Citation: Siran Xu, Qi Wu, Bang-An Lu, Tang Tang, Jia-Nan Zhang, Jin-Song Hu. Recent Advances and Future Prospects on Industrial Catalysts for Green Hydrogen Production in Alkaline Media[J]. Acta Physico-Chimica Sinica, ;2023, 39(2): 220900. doi: 10.3866/PKU.WHXB202209001 shu

Recent Advances and Future Prospects on Industrial Catalysts for Green Hydrogen Production in Alkaline Media

  • Corresponding author: Jia-Nan Zhang, zjn@zzu.edu.cn Jin-Song Hu, hujs@iccas.ac.cn
  • Received Date: 2 September 2022
    Revised Date: 1 October 2022
    Accepted Date: 10 October 2022
    Available Online: 25 October 2022

    Fund Project: the National Natural Science Foundation of China 21875221the National Natural Science Foundation of China U1967215the National Natural Science Foundation of China 22025208the Youth Talent Support Program of High-Level Talents Special Support Plan in Henan Province ZYQR201810148the Creative talents in the Education Department of Henan Province 19HASTIT039

  • Green hydrogen is obtained by electrochemical water splitting using electricity converted from renewable energy sources. When green hydrogen undergoes combustion, it produces only water, leading to zero CO2 emissions from the source, which is important for the global energy transition. The sluggish kinetics of the hydrogen evolution reaction (HER)/oxygen evolution reaction (OER) in alkaline media have hindered an enhancement in hydrogen production from electrochemical water splitting. A detailed understanding of the alkaline reaction kinetics is important to accomplish the global mission of carbon neutrality. This review presents the theoretical kinetics for the HER and OER in alkaline media using different designed electrocatalysts, and discusses their corresponding reaction mechanisms. Subsequently, current design concepts and generalities on catalysts for water electrolysis are discussed. Enhancements in the OER activity for alkaline water electrolysis can be achieved through strategies that are classified into two major categories. In the first category, the exposure of numerous active sites is achieved by engineering the morphology and obtaining a high surface area. In the second category, the intrinsic activity of the catalyst toward the OER is enhanced by heteroatomic participation, vacancy formation, and the use of heterogeneous media. Advanced characterization techniques and in-situ testing techniques have confirmed the presence of complex oxidation media for the OER, which have a significant impact on the catalyst structure and local coordination. Research on the active sites of the catalyst, high concentrations of active species, and the design of highly efficient reaction media is required to further drive catalyst development for the OER. The evaluation of electrocatalysts exhibiting high performance at high current densities to produce green hydrogen is crucial for their implementation in industrial applications. Currently, large-scale synthesis a key technology to obtain industrial electrodes. Meanwhile, the construction of superaerophobic electrodes and three-dimensional electrodes facilitates the design of high-performance industrial catalytic electrodes. Subsequently, three different electrolytic cells that are typically used to obtain green hydrogen at the industrial scale are presented. The limitations to the design of electrolytic cells and the related solutions are also discussed. In-depth investigations on the design of either industrial electrocatalysts, commercial membranes, or electrolyzers can improve the understanding of industrial design principles to be applied to obtain industrial electrolyzers with increased efficiency, safety, and practicality. Finally, recent developments on electrocatalysts for water splitting and their limitations for industrial applications are presented to provide new perspectives and guidelines on the preparation of next-generation electrolytic catalysts.
  • 加载中
    1. [1]

      Jiang, W. -J.; Tang, T.; Zhang, Y.; Hu, J. -S. Acc. Chem. Res. 2020, 53 (6), 1111. doi: 10.1021/acs.accounts.0c00127  doi: 10.1021/acs.accounts.0c00127

    2. [2]

      Chen, Z.; Xu, Y.; Ding, D.; Song, G.; Gan, X.; Li, H.; Wei, W.; Chen, J.; Li, Z.; Gong, Z.; et al. Nat. Commun. 2022, 13 (1), 763. doi: 10.1038/s41467-022-28413-6  doi: 10.1038/s41467-022-28413-6

    3. [3]

