Citation: Yanpeng Fu, Changbao Zhu. Design Strategies for Sodium Electrode Materials: Solid-State Ionics Perspective[J]. Acta Physico-Chimica Sinica, ;2023, 39(3): 220900. doi: 10.3866/PKU.WHXB202209002 shu

Design Strategies for Sodium Electrode Materials: Solid-State Ionics Perspective

  • Corresponding author: Changbao Zhu, zhuchangbao123@gmail.com
  • Received Date: 5 September 2022
    Revised Date: 18 October 2022
    Accepted Date: 2 November 2022
    Available Online: 9 November 2022

    Fund Project: the National Natural Science Foundation of China 22075331the National Natural Science Foundation of China 51702376the National Natural Science Foundation of China 21905057

  • Sodium-ion battery is one of the most promising and feasible energy storage candidates. However, compared to the lithium ion, the larger ionic radius and higher molecular mass of the sodium ion lead to inferior electrochemical performance of sodium-ion batteries. Therefore, achieving the rational design and construction of high-performance electrode materials is a key point and remains a great challenge for sodium-ion batteries. In this work, we focus on the transport properties of sodium ions and electrons and discuss design strategies of sodium electrodes from the perspective of solid-state ionics. First, for the bulk sodium electrode materials, investigating their transport properties, such as ionic conductivity, electronic conductivity, and diffusion coefficient, is a prerequisite for electrode design. Although there are various methods of measuring the diffusion coefficient, separately achieving the intrinsic ionic and electronic conductivity of the pure materials is highly important. Doping and carbon-coating are the most useful approaches to improve the specific transport properties of the investigated materials. Building defect chemistry models based on measured transport properties and relevant defect chemistry theory is crucial but remains a great challenge for the design of sodium electrodes. Second, for the nano sodium electrodes, size effects can be applied to design and construct electrodes from a nanoionics perspective. Thermodynamically, the equilibrium shape and equilibrium voltage change with a reduction in the particle size and facilitate the discovery of new electroactive electrode materials. Kinetically, according to τ~L2/D (where τ is diffusion time, L is particle radius, and D is diffusion coefficient), a smaller particle size leads to better kinetic behavior (higher rate performance) and also improves the diffusion coefficient in some cases. In terms of sodium transport and storage mechanisms, size effects result in the transition from a two-phase to a single-phase mechanism, an increase in the interfacial storage and surface reaction, as well as a variation of the sodium storage mechanism in pores, further leading to variation of the discharge voltage plateau. Finally, whether for bulk or nano-electrode materials, constructing efficient electrochemical circuits by the optimization of the phases and dimensionalities based on the transport properties of electrode materials is significant in achieving the rational design of sodium electrode materials and optimizing the electrochemical performance of sodium-ion batteries. We believe that this study will serve as a useful guide for the development of sodium electrode materials and will certainly contribute to the commercialization of sodium-ion batteries.
  • 加载中
    1. [1]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a  doi: 10.1038/451652a

    2. [2]

      Dunn, B.; Kamath, H.; Tarascon, J. -M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    3. [3]

      Tarascon, J. -M. Nat. Chem. 2010, 2, 510. doi: 10.1038/nchem.680  doi: 10.1038/nchem.680

    4. [4]

      Kim, S. -W.; Seo, D. -H.; Ma, X.; Ceder, G.; Kang, K. Adv. Energy Mater. 2012, 2, 710. doi: 10.1002/aenm.201200026  doi: 10.1002/aenm.201200026

    5. [5]

      Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzalez, J.; Rojo, T. Energy Environ. Sci. 2012, 5, 5884. doi: 10.1039/c2ee02781j  doi: 10.1039/c2ee02781j

    6. [6]

      Berthelot, R.; Carlier, D.; Delmas, C. Nat. Mater. 2011, 10, 74. doi: 10.1038/nmat2920  doi: 10.1038/nmat2920

    7. [7]

      Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. Nat. Mater. 2012, 11, 512. doi: 10.1038/nmat3309  doi: 10.1038/nmat3309

    8. [8]

      Bianchini, M.; Brisset, N.; Fauth, F.; Weill, F.; Elkaim, E.; Suard, E.; Masquelier, C.; Croguennec, L. Chem. Mater. 2014, 26, 4238. doi: 10.1021/cm501644g  doi: 10.1021/cm501644g

