted, and demonstrated that SO4•−/∙OH/∙O2/h+/1O2 served as the reactive species in TC removal. The CovB-30 composite possessed remarkable photocatalytic activity after five consecutive cycles, illustrating that it could be utilized for practical antibiotic degradation. This work proposes a promising method of introducing oxygen vacancies into an S-scheme photocatalyst for efficient PMS activation.
  • 加载中
    1. [1]

      Shi, H. Y.; Li, Y.; Wang, X. F.; Yu, H. G.; Yu, J. G. Appl. Catal. B Environ. 2021, 297, 120414. doi: 10.1016/j.apcatb.2021.120414  doi: 10.1016/j.apcatb.2021.120414

    2. [2]

      Cai, S.; Zuo, X. X.; Zhao, H. Y.; Yang, S. J.; Chen, R. Z.; Chen, L. W.; Zhang, R. H.; Ding, D. H.; Cai, T. M. J. Mater. Chem. A 2022, 10, 9171. doi: 10.1039/D2TA00153E  doi: 10.1039/D2TA00153E

    3. [3]

      Ye, J. W.; Cheng, B.; Yu, J. G.; Ho, W. K.; Wageh, S.; Al-Ghamdi, A. A. Appl. Catal. B Environ. 2022, 430, 132715. doi: 10.1016/j.cej.2021.132715  doi: 10.1016/j.cej.2021.132715

    4. [4]

      Cherifi, Y.; Addad, A.; Vezin, H.; Barras, A.; Ouddane, B.; Chaouchi, A.; Szunerits, S.; Boukherroub, R. Ultrason. Sonochem. 2019, 52, 164. doi: 10.1016/j.ultsonch.2018.11.012  doi: 10.1016/j.ultsonch.2018.11.012

    5. [5]

      Liu, S. Y.; Zada, A.; Yu, X. Y.; Liu, F. Z.; Jin, G. Chemosphere 2022, 307, 135717. doi: 10.1016/j.chemosphere.2022.135717  doi: 10.1016/j.chemosphere.2022.135717

    6. [6]

      Huang, C. F.; Wen, Y. P.; Ma, J.; Dong, D. D.; Shen, Y. F.; Liu, S. Q.; Ma, H. B.; Zhang, Y. J. Nat. Commun. 2021, 12, 320. doi: 10.1038/s41467-020-20521-5  doi: 10.1038/s41467-020-20521-5

    7. [7]

      Han, G. W.; Xu, F. Y., Cheng, B., Li, Y. J., Yu, J. G., Zhang, L. Y. Acta Phys. -Chim. Sin. 2022, 38, 2112037.  doi: 10.3866/PKU.WHXB202112037

    8. [8]

      Yan, Q. Y.; Lian, C.; Huang, K.; Liang, L. H.; Yu, H. R.; Yin, P. C.; Zhang, J. L.; Xing, M. Y. Angew. Chem. Int. Ed. 2021, 60, 17155. doi: 10.1002/anie.202105736  doi: 10.1002/anie.202105736

    9. [9]

      Zhao, W. L.; Wang, W. L.; Han, T. Y.; Wang, H. T.; Zhang, H. C.; Shi, H. F. Sep. Purif. Technol. 2021, 269, 118693. doi: 10.1016/j.seppur.2021.118693  doi: 10.1016/j.seppur.2021.118693

    10. [10]

      Sabri, M.; Habibi-Yangjeh, A.; Ghosh, S. J. Photochem. Photobiol. A 2020, 391, 112397. doi: 10.1016/j.jphotochem.2020.112397  doi: 10.1016/j.jphotochem.2020.112397

    11. [11]

      Li, J. B.; Yi, Y.; Shi, P. H.; Wang, Q.; Li, D. X.; Asif, H.; Yang, M. Acta Phys. -Chim. Sin. 2014, 30, 1720.  doi: 10.3866/PKU.WHXB201407021

    12. [12]

      Ming, H. B.; Wei, D. L.; Yang, Y.; Chen, B. Q.; Yang, C.; Zhang, J. S.; Hou, Y. D. Chem. Eng. J. 2021, 424, 130296. doi: 10.1016/j.cej.2021.130296  doi: 10.1016/j.cej.2021.130296

    13. [13]

      Gao, H. H.; Yang, H. C.; Xu, J. Z.; Zhang, S. W.; Li, J. X. Small 2018, 14, 1801353. doi: 10.1002/smll.201801353  doi: 10.1002/smll.201801353