      Huang, L. -B.; Zhao, L.; Zhang, Y.; Chen, Y. -Y.; Zhang, Q. -H.; Luo, H.; Zhang, X.; Tang, T.; Gu, L.; Hu, J. -S. Adv. Energy Mater. 2018, 8 (21), 1800734. doi: 10.1002/aenm.201800734  doi: 10.1002/aenm.201800734

    4. [4]

      Luo, Y.; Zhang, Z.; Chhowalla, M.; Liu, B. Adv. Mater. 2022, 34 (16), 2108133. doi: 10.1002/adma.202108133  doi: 10.1002/adma.202108133

    5. [5]

      Zhang, C.; Luo, Y.; Tan, J.; Yu, Q.; Yang, F.; Zhang, Z.; Yang, L.; Cheng, H. -M.; Liu, B. Nat. Commun. 2020, 11 (1), 3724. doi: 10.1038/s41467-020-17121-8  doi: 10.1038/s41467-020-17121-8

    6. [6]

      Li, D.; Liu, H.; Feng, L. Energy & Fuels 2020, 34 (11), 13491. doi: 10.1021/acs.energyfuels.0c03084  doi: 10.1021/acs.energyfuels.0c03084

    7. [7]

      Yu, J. Acta Phys. -Chim. Sin. 2021, 37 (7), 2011004.  doi: 10.3866/PKU.WHXB202011004

    8. [8]

      Wu, T.; Xu, S.; Zhang, Z.; Luo, M.; Wang, R.; Tang, Y.; Wang, J.; Huang, F. Adv. Sci. 2022, 9, 2202750. doi: 10.1002/advs.202202750  doi: 10.1002/advs.202202750

    9. [9]

      Jin, H.; Ruqia, B.; Park, Y.; Kim, H. J.; Oh, H. -S.; Choi, S. -I.; Lee, K. Adv. Energy Mater. 2021, 11 (4), 2003188. doi: 10.1002/aenm.202003188  doi: 10.1002/aenm.202003188

    10. [10]

      Yeo, K. -R.; Lee, K. -S.; Kim, H.; Lee, J.; Kim, S. -K. Energy Environ. Sci. 2022, 15 (8), 3449. doi: 10.1039/D2EE01042A  doi: 10.1039/D2EE01042A

    11. [11]

      López-Fernández, E.; Gómez-Sacedón, C.; Gil-Rostra, J.; Espinós, J. P.; González-Elipe, A. R.; Yubero, F.; de Lucas-Consuegra, A. Chem. Eng. J. 2022, 433, 133774. doi: 10.1016/j.cej.2021.133774  doi: 10.1016/j.cej.2021.133774

    12. [12]

      Zakaria, Z.; Kamarudin, S. K. Int. J. Energy Res. 2021, 45 (13), 18337. doi: 10.1002/er.6983  doi: 10.1002/er.6983

    13. [13]

      Khataee, A.; Shirole, A.; Jannasch, P.; Krüger, A.; Cornell, A. J. Mater. Chem. A 2022, 10 (30), 16061. doi: 10.1039/D2TA03291K  doi: 10.1039/D2TA03291K

    14. [14]

      Mayerhöfer, B.; Ehelebe, K.; Speck, F. D.; Bierling, M.; Bender, J.; Kerres, J. A.; Mayrhofer, K. J. J.; Cherevko, S.; Peach, R.; Thiele, S. J. Mater. Chem. A 2021, 9 (25), 14285. doi: 10.1039/D1TA00747E  doi: 10.1039/D1TA00747E

    15. [15]

      Wan, L.; Liu, J.; Xu, Z.; Xu, Q.; Pang, M.; Wang, P.; Wang, B. Small 2022, 18 (21), 2200380. doi: 10.1002/smll.202200380  doi: 10.1002/smll.202200380

    16. [16]

      Cao, X.; Novitski, D.; Holdcroft, S. ACS Mater. Lett. 2019, 1 (3), 362. doi: 10.1021/acsmaterialslett.9b00195  doi: 10.1021/acsmaterialslett.9b00195

    17. [17]