    9. [9]

      Pan, W. L.; Guan, W. H.; Jiang, Y. Z. Acta Phys. -Chim. Sin. 2020, 36, 1905017.  doi: 10.3866/PKU.WHXB201905017

    10. [10]

      Cao, X. X.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Acta Phys. -Chim. Sin. 2020, 36, 1905018.  doi: 10.3866/PKU.WHXB201905018

    11. [11]

      Qian, J. F.; Wu, C.; Cao, Y. L.; Ma, Z. F.; Huang, Y. H.; Ai, X. P.; Yang, H. X. Adv. Energy Mater. 2018, 8, 1702619. doi: 10.1002/aenm.201702619  doi: 10.1002/aenm.201702619

    12. [12]

      Zhao, Q.; Lu, Y.; Chen, J. Adv. Energy Mater. 2017, 7, 1601792. doi: 10.1002/aenm.201601792  doi: 10.1002/aenm.201601792

    13. [13]

      Yin, X. P.; Lu, Z. X.; Wang, J.; Feng, X. C.; Roy, S.; Liu, X. S.; Yang, Y.; Zhao, Y. F.; Zhang, J. J. Adv. Mater. 2022, 34, 2109282. doi: 10.1002/adma.202109282  doi: 10.1002/adma.202109282

    14. [14]

      Cao, B.; Li, X. F. Acta Phys. -Chim. Sin. 2020, 36, 1905018.  doi: 10.3866/PKU.WHXB201905003

    15. [15]

      Yan, Y.; Yin, Y. -X.; Guo, Y. -G.; Wan, L. -J. Adv. Energy Mater. 2014, 4, 1301584. doi: 10.1002/aenm.201301584  doi: 10.1002/aenm.201301584

    16. [16]

      Farbod, B.; Cui, K.; Kalisvaart, W. P.; Kupsta, M.; Zahiri, B.; Kohandehghan, A.; Lotfabad, E. M.; Li, Z.; Luber, E. J.; Mitlin, D. ACS Nano 2014, 8, 4415. doi: 10.1021/nn4063598  doi: 10.1021/nn4063598

    17. [17]

      Xu, X.; Zhao, R.; Ai, W.; Chen, B.; Du, H.; Wu, L.; Zhang, H.; Huang, W.; Yu, T. Adv. Mater. 2018, 30, 1800658. doi: 10.1002/adma.201800658  doi: 10.1002/adma.201800658

    18. [18]

      Wu, C.; Kopold, P.; Ding, Y. -L.; van Aken, P. A.; Maier, J.; Yu, Y. ACS Nano 2015, 9, 6610. doi: 10.1021/acsnano.5b02787  doi: 10.1021/acsnano.5b02787

    19. [19]

      Maier, J. Nat. Mater. 2005, 4, 805. doi: 10.1038/nmat1513  doi: 10.1038/nmat1513

    20. [20]

      Tripathi, R.; Wood, S. M.; Islam, M. S.; Nazar, L. F. Energy Environ. Sci. 2013, 6, 2257. doi: 10.1039/c3ee40914g  doi: 10.1039/c3ee40914g

    21. [21]

      Tripathi, R.; Gardiner, G. R.; Islam, M. S.; Nazar, L. F. Chem. Mater. 2011, 23, 2278. doi: 10.1021/cm200683n  doi: 10.1021/cm200683n

    22. [22]

      Aparicio, P. A.; de Leeuw, N. H. Phys. Chem. Chem. Phys. 2020, 22, 6653. doi: 10.1039/c9cp05559b  doi: 10.1039/c9cp05559b

    23. [23]

      Quinzeni, I.; Fujii, K.; Bini, M.; Yashima, M.; Tealdi, C. Mater. Adv. 2022, 3, 986. doi: 10.1039/d1ma00901j  doi: 10.1039/d1ma00901j

    24. [24]

      Clark, J. M.; Barpanda, P.; Yamada, A.; Islam, M. S. J. Mater. Chem. A 2014, 2, 11807. doi: 10.1039/c4ta02383h  doi: 10.1039/c4ta02383h

    25. [25]

      Kuganathan, N.; Chroneos, A. Materials 2019, 12, 3243. doi: 10.3390/ma12081348  doi: 10.3390/ma12081348