    14. [14]

      Sarkar, P.; De, S.; Neogi, S. Appl. Catal. B Environ. 2022, 307, 121165. doi: 10.1016/j.apcatb.2022.121165  doi: 10.1016/j.apcatb.2022.121165

    15. [15]

      Xu, L.; Liu, L. F. Appl. Catal. B Environ. 2022, 304, 120953. doi: 10.1016/j.apcatb.2021.120953  doi: 10.1016/j.apcatb.2021.120953

    16. [16]

      Wang, W. X.; Liu, Y.; Yue, Y. F.; Wang, H. H.; Cheng, G.; Gao, C. Y.; Chen, C. L.; Ai, Y. J.; Chen, Z.; Wang, X. K. ACS Catal. 2021, 11, 11256. doi: 10.1021/acscatal.1c03331  doi: 10.1021/acscatal.1c03331

    17. [17]

      Liu, W.; Zhou, J. B.; Zhou, Y.; Liu, D. Sep. Purif. Technol. 2021, 264, 118288. doi: 10.1016/j.seppur.2020.118288  doi: 10.1016/j.seppur.2020.118288

    18. [18]

      Wang, M.; Jin, C. Y.; Kang, J.; Liu, J. Y.; Tang, Y. W.; Li, Z. L.; Li, S. Y. Chem. Eng. J. 2021, 416, 128118. doi: 10.1016/j.cej.2020.128118  doi: 10.1016/j.cej.2020.128118

    19. [19]

      Rosa, W. S.; Rabelo, L. G.; Tiveron Zampaulo, L. G.; Gonçalves, R. V. ACS Appl. Mater. Interfaces 2022, 14, 22858. doi: 10.1021/acsami.1c21001  doi: 10.1021/acsami.1c21001

    20. [20]

      Huang, R. Y.; Gu, X.; Sun, W. Z.; Chen, L.; Du, Q. Y.; Guo, X.; Lia, J.; Zhang, M. W.; Li, C. F. Sep. Purif. Technol. 2020, 250, 117174. doi: 10.1016/j.seppur.2020.117174  doi: 10.1016/j.seppur.2020.117174

    21. [21]

      Chen, R. Y.; Dou, X. C.; Xia, J. Z.; Chen, Y. G.; Shi, H. F. Sep. Purif. Technol. 2022, 296, 121345. doi: 10.1016/j.seppur.2022.121345  doi: 10.1016/j.seppur.2022.121345

    22. [22]

      Zhang, H.; Yilmaz, P.; Ansari, J. O.; Khan, F. F.; Binions, R.; Krause, S.; Dunn, S. J. Mater. Chem. A 2015, 3, 9638. doi: 10.1039/C4TA07213H  doi: 10.1039/C4TA07213H

    23. [23]

      Shadabipour, P.; Raithel, A. L.; Hamann, T. W. ACS Appl. Mater. Interfaces 2020, 12, 50592. doi: 10.1021/acsami.0c14705  doi: 10.1021/acsami.0c14705

    24. [24]

      Dashtian, K.; Ghaedi, M.; Shirinzadeh, H.; Hajati, S.; Shahbazi, S. Chem. Eng. J. 2018, 339, 189. doi: 10.1016/j.cej.2018.01.107  doi: 10.1016/j.cej.2018.01.107

    25. [25]

      Wen, M.; Wang, S.; Jiang, R. Q.; Wang, Y.; Wang, Z. J.; Yu, W. J.; Geng, P.; Xia, J. D.; Li, M. Q.; Chen, Z. G. Biomater. Sci. 2019, 7, 4651. doi: 10.1039/C9BM00995G  doi: 10.1039/C9BM00995G

    26. [26]

      Ma, Z.; Linnenberg, O.; Rokicinska, A.; Kustrowski, P.; Slabon, A. J. Phys. Chem. C 2018, 122, 19281. doi: 10.1021/acs.jpcc.8b02828  doi: 10.1021/acs.jpcc.8b02828

    27. [27]

      Guo, W. L.; Duan, Z. Y.; Mabayoje, O.; Chemelewski, W. D.; Xiao, P.; Henkelman, G.; Zhang, Y. H.; Mullins, C. B. J. Electrochem. Soc. 2016, 163, H970. doi: 10.1149/2.0701610jes  doi: 10.1149/2.0701610jes

    28. [28]