      Cho, M. K.; Park, H. -Y.; Choe, S.; Yoo, S. J.; Kim, J. Y.; Kim, H. -J.; Henkensmeier, D.; Lee, S. Y.; Sung, Y. -E.; Park, H. S.; et al. J. Power Sources 2017, 347, 283. doi: 10.1016/j.jpowsour.2017.02.058  doi: 10.1016/j.jpowsour.2017.02.058

    18. [18]

      Zhang, X. -Y.; Yu, W. -L.; Zhao, J.; Dong, B.; Liu, C. -G.; Chai, Y. -M. Appl. Mater. Today 2021, 22, 100913. doi: 10.1016/j.apmt.2020.100913  doi: 10.1016/j.apmt.2020.100913

    19. [19]

      Villagra, A.; Millet, P. Int. J. Hydrogen Energy 2019, 44 (20), 9708. doi: 10.1016/j.ijhydene.2018.11.179  doi: 10.1016/j.ijhydene.2018.11.179

    20. [20]

      Dong, Z. -H.; Jiang, Z.; Tang, T.; Yao, Z. -C.; Xue, D.; Niu, S.; Zhang, J.; Hu, J. -S. J. Mater. Chem. A 2022, 10 (24), 12764. doi: 10.1039/D2TA02374A  doi: 10.1039/D2TA02374A

    21. [21]

      Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. -Z. Angew. Chem. Int. Ed. 2018, 57 (26), 7568. doi: 10.1002/anie.201710556  doi: 10.1002/anie.201710556

    22. [22]

      Xu, Q.; Zhang, J.; Zhang, H.; Zhang, L.; Chen, L.; Hu, Y.; Jiang, H.; Li, C. Energy Environ. Sci. 2021, 14 (10), 5228. doi: 10.1039/D1EE02105B  doi: 10.1039/D1EE02105B

    23. [23]

      Xue, S.; Haid, R. W.; Kluge, R. M.; Ding, X.; Garlyyev, B.; Fichtner, J.; Watzele, S.; Hou, S.; Bandarenka, A. S. Angew. Chem. Int. Ed. 2020, 59 (27), 10934. doi: 10.1002/anie.202000383  doi: 10.1002/anie.202000383

    24. [24]

      Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. -C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Angew. Chem. Int. Ed. 2012, 51 (50), 12495. doi: 10.1002/anie.201204842  doi: 10.1002/anie.201204842

    25. [25]

      Lao, M.; Li, P.; Jiang, Y.; Pan, H.; Dou, S. X.; Sun, W. Nano Energy 2022, 98, 107231. doi: 10.1016/j.nanoen.2022.107231  doi: 10.1016/j.nanoen.2022.107231

    26. [26]

      Mao, B.; Sun, P.; Jiang, Y.; Meng, T.; Guo, D.; Qin, J.; Cao, M. Angew. Chem. Int. Ed. 2020, 59 (35), 15232. doi: 10.1002/anie.202006722  doi: 10.1002/anie.202006722

    27. [27]

      Morales-Guio, C. G.; Stern, L. -A.; Hu, X. Chem. Soc. Rev. 2014, 43 (18), 6555. doi: 10.1039/C3CS60468C  doi: 10.1039/C3CS60468C

    28. [28]

      Yu, Z. -Y.; Duan, Y.; Feng, X. -Y.; Yu, X.; Gao, M. -R.; Yu, S. -H. Adv. Mater. 2021, 33 (31), 2007100. doi: 10.1002/adma.202007100  doi: 10.1002/adma.202007100

    29. [29]

      Anantharaj, S.; Noda, S.; Jothi, V. R.; Yi, S.; Driess, M.; Menezes, P. W. Angew. Chem. Int. Ed. 2021, 60 (35), 18981. doi: 10.1002/anie.202015738  doi: 10.1002/anie.202015738

    30. [30]

      Li, M.; Zheng, X.; Li, L.; Wei, Z. Acta Phys. -Chim. Sin. 2021, 37 (9), 2007054.  doi: 10.3866/PKU.WHXB202007054

    31. [31]

