Citation: Bihao Zhuang, Zicong Jin, Dehua Tian, Suiyi Zhu, Linqian Zeng, Jiandong Fan, Zaizhu Lou, Wenzhe Li. Halogen Regulation for Enhanced Luminescence in Emerging (4-HBA)SbX5∙H2O Perovskite-Like Single Crystals[J]. Acta Physico-Chimica Sinica, ;2023, 39(1): 220900. doi: 10.3866/PKU.WHXB202209007 shu

Halogen Regulation for Enhanced Luminescence in Emerging (4-HBA)SbX5∙H2O Perovskite-Like Single Crystals

  • Corresponding author: Jiandong Fan, jdfan@jnu.edu.cn Zaizhu Lou, zzlou@jnu.edu.cn Wenzhe Li, li_wz16@jnu.edu.cn
  • Received Date: 5 September 2022
    Revised Date: 19 September 2022
    Accepted Date: 20 September 2022
    Available Online: 29 September 2022

    Fund Project: the National Natural Science Foundation of China 22075103the National Natural Science Foundation of China 22175076the Guangdong Basic and Applied Basic Research Foundation for Distinguished Young Scholar 2019B151502030the Guangdong Basic and Applied Basic Research Foundation for Distinguished Young Scholar 2018B030306004the Natural Science Foundation of Guangdong Province 2022A1515010489the Science and Technology Plan Project of Guangzhou 202002030159the Fundamental Research Funds for the Central Universities 21621112the State Key Laboratory of Crystal Materials, Shandong University KF21-03the "Young Top Talents" in the Pearl River Talent Project of Guangdong Province 2017GC010424

  • Luminescent materials have attracted considerable attention because of their extensive applications, for example, in lighting, display, and imaging. As one of the emerging luminescent materials, perovskites have been widely studied and reported. Among them, Pb-based perovskites have shown great promise as their photoluminescence quantum yield (PLQY) is almost 100%. However, the high chemical toxicity and low stability of Pb-based perovskites increase their production costs and limit their practical applications. Sn-based perovskites are also widely studied and their PLQY can reach approximately 90%; however, Sn2+ easily oxidizes to Sn4+ especially upon air exposure. When compared with Pb- and Sn-based perovskites, Sb-based perovskites have the advantages of low chemical toxicity and high thermal stability. Furthermore, the optical properties of Sb-based perovskites have been improved in recent years and are expected to surpass those of Pb- and Sn-based perovskites. Herein, we report a novel series of (4-HBA)SbX5∙H2O single crystals (where 4-HBA is short for 4-hydroxybenzylamine, and X is Cl or Br). High quality single crystals of (4-HBA)SbBr5∙H2O, (4-HBA)SbBr3Cl2∙H2O, and (4-HBA)SbCl5∙H2O with Sb5+ can be prepared via the solvothermal method. The abovementioned three materials belong to the P-1 space group. The halide and hydroxyl ions surrounded by Sb5+ ions in 4-hydroxybenzylamine formed distorted octahedral structures. Based on the results of steady-state fluorescence spectroscopy, excitation spectroscopy, transient fluorescence spectroscopy, fluorescence lifetime imaging, and density functional theory, it was found that the (4-HBA)SbBr5∙H2O single crystal has a direct band gap, whereas the single crystals of (4-HBA)SbBr3Cl2∙H2O and (4-HBA)SbCl5∙H2O have an indirect band gap. When the concentration of Cl in (4-HBA)SbX5∙H2O increased, the band gap increased from 2.99 to 3.58 eV and the photoluminescence wavelength decreased from 618 to 595 nm. The obtained results also showed that the emission of the (4-HBA)SbX5∙H2O single crystal originated from the self-trapping exciton effect. With the introduction of Cl, the size of the [SbX5O]2− octahedron decreased, the exciton shielding reduced, and the exciton absorption was enhanced. Additionally, after replacing Br with Cl, the radiation recombination process of the excited electrons from the Sb5+ ions surrounding the halide ions gradually replaced the electron recombination of the hydroxyl ions, which extended the fluorescence lifetime from 12 to 22 ns and improved the PLQY by a factor of approximately 40.
  • 加载中
    1. [1]

      Cheng, X.; Yang, S.; Cao, B.; Tao, X.; Chen, Z. Adv. Funct. Mater. 2020, 30, 1905021. doi: 10.1002/adfm.201905021  doi: 10.1002/adfm.201905021

    2. [2]