      Bao, X. L.; Wang, X. K.; Li, X. Q.; Qin, L. X.; Han, S.; Kang, S. Z. Mater. Res. Bull. 2021, 136, 111171. doi: 10.1016/j.materresbull.2020.111171  doi: 10.1016/j.materresbull.2020.111171

    29. [29]

      Guo, W. L; Wang, Y.; Lian, X.; Nie, Y.; Tian, S. J.; Wang, S. S.; Zhou, Y.; Henkelman, G. Catal. Sci. Technol. 2020, 10, 7344. doi: 10.1039/D0CY01430C  doi: 10.1039/D0CY01430C

    30. [30]

      Chu, D. W.; Zhao, C. Catal. Today 2020, 351, 125. doi: 10.1016/j.cattod.2018.10.006  doi: 10.1016/j.cattod.2018.10.006

    31. [31]

      Yu, R. X.; Zhao, J. H.; Zhao, Z. W.; Cui, F. Y. J. Hazard. Mater. 2020, 390, 121998. doi: 10.1016/j.j hazmat.2019.121998  doi: 10.1016/j.jhazmat.2019.121998

    32. [32]

      Zhang, H. X.; Li, C. W.; Lyu, L.; Hu, C. Appl. Catal. B Environ. 2020, 270, 118874. doi: 10.1016/j.apcatb.2020.118874  doi: 10.1016/j.apcatb.2020.118874

    33. [33]

      Ye, J.; Dai, J. D.; Yang, D. Y.; Li, C. X.; Yan, Y. S.; Wang, Y. J. Hazard. Mater. 2022, 421, 126715. doi: 10.1016/j.jhazmat.2021.126715  doi: 10.1016/j.jhazmat.2021.126715

    34. [34]

      Yang, H.; Zhang, J. F.; Dai, K. Chin. J. Catal. 2022, 43, 255. doi: 10.1016/S1872-2067(20)63784-6  doi: 10.1016/S1872-2067(20)63784-6

    35. [35]

      Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    36. [36]

      Fei, X. G.; Tan, H. Y.; Cheng, B.; Zhu, B. C.; Zhang, L. Y. Acta Phys. -Chim. Sin. 2022, 37, 2010027.  doi: 10.3866/PKU.WHXB202010027

    37. [37]

      Wang, W. L.; Zhang, H. C.; Chen, Y. G.; Shi, H. F. Acta Phys. -Chim. Sin. 2022, 38, 2104030.  doi: 10.3866/PKU.WHXB202201008

    38. [38]

      Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    39. [39]

      Li, X.; Wang, Z.; Zhang, J.; Dai, K.; Fan, K.; Dawson, G. Mater. Today Phys. 2022, 26, 100729. doi: 10.1016/j.mtphys.2022.100729  doi: 10.1016/j.mtphys.2022.100729

    40. [40]

      Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Angew. Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012  doi: 10.1002/anie.201916012

    41. [41]

      Li, Q. Q.; Zhao, W. L.; Zhai, Z. C.; Ren, K. X.; Wang, T. Y.; Guan, H.; Shi, H. F. J. Mater. Sci. Technol. 2020, 56, 216. doi: 10.1016/j.jmst.2020.03.038  doi: 10.1016/j.jmst.2020.03.038

    42. [42]

      Wang, W. L.; Zhao, W. L.; Zhang, H. C.; Dou, X. C.; Shi, H. F. Chin. J. Catal. 2021, 42, 97. doi: 10.1016/S1872-2067(20)63602-6  doi: 10.1016/S1872-2067(20)63602-6

    43. [43]

      Zhao, Z. W.; Li, X. F.; Dai, K.; Zhang, J. F.; Dawson, G. J. Mater. Sci. Technol. 2022, 117, 109. doi: 10.1016/j.jmst.2021.11.046  doi: 10.1016/j.jmst.2021.11.046

    44. [44]

      Huang, Y.; Mei, F. F.; Zhang, J. F.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38, 2108028.  doi: 10.3866/PKU.WHXB202108028

    45. [45]

      Mei, F. F.; Li, Z.; Dai, K.; Zhang, J. F.; Liang, C. H. Chin. J. Catal. 2020, 41, 41. doi: 10.1016/S1872-2067(19)63389-9  doi: 10.1016/S1872-2067(19)63389-9

    46. [46]