      Hu, C.; Zhang, L.; Gong, J. Energy Environ. Sci. 2019, 12 (9), 2620. doi: 10.1039/C9EE01202H  doi: 10.1039/C9EE01202H

    32. [32]

      Deng, C.; Toe, C. Y.; Li, X.; Tan, J.; Yang, H.; Hu, Q.; He, C. Adv. Energy Mater. 2022, 12 (25), 2201047. doi: 10.1002/aenm.202201047  doi: 10.1002/aenm.202201047

    33. [33]

      Sheng, W.; Myint, M.; Chen, J. G.; Yan, Y. Energy Environ. Sci. 2013, 6 (5), 1509. doi: 10.1039/C3EE00045A  doi: 10.1039/C3EE00045A

    34. [34]

      Sheng, W.; Zhuang, Z.; Gao, M.; Zheng, J.; Chen, J. G.; Yan, Y. Nat. Commun. 2015, 6 (1), 5848. doi: 10.1038/ncomms6848  doi: 10.1038/ncomms6848

    35. [35]

      Zheng, J.; Sheng, W.; Zhuang, Z.; Xu, B.; Yan, Y. Sci. Adv. 2016, 2 (3), e1501602. doi: 10.1126/sciadv.1501602  doi: 10.1126/sciadv.1501602

    36. [36]

      Mahmood, J.; Li, F.; Jung, S. -M.; Okyay, M. S.; Ahmad, I.; Kim, S. -J.; Park, N.; Jeong, H. Y.; Baek, J. -B. Nat. Nanotechnol. 2017, 12 (5), 441. doi: 10.1038/nnano.2016.304  doi: 10.1038/nnano.2016.304

    37. [37]

      Cheng, T.; Wang, L.; Merinov, B. V.; Goddard, W. A. J. Am. Chem. Soc. 2018, 140 (25), 7787. doi: 10.1021/jacs.8b04006  doi: 10.1021/jacs.8b04006

    38. [38]

      Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Nat. Energy 2017, 2 (4), 17031. doi: 10.1038/nenergy.2017.31  doi: 10.1038/nenergy.2017.31

    39. [39]

      Rebollar, L.; Intikhab, S.; Zhang, S.; Deng, H.; Zeng, Z.; Snyder, J. D.; Tang, M. H. J. Catal. 2021, 398, 161. doi: 10.1016/j.jcat.2021.04.008  doi: 10.1016/j.jcat.2021.04.008

    40. [40]

      Liu, E.; Li, J.; Jiao, L.; Doan, H. T. T.; Liu, Z.; Zhao, Z.; Huang, Y.; Abraham, K. M.; Mukerjee, S.; Jia, Q. J. Am. Chem. Soc. 2019, 141 (7), 3232. doi: 10.1021/jacs.8b13228  doi: 10.1021/jacs.8b13228

    41. [41]

      McCrum, I. T.; Koper, M. T. M. Nat. Energy 2020, 5 (11), 891. doi: 10.1038/s41560-020-00710-8  doi: 10.1038/s41560-020-00710-8

    42. [42]

      Jeong, S.; Mai, H. D.; Nam, K. -H.; Park, C. -M.; Jeon, K. -J. ACS Nano 2022, 16 (1), 930. doi: 10.1021/acsnano.1c08506  doi: 10.1021/acsnano.1c08506

    43. [43]

      Wu, Y.; Luo, J. Acta Phys. -Chim. Sin. 2016, 32 (11), 2745.  doi: 10.3866/PKU.WHXB201608083

    44. [44]

      Tang, T.; Ding, L.; Yao, Z. -C.; Pan, H. -R.; Hu, J. -S.; Wan, L. -J. Adv. Funct. Mater. 2022, 32 (2), 2107479. doi: 10.1002/adfm.202107479  doi: 10.1002/adfm.202107479

    45. [45]

      Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. -C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Science 2011, 334 (6060), 1256. doi: 10.1126/science.1211934  doi: 10.1126/science.1211934

    46. [46]