      Quan, L., N.; Rand, B. P.; Friend, R. H.; Mhaisalkar, S. G.; Lee, T. -W.; Sargent, E. H. Chem. Rev. 2019, 119, 7444. doi: 10.1021/acs.chemrev.9b00107  doi: 10.1021/acs.chemrev.9b00107

    3. [3]

      Li, H.; Dong, H.; Li, J.; Wu, Z. Acta Phys. -Chim. Sin. 2021, 37, 2007006.  doi: 10.3866/PKU.WHXB202007006

    4. [4]

      McCall, K. M.; Morad, V.; Benin, B. M.; Kovalenko, M. V. ACS Mater. Lett. 2020, 2, 1218. doi: 0.1021/acsmaterialslett.0c00211

    5. [5]

      Xiao, Z.; Meng, W.; Wang, J.; Mitzi, D. B.; Yan, Y. Mater. Horiz. 2017, 4, 206. doi: 10.1039/c6mh00519e  doi: 10.1039/c6mh00519e

    6. [6]

      Lu, Y.; Ge, Y.; Sui, M. Acta Phys. -Chim. Sin. 2022, 38, 2007088.  doi: 10.3866/PKU.WHXB202007088

    7. [7]

      Luo, H.; Guo, S.; Zhang, Y.; Bu, K.; Lin, H.; Wang, Y.; Yin, Y.; Zhang, D.; Jin, S.; Zhang, W.; et al. Adv. Sci. 2021, 8, 2100786. doi: 10.1002/advs.202100786  doi: 10.1002/advs.202100786

    8. [8]

      Singh, R. K.; Som, S.; Dutta, S.; Jain, N.; Kuo, M. -T.; Singh, J.; Kumar, R.; Chen, T. -M. Nanoscale Adv. 2019, 1, 2999. doi: 10.1039/c9na00330d  doi: 10.1039/c9na00330d

    9. [9]

      Wang, Y.; Guo, S.; Luo, H.; Zhou, C.; Lin, H.; Ma, X.; Hu, Q.; Du, M.; Ma, B.; Yang, W.; et al. J. Am. Chem. Soc. 2020, 142, 16001. doi: 10.1021/jacs.0c07166  doi: 10.1021/jacs.0c07166

    10. [10]

      Zhou, W.; Chen, Y.; Zhou, H. Acta Phys. -Chim. Sin. 2021, 37, 2009044.  doi: 10.3866/PKU.WHXB202009044

    11. [11]

      Jena, A. K.; Kulkarni, A.; Miyasaka, T. Chem. Rev. 2019, 119, 3037. doi: 10.1021/acs.chemrev.8b00539  doi: 10.1021/acs.chemrev.8b00539

    12. [12]

      Wang, D.; Wright, M.; Elumalai, M. K.; Uddin, A. Solar Energy Mater. Solar Cells 2016, 147, 255. doi: 10.1016/j.solmat.2015.12.025  doi: 10.1016/j.solmat.2015.12.025

    13. [13]

      Zou, G.; Chen, Z.; Li, Z.; Yip, H. -L. Acta Phys. -Chim. Sin. 2021, 37, 2009002.  doi: 10.3866/PKU.WHXB202009002

    14. [14]

      Wu, T.; Chen, X.; Wang, J. J. Phys. Chem. Lett. 2020, 11, 5938. doi: 10.1021/acs.jpclett.0c01645  doi: 10.1021/acs.jpclett.0c01645

    15. [15]

      Morad, V.; Yakunin, S.; Kovalenko, M. V. ACS Mater. Lett. 2020, 2, 845. doi: 10.1021/acsmaterialslett.0c00174  doi: 10.1021/acsmaterialslett.0c00174

    16. [16]

      Tella, M.; Pokrovski, G. S. Chem. Geol. 2012, 292–293, 57. doi: 10.1016/j.chemgeo.2011.11.004  doi: 10.1016/j.chemgeo.2011.11.004

    17. [17]

      Vink, B. W. Chem. Geol. 1996, 130, 21. doi: 10.1016/0009-2541(95)00183-2  doi: 10.1016/0009-2541(95)00183-2

    18. [18]

      Li, G.; Xin, Y.; Lv, X.; Tian, Q.; Yan, K.; Ye, L. T. Nonferr. Metal Soc. 2020, 30, 3379. doi: 10.1016/S1003-6326(20)65469  doi: 10.1016/S1003-6326(20)65469

    19. [19]

      Belloli, C.; Crescenzo, G.; Carli, S.; Zaghini, A.; Mengozzi, G.; Bertini, S.; Ormas, P. Veterinary J. 1999, 157, 315. doi: 10.1053/tvjl.1998.0301  doi: 10.1053/tvjl.1998.0301