      Zhou, C. Y.; Lai, C.; Xu, P.; Zeng, G. M.; Huang, D. L.; Li, Z. H.; Zhang, C.; Cheng, M.; Hu, L.; Wan, J.; et al. ACS Sustain. Chem. Eng. 2018, 6, 6941. doi: 10.1021/acssuschemeng.8b00782  doi: 10.1021/acssuschemeng.8b00782

    47. [47]

      Zhai, Z. C.; Ren, K. X.; Zheng, X. Y.; Chen, Y. G.; Dong, Y. M.; Shi, H. F. Environ. Sci. : Nano 2022, 9, 1780. doi: 10.1039/D2EN00028H  doi: 10.1039/D2EN00028H

    48. [48]

      Lu, M. F.; Li, Q. Q.; Zhang, C. L.; Fan, X. X.; Li, L.; Dong, Y. M.; Chen, G. Q.; Shi, H. F. Carbon 2020, 160, 342. doi: 10.1016/j.carbon.2020.01.038  doi: 10.1016/j.carbon.2020.01.038

    49. [49]

      Liu, Z. F.; Song, Q. G.; Zhou, M.; Guo, Z. G.; Kang, J. H.; Yan, H. Y. Chem. Eng. J. 2019, 374, 554. doi: 10.1016/j.cej.2019.05.191  doi: 10.1016/j.cej.2019.05.191

    50. [50]

      Huo, Y.; Zhang, J. F.; Wang, Z. L.; Dai, K.; Pan, C. S.; Liang, C. H. J. Colloid Interface Sci. 2021, 585, 684. doi: 10.1016/j.jcis.2020.10.048  doi: 10.1016/j.jcis.2020.10.048

    51. [51]

      Zhu, L. L.; Wu, Y. F.; Wu, S. J.; Dong, F.; Xia, J. X.; Jiang, B. ACS Appl. Mater. Interfaces 2021, 13, 9216. doi: 10.1021/acsami.0c21454  doi: 10.1021/acsami.0c21454

    52. [52]

      Li, L.; Yang, L.; Xiong, Y. L.; Peng, L.; Dong, H. M.; Wei, X. J.; Xiao, P.; He, H. C. ACS Sustain. Chem. Eng. 2019, 7, 19640. doi: 10.1021/acssuschemeng.9b04787  doi: 10.1021/acssuschemeng.9b04787

    53. [53]

      Liu, S. Y., Ru, J. L., Liu, F. Z. Chemosphere 2021, 267, 129220. doi: 10.1016/j.chemosphere.2020.129220  doi: 10.1016/j.chemosphere.2020.129220

    54. [54]

      Biesinger, M. C. Surf. Interface Anal. 2017, 49, 1325. doi: 10.1002/sia.6239  doi: 10.1002/sia.6239

    55. [55]

      Chen, H. X.; Xu, Y.; Zhu, K. M.; Zhang, H. Appl. Catal. B Environ. 2021, 284, 119732. doi: 10.1016/j.apcatb.2020.119732  doi: 10.1016/j.apcatb.2020.119732

    56. [56]

      Hang, T. T. M.; Vy, N. H. T.; Hanh, N. T.; Pham, T. D. Sustain. Chem. Pharm. 2021, 21, 100407. doi: 10.1016/j.scp.2021.100407  doi: 10.1016/j.scp.2021.100407

    57. [57]

      Wang, L.; Min, X. P.; Sui, X. Y.; Chen, J. H.; Wang, Y. J. Colloid Interface Sci. 2020, 560, 21. doi: 10.1016/j.jcis.2019.10.048  doi: 10.1016/j.jcis.2019.10.048

    58. [58]

      Hill, J. C.; Choi, K. S. J. Mater. Chem. A 2013, 1, 5006. doi: 10.1039/C3TA10245A  doi: 10.1039/C3TA10245A

    59. [59]

      Chang, F.; Wu, F. Y.; Zheng, J. J.; Cheng, W. B.; Yan, W. J.; Deng, B. Q.; Hu, X. F. Chemosphere 2018, 210, 257. doi: 10.1016/j.chemosphere.2018.07.010  doi: 10.1016/j.chemosphere.2018.07.010

    60. [60]

      Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. J. Am. Chem. Soc. 2012, 134, 6751. doi: 10.1021/ja300823a  doi: 10.1021/ja300823a

    61. [61]

      Lim, J. H.; Yang, Y.; Hoffmann, M. R. Environ. Sci. Technol. 2019, 53, 6972. doi: 10.1021/acs.est.9b01449  doi: 10.1021/acs.est.9b01449