    26. [26]

      Kuganathan, N.; Kelaidis, N.; Chroneos, A. Materials 2019, 12, 1348. doi: 10.3390/ma12193243  doi: 10.3390/ma12193243

    27. [27]

      Watcharatharapong, T.; T-Thienprasert, J.; Chakraborty, S.; Ahuja, R. Nano Energy 2019, 55, 123. doi: 10.1016/j.nanoen.2018.10.038  doi: 10.1016/j.nanoen.2018.10.038

    28. [28]

      Nordstrand, J.; Toledo-Carrillo, E.; Vafakhah, S.; Guo, L.; Yang, H. Y.; Kloo, L.; Dutta, J. ACS Appl. Mater. Interfaces 2022, 14, 1102. doi: 10.1021/acsami.1c20910  doi: 10.1021/acsami.1c20910

    29. [29]

      Barpanda, P.; Oyama, G.; Nishimura, S. -i.; Chung, S. -C.; Yamada, A. Nat. Commun. 2014, 5, 4358. doi: 10.1038/ncomms5358  doi: 10.1038/ncomms5358

    30. [30]

      Nishimura, S.; Suzuki, Y.; Lu, J. C.; Torii, S.; Kamiyama, T.; Yamada, A. Chem. Mater. 2016, 28, 2393. doi: 10.1021/acs.chemmater.6b00604  doi: 10.1021/acs.chemmater.6b00604

    31. [31]

      Tang, K.; Yu, X.; Sun, J.; Li, H.; Huang, X. Electrochim. Acta 2011, 56, 4869. doi: 10.1016/j.electacta.2011.02.119  doi: 10.1016/j.electacta.2011.02.119

    32. [32]

      Zhu, C.; Wu, C.; Chen, C. -C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. Chem. Mater. 2017, 29, 5207. doi: 10.1021/acs.chemmater.7b00927  doi: 10.1021/acs.chemmater.7b00927

    33. [33]

      Lu, J. C.; Yamada, A. ChemElectroChem 2016, 3, 902. doi: 10.1002/celc.201500535  doi: 10.1002/celc.201500535

    34. [34]

      Lalere, F.; Leriche, J. B.; Courty, M.; Boulineau, S.; Viallet, V.; Masquelier, C.; Seznec, V. J. Power Sources 2014, 247, 975. doi: 10.1016/j.jpowsour.2013.09.051  doi: 10.1016/j.jpowsour.2013.09.051

    35. [35]

      Liu, J.; Chang, D. H.; Whitfield, P.; Janssen, Y.; Yu, X. Q.; Zhou, Y. N.; Bai, J. M.; Ko, J.; Nam, K. W.; Wu, L. J.; et al. Chem. Mater. 2014, 26, 3295. doi: 10.1021/cm5011218  doi: 10.1021/cm5011218

    36. [36]

      Kundu, D.; Tripathi, R.; Popov, G.; Makahnouk, W. R. M.; Nazar, L. F. Chem. Mater. 2015, 27, 885. doi: 10.1021/cm504058k  doi: 10.1021/cm504058k

    37. [37]

      Amin, R.; Balaya, P.; Maier, J. Electrochem. Solid State Lett. 2007, 10, A13. doi: 10.1149/1.2388240  doi: 10.1149/1.2388240

    38. [38]

      Shu, G. J.; Chou, F. C. Phys. Rev. B 2008, 78, 052101. doi: 10.1103/PhysRevB.78.052101  doi: 10.1103/PhysRevB.78.052101

    39. [39]

      Li, Y.; Chen, M. H.; Liu, B.; Zhang, Y.; Liang, X. Q.; Xia, X. H. Adv. Energy Mater. 2020, 10, 2000927. doi: 10.1002/aenm.202000927  doi: 10.1002/aenm.202000927

    40. [40]

      Han, Y. L.; Yang, M. H.; Zhang, Y.; Xie, J. J.; Yin, D. G.; Li, C. L. Chem. Mater. 2016, 28, 3139. doi: 10.1021/acs.chemmater.6b00729  doi: 10.1021/acs.chemmater.6b00729

    41. [41]

      Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. Adv. Mater. 2015, 27, 2042. doi: 10.1002/adma.201405370  doi: 10.1002/adma.201405370