      Subbaraman, R.; Tripkovic, D.; Chang, K. -C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Nat. Mater. 2012, 11 (6), 550. doi: 10.1038/nmat3313  doi: 10.1038/nmat3313

    47. [47]

      Wang, X.; Zheng, Y.; Sheng, W.; Xu, Z. J.; Jaroniec, M.; Qiao, S. -Z. Mater. Today 2020, 36, 125. doi: 10.1016/j.mattod.2019.12.003  doi: 10.1016/j.mattod.2019.12.003

    48. [48]

      Wei, J.; Zhou, M.; Long, A.; Xue, Y.; Liao, H.; Wei, C.; Xu, Z. J. Nano-Micro Lett. 2018, 10 (4), 75. doi: 10.1007/s40820-018-0229-x  doi: 10.1007/s40820-018-0229-x

    49. [49]

      Kim, J.; Jung, H.; Jung, S. -M.; Hwang, J.; Kim, D. Y.; Lee, N.; Kim, K. -S.; Kwon, H.; Kim, Y. -T.; Han, J. W.; Kim, J. K. J. Am. Chem. Soc. 2021, 143 (3), 1399. doi: 10.1021/jacs.0c10661  doi: 10.1021/jacs.0c10661

    50. [50]

      Gong, M.; Zhou, W.; Tsai, M. -C.; Zhou, J.; Guan, M.; Lin, M. -C.; Zhang, B.; Hu, Y.; Wang, D. -Y.; Yang, J.; et al. Nat. Commun. 2014, 5 (1), 4695. doi: 10.1038/ncomms5695  doi: 10.1038/ncomms5695

    51. [51]

      Zhou, K. L.; Wang, Z.; Han, C. B.; Ke, X.; Wang, C.; Jin, Y.; Zhang, Q.; Liu, J.; Wang, H.; Yan, H. Nat. Commun. 2021, 12 (1), 3783. doi: 10.1038/s41467-021-24079-8  doi: 10.1038/s41467-021-24079-8

    52. [52]

      Li, J.; Xia, Z.; Xue, Q.; Zhang, M.; Zhang, S.; Xiao, H.; Ma, Y.; Qu, Y. Small 2021, 17 (39), 2103018. doi: 10.1002/smll.202103018  doi: 10.1002/smll.202103018

    53. [53]

      Guo, T.; Li, L.; Wang, Z. Adv. Energy Mater. 2022, 12 (24), 2200827. doi: 10.1002/aenm.202200827  doi: 10.1002/aenm.202200827

    54. [54]

      Kasian, O.; Geiger, S.; Li, T.; Grote, J. -P.; Schweinar, K.; Zhang, S.; Scheu, C.; Raabe, D.; Cherevko, S.; Gault, B.; et al. Energy Environ. Sci. 2019, 12 (12), 3548. doi: 10.1039/C9EE01872G  doi: 10.1039/C9EE01872G

    55. [55]

      He, R.; Huang, X.; Feng, L. Energy Fuels 2022, 36 (13), 6675. doi: 10.1021/acs.energyfuels.2c01429  doi: 10.1021/acs.energyfuels.2c01429

    56. [56]

      Zagalskaya, A.; Alexandrov, V. ACS Catal. 2020, 10 (6), 3650. doi: 10.1021/acscatal.9b05544  doi: 10.1021/acscatal.9b05544

    57. [57]

      Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Adv. Mater. 2020, 32 (3), 1806326. doi: 10.1002/adma.201806326  doi: 10.1002/adma.201806326

    58. [58]

      Zagalskaya, A.; Evazzade, I.; Alexandrov, V. ACS Energy Lett. 2021, 6 (3), 1124. doi: 10.1021/acsenergylett.1c00234  doi: 10.1021/acsenergylett.1c00234

    59. [59]

      Pan, Y.; Xu, X.; Zhong, Y.; Ge, L.; Chen, Y.; Veder, J. -P. M.; Guan, D.; O'Hayre, R.; Li, M.; Wang, G.; et al. Nat. Commun. 2020, 11 (1), 2002. doi: 10.1038/s41467-020-15873-x  doi: 10.1038/s41467-020-15873-x