    62. [62]

      Qin, Q. D.; Liu, T.; Zhang, J. X.; Wei, R.; You, S. J.; Xu, Y. J. Hazard. Mater. 2021, 419, 126447. doi: 10.1016/j.jhazmat.2021.126447  doi: 10.1016/j.jhazmat.2021.126447

    63. [63]

      Dou, X. C.; Chen, Y. G.; Shi, H. F. Chem. Eng. J. 2022, 431, 134054. doi: 10.1016/j.cej.2021.134054  doi: 10.1016/j.cej.2021.134054

    64. [64]

      Ma, J.; Chen, L.; Liu, Y.; Xu, T. Y.; Ji, H. D.; Duan, J.; Sun, F. B.; Liu, W. J. Hazard. Mater. 2021, 418, 126180. doi: 10.1016/j.jhazmat.2021.126180  doi: 10.1016/j.jhazmat.2021.126180

    65. [65]

      Ren, J.; Jiang, L. S.; Li, Y.; Zhang, G. K. Sep. Purif. Technol. 2021, 275, 119100. doi: 10.1016/j.seppur.2021.119100  doi: 10.1016/j.seppur.2021.119100

    66. [66]

      Dai, H. W.; Zhou, W. J.; Wang, W. Chem. Eng. J. 2021, 417, 127921. doi: 10.1016/j.cej.2020.127921  doi: 10.1016/j.cej.2020.127921

    67. [67]

      Wang, H.; Gao, Q.; Li, H. T.; Han, B.; Xia, K. S.; Zhou, C. G. Chem. Eng. J. 2019, 368, 377. doi: 10.1016/j.cej.2019.02.124  doi: 10.1016/j.cej.2019.02.124

    68. [68]

      Huang, X. X.; Zhu, N. W.; Mao, F. L.; Ding, Y.; Zhang, S. H.; Liu, H. R.; Li, F.; Wu, P. X.; Dang, Z.; Ke, Y. X. Chem. Eng. J. 2020, 392, 123636. doi: 10.1016/j.cej.2019.123636  doi: 10.1016/j.cej.2019.123636

    69. [69]

      Huang, K. L.; Li, C. H.; Wang, L.; Wang, W. T.; Meng, X. C. Chem. Eng. J. 2021, 425, 131493. doi: 10.1016/j.cej.2021.131493  doi: 10.1016/j.cej.2021.131493

    70. [70]

      Tan, B. H.; Fang, Y.; Chen, Q. L.; Ao, X. Q.; Cao, Y. J. Colloid Interface Sci. 2021, 601, 581. doi: 10.1016/j.jcis.2021.05.155  doi: 10.1016/j.jcis.2021.05.155

    71. [71]

      Shi, H. F.; Li, X. K.; Wang, D. F.; Yuan, Y. P.; Zou, Z. G.; Ye, J. H. Catal. Lett. 2009, 132, 205. doi: 10.1007/s10562-009-0087-8  doi: 10.1007/s10562-009-0087-8

    72. [72]

      Chen, T.; Zhu, Z. L.; Bao, Y. J.; Zhang, H.; Qiu, Y. L.; Yin, D. Q. Environ. Sci. Nano 2021, 8, 2618. doi: 10.1039/D1EN00426C  doi: 10.1039/D1EN00426C

    73. [73]

      Zhang, H.; Nengzi, L. C.; Li, X.; Wang, Z.; Li, B.; Liu, L.; Cheng, X. Chem. Eng. J. 2020, 386, 124011. doi: 10.1016/j.cej.2020.124011  doi: 10.1016/j.cej.2020.124011

    74. [74]

      Denk, M.; Kuhness, D.; Wagner, M.; Surnev, S.; Negreiros, F. R.; Sementa, L.; Barcaro, G.; Vobornik, I.; Fortunelli, A.; Netzer, F. P. ACS Nano 2014, 8, 3947. doi: 10.1021/nn500867y  doi: 10.1021/nn500867y

  • 加载中
    1. [1]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    2. [2]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    3. [3]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    4. [4]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    5. [5]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    6. [6]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    7. [7]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    8. [8]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    9. [9]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    10. [10]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    11. [11]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    12. [12]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    13. [13]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    14. [14]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    15. [15]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    18. [18]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    19. [19]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

Metrics
  • PDF Downloads(14)
  • Abstract views(567)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return