    42. [42]

      Hong, Z. S.; Zhen, Y. C.; Ruan, Y. R.; Kang, M. L.; Zhou, K. Q.; Zhang, J. M.; Huang, Z. G.; Wei, M. D. Adv. Mater. 2018, 30, 1802035. doi: 10.1002/adma.201802035  doi: 10.1002/adma.201802035

    43. [43]

      Pei, Z. X.; Meng, Q. Q.; Wei, L.; Fan, J.; Chen, Y.; Zhi, C. Y. Energy Storage Mater. 2020, 28, 55. doi: 10.1016/j.ensm.2020.02.033  doi: 10.1016/j.ensm.2020.02.033

    44. [44]

      Wang, P. F.; Yao, H. R.; Liu, X. Y.; Zhang, J. N.; Gu, L.; Yu, X. Q.; Yin, Y. X.; Guo, Y. G. Adv. Mater. 2017, 29, 1700210. doi: 10.1002/adma.201700210  doi: 10.1002/adma.201700210

    45. [45]

      Wang, H. B.; Gao, R.; Li, Z. Y.; Sun, L. M.; Hu, Z. B.; Liu, X. F. Inorg. Chem. 2018, 57, 5249. doi: 10.1021/acs.inorgchem.8b00284  doi: 10.1021/acs.inorgchem.8b00284

    46. [46]

      Li, H.; Tang, H.; Ma, C.; Bai, Y.; Alvarado, J.; Radhakrishnan, B.; Ong, S. P.; Wua, F.; Meng, Y. S.; Wu, C. Chem. Mater. 2018, 30, 2498. doi: 10.1021/acs.chemmater.7b03903  doi: 10.1021/acs.chemmater.7b03903

    47. [47]

      Liu, R.; Xu, G.; Li, Q.; Zheng, S.; Zheng, G.; Gong, Z.; Li, Y.; Kruskop, E.; Fu, R.; Chen, Z.; et al. ACS Appl. Mater. Interfaces 2017, 9, 43632. doi: 10.1021/acsami.7b13018  doi: 10.1021/acsami.7b13018

    48. [48]

      Park, J. -S.; Kim, J.; Jo, J. H.; Myung, S. -T. J. Mater. Chem. A 2018, 6, 16627. doi: 10.1039/c8ta06162a  doi: 10.1039/c8ta06162a

    49. [49]

      Zheng, Q.; Ni, X.; Lin, L.; Yi, H.; Han, X.; Li, X.; Bao, X.; Zhang, H. J. Mater. Chem. A 2018, 6, 4209. doi: 10.1039/c8ta00117k  doi: 10.1039/c8ta00117k

    50. [50]

      Zhu, Q.; Cheng, H.; Zhang, X.; He, L.; Hu, L.; Yang, J.; Chen, Q.; Lu, Z. Electrochim. Acta 2018, 281, 208. doi: 10.1016/j.electacta.2018.05.174  doi: 10.1016/j.electacta.2018.05.174

    51. [51]

      Chen, Y.; Xu, Y.; Sun, X.; Wang, C. J. Power Sources 2018, 375, 82. doi: 10.1016/j.jpowsour.2017.11.043  doi: 10.1016/j.jpowsour.2017.11.043

    52. [52]

      Li, X.; Huang, Y.; Wang, J.; Miao, L.; Li, Y.; Liu, Y.; Qiu, Y.; Fang, C.; Han, J.; Huang, Y. J. Mater. Chem. A 2018, 6, 1390. doi: 10.1039/c7ta08970h  doi: 10.1039/c7ta08970h

    53. [53]

      Jian, Z.; Zhao, L.; Pan, H.; Hu, Y. -S.; Li, H.; Chen, W.; Chen, L. Electrochem. Commun. 2012, 14, 86. doi: 10.1016/j.elecom.2011.11.009  doi: 10.1016/j.elecom.2011.11.009

    54. [54]

      Zhu, C.; Song, K.; van Aken, P. A.; Maier, J.; Yu, Y. Nano Lett. 2014, 14, 2175. doi: 10.1021/nl500548a  doi: 10.1021/nl500548a

    55. [55]

      Fang, Y.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Adv. Mater. 2015, 27, 5895. doi: 10.1002/adma.201502018  doi: 10.1002/adma.201502018