    20. [20]

      Ribeiro, R. R.; Ferreira, W. A.; Martins, P. S.; Neto, R. L.; Rocha, O. G.; Le Moyec, L. Biopharm. Drug Dispos. 2010, 31, 109. doi: 10.1002/bdd.695  doi: 10.1002/bdd.695

    21. [21]

      Wang, N.; Chen, K.; Yin, Q.; Ma, Y.; Pan, B.; Yang, X.; Ji, X.; Wu, S.; Shan, P.; Xu, S.; et al. Phys. Rev. Res. 2021, 3, 043018. doi: 10.1103/PhyRevResearch.3.043018  doi: 10.1103/PhyRevResearch.3.043018

    22. [22]

      Wei, Q.; Chang, T.; Zeng, R.; Cao, S.; Zhao, J.; Han, X.; Wang, L.; Zou, B. J. Phys. Chem. Lett. 2021, 12, 7091. doi: 10.1021/acs.jpclett.1c02119  doi: 10.1021/acs.jpclett.1c02119

    23. [23]

      Ye, H.; Liu, Y.; Zhang, Y.; Xu, Z.; You, J.; Gao, L.; Li, B.; Yang, Z.; Zhang, B.; Liu, S. Cryst. Growth Des. 2021, 21, 1741. doi: 10.1021/acs.cgd.0c01631  doi: 10.1021/acs.cgd.0c01631

    24. [24]

      Zhang, Y.; Yuan, S.; Yuan, Y.; Bao, Y.; Ran, Q.; Liu, E.; Fan, J.; Li, W. Adv. Opt. Mater. 2022, 10, 2102041. doi: 10.1002/adom.202102041  doi: 10.1002/adom.202102041

    25. [25]

      Zhang, X.; Han, D.; Chen, X.; Chen, Y.; Chang, S.; Zhong, H. Acta Phys. -Chim. Sin. 2021, 37, 2008055.  doi: 10.3866/PKU.WHXB202008055

    26. [26]

      Kuezma, M.; Devaraja, S.; Balaya, P. J. Mater. Chem. 2012, 22, 21280. doi: 10.1039/c2jm34455f  doi: 10.1039/c2jm34455f

    27. [27]

      Sheldrick, G. SHELXTL, Structure Determination Software Suite, version 6.14. Bruker AXS, Madison Google Scholar, 2000.

    28. [28]

      Sheldrick, G. SHELXL-97: Crystal Structure Refinement Program. University of Göttingen, Germany, 1997.

    29. [29]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. J. Appl. Crystallogr. 2009, 42 (2), 339. doi: 10.1107/s0021889808042726  doi: 10.1107/s0021889808042726

    30. [30]

      Zhang, H.; Sun, K.; Feng, Z.; Ying, P.; Li, C. Appl. Catal. A-Gen. 2006, 305, 112. doi: 10.1016/j.apcata.1006.02.038  doi: 10.1016/j.apcata.1006.02.038

    31. [31]

      Chen, D.; Hao, S.; Zhou, G.; Deng, C.; Liu, G.; Ma, S.; Wolverton, C.; Zhao, J.; Xia, Z. Inorg. Chem. 2019, 58, 15605. doi: 10.1021/acs.inorgchem.9b02669  doi: 10.1021/acs.inorgchem.9b02669

    32. [32]

      Peng, H.; Tian, Y.; Wang, X.; Huang, T.; Xiao, Y.; Dong, T.; Hu, J.; Wang, J.; Zou, B. J. Mater. Chem. C 2021, 9, 12187. doi: 10.1039/d1tc02906a  doi: 10.1039/d1tc02906a

    33. [33]

      Poglitsch. A.; Weber. D. J. Chem. Phys. 1987, 87, 6373. doi: 10.1063/1.453467  doi: 10.1063/1.453467

    34. [34]

      Even, J.; Pedesseau, L.; Katan, C. J. Phys. Chem. C 2014, 118, 11570. doi: 10.1021/jp503337a  doi: 10.1021/jp503337a

  • 加载中
    1. [1]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212

    2. [2]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    3. [3]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    4. [4]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    5. [5]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    6. [6]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    7. [7]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    8. [8]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    9. [9]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    10. [10]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    11. [11]

      Yanting YangGuorong WangKangjing LiWen YangJing ZhangJian ZhangShili LiXianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123

    12. [12]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    13. [13]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    14. [14]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    15. [15]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    16. [16]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    17. [17]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    18. [18]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    19. [19]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    20. [20]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

Metrics
  • PDF Downloads(0)
  • Abstract views(522)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return