    56. [56]

      Zhao, X. Y.; Luo, M. W.; Peng, K. Y.; Zhang, Z. B.; Cheng, B.; Wang, B. B.; Zhu, C. B.; Yan, X. B.; Shi, K. Y. ACS Appl. Mater. Interfaces 2021, 13, 57442. doi: 10.1021/acsami.1c18800  doi: 10.1021/acsami.1c18800

    57. [57]

      Liu, Y. L.; Xu, Y. H.; Han, X. G.; Pellegrinelli, C.; Zhu, Y. J.; Zhu, H. L.; Wan, J. Y.; Chung, A. C.; Vaaland, O.; Wang, C. S.; et al. Nano Lett. 2012, 12, 5664. doi: 10.1021/nl302819f  doi: 10.1021/nl302819f

    58. [58]

      Amin, R.; Lin, C. T.; Maier, J. Phys. Chem. Chem. Phys. 2008, 10, 3519. doi: 10.1039/B801234B  doi: 10.1039/B801234B

    59. [59]

      Amin, R.; Lin, C. T.; Maier, J. Phys. Chem. Chem. Phys. 2008, 10, 3524. doi: 10.1039/B801795F  doi: 10.1039/B801795F

    60. [60]

      Amin, R.; Lin, C. T.; Peng, J. B.; Weichert, K.; Acarturk, T.; Starke, U.; Maier, J. Adv. Funct. Mater. 2009, 19, 1697. doi: 10.1002/adfm.200801604  doi: 10.1002/adfm.200801604

    61. [61]

      Amin, R.; Maier, J. Solid State Ion. 2008, 178, 1831. doi: 10.1016/j.ssi.2007.11.017  doi: 10.1016/j.ssi.2007.11.017

    62. [62]

      Amin, R.; Maier, J.; Balaya, P.; Chen, D. P.; Lin, C. T. Solid State Ion. 2008, 179, 1683. doi: 10.1016/j.ssi.2008.01.079  doi: 10.1016/j.ssi.2008.01.079

    63. [63]

      Maier, J.; Amin, R. J. Electrochem. Soc. 2008, 155, A339. doi: 10.1149/1.2839626  doi: 10.1149/1.2839626

    64. [64]

      Shin, J. Y.; Samuelis, D.; Maier, J. Solid State Ion. 2012, 225, 590. doi: 10.1016/j.ssi.2011.12.003  doi: 10.1016/j.ssi.2011.12.003

    65. [65]

      Gerbig, O.; Merkle, R.; Maier, J. Adv. Mater. 2013, 25, 3129. doi: 10.1002/adma.201300264  doi: 10.1002/adma.201300264

    66. [66]

      Whiteside, A.; Fisher, C. A. J.; Parker, S. C.; Islam, M. S. Phys. Chem. Chem. Phys. 2014, 16, 21788. doi: 10.1039/c4cp02356k  doi: 10.1039/c4cp02356k

    67. [67]

      Kim, J.; Seo, D. H.; Kim, H.; Park, I.; Yoo, J. K.; Jung, S. K.; Park, Y. U.; Goddard, W. A.; Kang, K. Energy Environ. Sci. 2015, 8, 540. doi: 10.1039/c4ee03215b  doi: 10.1039/c4ee03215b

    68. [68]

      Gao, H.; Seymour, I. D.; Xin, S.; Xue, L.; Henkelman, G.; Goodenough, J. B. J. Am. Chem. Soc. 2018, 140, 18192. doi: 10.1021/jacs.8b11388  doi: 10.1021/jacs.8b11388

    69. [69]

      Zhu, C.; Mu, X.; Popovic, J.; Weichert, K.; van Aken, P. A.; Yu, Y.; Maier, J. Nano Lett. 2014, 14, 5342. doi: 10.1021/nl5024063  doi: 10.1021/nl5024063

    70. [70]

      Zhu, C.; Wen, Y.; van Aken, P. A.; Maier, J.; Yu, Y. Adv. Funct. Mater. 2015, 25, 2335. doi: 10.1002/adfm.201404468  doi: 10.1002/adfm.201404468

    71. [71]

      Zhu, C.; Mu, X.; van Aken, P. A.; Yu, Y.; Maier, J. Angew. Chem. -Int. Edit. 2014, 53, 2152. doi: 10.1002/anie.201308354  doi: 10.1002/anie.201308354

    72. [72]

      Deng, J. Q.; Luo, W. B.; Lu, X.; Yao, Q. R.; Wang, Z. M.; Liu, H. K.; Zhou, H. Y.; Dou, S. X. Adv. Energy Mater. 2018, 8. 1701610. doi: 10.1002/aenm.201701610  doi: 10.1002/aenm.201701610

    73. [73]

      Cui, Z. H.; Li, C. L.; Yu, P. F.; Yang, M. H.; Guo, X. X.; Yin, C. L. J. Mater. Chem. A 2015, 3, 509. doi: 10.1039/c4ta05241b  doi: 10.1039/c4ta05241b

    74. [74]

      Cao, D. P.; Yin, C. L.; Shi, D. R.; Fu, Z. W.; Zhang, J. C.; Li, C. L. Adv. Funct. Mater. 2017, 27, 1701130. doi: 10.1002/adfm.201701130  doi: 10.1002/adfm.201701130

    75. [75]

      Liu, Y.; Qiao, Y.; Zhang, W. X.; Li, Z.; Ji, X.; Miao, L.; Yuan, L. X.; Hu, X. L.; Huang, Y. H. Nano Energy 2015, 12, 386. doi: 10.1016/j.nanoen.2015.01.012  doi: 10.1016/j.nanoen.2015.01.012

    76. [76]

      Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J.; et al. Nat. Commun. 2016, 7, 12122. doi: 10.1038/ncomms12122  doi: 10.1038/ncomms12122

    77. [77]

      Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Nano Lett. 2010, 10, 4123. doi: 10.1021/nl1023595  doi: 10.1021/nl1023595

    78. [78]

      Ge, P.; Hou, H. S.; Li, S. J.; Yang, L.; Ji, X. B. Adv. Funct. Mater. 2018, 28, 1801765. doi: 10.1002/adfm.201801765  doi: 10.1002/adfm.201801765

    79. [79]

      Meethong, N.; Huang, H. Y. S.; Carter, W. C.; Chiang, Y. M. Electrochem. Solid State Lett. 2007, 10, A134. doi: 10.1149/1.2710960  doi: 10.1149/1.2710960

    80. [80]

      Kobayashi, G.; Nishimura, S. I.; Park, M. S.; Kanno, R.; Yashima, M.; Ida, T.; Yamada, A. Adv. Funct. Mater. 2009, 19, 395. doi: 10.1002/adfm.200801522  doi: 10.1002/adfm.200801522

    81. [81]

      Gibot, P.; Casas-Cabanas, M.; Laffont, L.; Levasseur, S.; Carlach, P.; Hamelet, S.; Tarascon, J. M.; Masquelier, C. Nat. Mater. 2008, 7, 741. doi: 10.1038/nmat2245  doi: 10.1038/nmat2245

    82. [82]

      Gu, L.; Zhu, C.; Li, H.; Yu, Y.; Li, C.; Tsukimoto, S.; Maier, J.; Ikuhara, Y. J. Am. Chem. Soc. 2011, 133, 4661. doi: 10.1021/ja109412x  doi: 10.1021/ja109412x

    83. [83]

      Zhu, C.; Gu, L.; Suo, L.; Popovic, J.; Li, H.; Ikuhara, Y.; Maier, J. Adv. Funct. Mater. 2014, 24, 312. doi: 10.1002/adfm.201301792  doi: 10.1002/adfm.201301792

    84. [84]

      Yu, X. Q.; Pan, H. L.; Wan, W.; Ma, C.; Bai, J. M.; Meng, Q. P.; Ehrlich, S. N.; Hu, Y. S.; Yang, X. Q. Nano Lett. 2013, 13, 4721. doi: 10.1021/nl402263g  doi: 10.1021/nl402263g

    85. [85]

      Zhang, Y.; Srot, V.; Moudrakovski, I.; Feng, Y. Z.; van Aken, P. A.; Maier, J.; Yu, Y. Adv. Energy Mater. 2019, 9, 1901470 doi: 10.1002/aenm.201901470  doi: 10.1002/aenm.201901470

    86. [86]

      Yu, P. F.; Li, C. L.; Guo, X. X. J. Phys. Chem. C 2014, 118, 10616. doi: 10.1021/jp5010693  doi: 10.1021/jp5010693

    87. [87]

      Zhang, Z.; Chen, Z.; Mai, Z.; Peng, K.; Deng, Q.; Bayaguud, A.; Zhao, P.; Fu, Y.; Yu, Y.; Zhu, C. Small 2019, 15, 1900356. doi: 10.1002/smll.201900356  doi: 10.1002/smll.201900356

    88. [88]

      Li, Q.; Liu, X.; Tao, Y.; Huang, J.; Zhang, J.; Yang, C.; Zhang, Y.; Zhang, S.; Jia, Y.; Lin, Q.; et al. Nat. Sci. Rev. 2022, 9, nwac084. doi: 10.1093/nsr/nwac084  doi: 10.1093/nsr/nwac084

    89. [89]

      He, M.; Kraychyk, K.; Walter, M.; Kovalenko, M. V. Nano Lett. 2014, 14, 1255. doi: 10.1021/nl404165c  doi: 10.1021/nl404165c

    90. [90]

      Zhao, F. P.; Shen, S. D.; Cheng, L.; Ma, L.; Zhou, J. H.; Ye, H. L.; Han, N.; Wu, T. P.; Li, Y. G.; Lu, J. Nano Lett. 2017, 17, 4137. doi: 10.1021/acs.nanolett.7b00915  doi: 10.1021/acs.nanolett.7b00915

    91. [91]

      Ou, X.; Yang, C. H.; Xiong, X. H.; Zheng, F. H.; Pan, Q. C.; Jin, C.; Liu, M. L.; Huang, K. Adv. Funct. Mater. 2017, 27, 1606242. doi: 10.1002/adfm.201606242  doi: 10.1002/adfm.201606242

    92. [92]

      Zhang, B. A.; Ghimbeu, C. M.; Laberty, C.; Vix-Guterl, C.; Tarascon, J. M. Adv. Energy Mater. 2016, 6, 1501588. doi: 10.1002/aenm.201501588  doi: 10.1002/aenm.201501588

    93. [93]

      Liu, Y. C.; Zhang, N.; Wang, F. F.; Liu, X. B.; Jiao, L. F.; Fan, L. Z. Adv. Funct. Mater. 2018, 28, 1801917. doi: 10.1002/adfm.201801917  doi: 10.1002/adfm.201801917

    94. [94]

      Wang, X.; Kajiyama, S.; Iinuma, H.; Hosono, E.; Oro, S.; Moriguchi, I.; Okubo, M.; Yamada, A. Nat. Commun. 2015, 6, 6544. doi: 10.1038/ncomms7544  doi: 10.1038/ncomms7544

    95. [95]

      Sun, W. P.; Rui, X. H.; Yang, D.; Sun, Z. Q.; Li, B.; Zhang, W. Y.; Zong, Y.; Madhavi, S.; Dou, S. X.; Yan, Q. Y. ACS Nano 2015, 9, 11371. doi: 10.1021/acsnano.5b05229  doi: 10.1021/acsnano.5b05229

    96. [96]

      Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Adv. Mater. 2014, 26, 3854. doi: 10.1002/adma.201306314  doi: 10.1002/adma.201306314

    97. [97]

      Fang, Y.; Xiao, L.; Qian, J.; Cao, Y.; Ai, X.; Huang, Y.; Yang, H. Adv. Energy Mater. 2016, 6, 1502197. doi: 10.1002/aenm.201502197  doi: 10.1002/aenm.201502197

    98. [98]

      Fang, Y. J.; Yu, X. Y.; Lou, X. W. Angew. Chem. -Int. Edit. 2017, 56, 5801. doi: 10.1002/anie.201702024  doi: 10.1002/anie.201702024

    99. [99]

      Zhu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. Adv. Mater. 2016, 28, 2409. doi: 10.1002/adma.201505943  doi: 10.1002/adma.201505943

    100. [100]

      Zhu, C.; Usiskin, R. E.; Yu, Y.; Maier, J. Science 2017, 358, eaao2808. doi: 10.1126/science.aao2808  doi: 10.1126/science.aao2808

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    11. [11]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    19. [19]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(27)
  • Abstract views(1190)
  • HTML views(285)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return