    60. [60]

      Wang, X.; Zhong, H.; Xi, S.; Lee, W. S. V.; Xue, J. Adv. Mater. 2022, 2107956. doi: 10.1002/adma.202107956  doi: 10.1002/adma.202107956

    61. [61]

      Wu, Y.; Zhao, Y.; Zhai, P.; Wang, C.; Gao, J.; Sun, L.; Hou, J. Adv. Mater. 2022, 34 (29), 2202523. doi: 10.1002/adma.202202523  doi: 10.1002/adma.202202523

    62. [62]

      Zhang, N.; Chai, Y. Energy Environ. Sci. 2021, 14 (9), 4647. doi: 10.1039/D1EE01277K  doi: 10.1039/D1EE01277K

    63. [63]

      Grimaud, A.; Diaz-Morales, O.; Han, B.; Hong, W. T.; Lee, Y. -L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Nat. Chem. 2017, 9 (5), 457. doi: 10.1038/nchem.2695  doi: 10.1038/nchem.2695

    64. [64]

      Li, X.; Liu, H.; Sun, Y.; Zhu, L.; Yin, X.; Sun, S.; Fu, Z.; Lu, Y.; Wang, X.; Cheng, Z. Adv. Sci. 2020, 7 (22), 2002242. doi: 10.1002/advs.202002242  doi: 10.1002/advs.202002242

    65. [65]

      Mefford, J. T.; Rong, X.; Abakumov, A. M.; Hardin, W. G.; Dai, S.; Kolpak, A. M.; Johnston, K. P.; Stevenson, K. J. Nat. Commun. 2016, 7 (1), 11053. doi: 10.1038/ncomms11053  doi: 10.1038/ncomms11053

    66. [66]

      Huang, W.; Li, J.; Liao, X.; Lu, R.; Ling, C.; Liu, X.; Meng, J.; Qu, L.; Lin, M.; Hong, X.; et al. Adv. Mater. 2022, 34 (18), 2200270. doi: 10.1002/adma.202200270  doi: 10.1002/adma.202200270

    67. [67]

      Grimaud, A.; Hong, W. T.; Shao-Horn, Y.; Tarascon, J. M. Nat. Mater. 2016, 15 (2), 121. doi: 10.1038/nmat4551  doi: 10.1038/nmat4551

    68. [68]

      Zhang, N.; Feng, X.; Rao, D.; Deng, X.; Cai, L.; Qiu, B.; Long, R.; Xiong, Y.; Lu, Y.; Chai, Y. Nat. Commun. 2020, 11 (1), 4066. doi: 10.1038/s41467-020-17934-7  doi: 10.1038/s41467-020-17934-7

    69. [69]

      Bai, L.; Hsu, C. -S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. Nat. Energy 2021, 6 (11), 1054. doi: 10.1038/s41560-021-00925-3  doi: 10.1038/s41560-021-00925-3

    70. [70]

      Man, I. C.; Su, H. -Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. ChemCatChem 2011, 3 (7), 1159. doi: 10.1002/cctc.201000397  doi: 10.1002/cctc.201000397

    71. [71]

      May, K. J.; Carlton, C. E.; Stoerzinger, K. A.; Risch, M.; Suntivich, J.; Lee, Y. -L.; Grimaud, A.; Shao-Horn, Y. J. Phys. Chem. Lett. 2012, 3 (22), 3264. doi: 10.1021/jz301414z  doi: 10.1021/jz301414z

    72. [72]

      Wang, Z.; Heng, N.; Wang, X.; He, J.; Zhao, Y. J. Catal. 2019, 374, 51. doi: 10.1016/j.jcat.2019.04.016  doi: 10.1016/j.jcat.2019.04.016

    73. [73]

      Gao, L.; Cui, X.; Sewell, C. D.; Li, J.; Lin, Z. Chem. Soc. Rev. 2021, 50 (15), 8428. doi: 10.1039/D0CS00962H  doi: 10.1039/D0CS00962H

    74. [74]

      Xiao, Z.; Huang, Y. -C.; Dong, C. -L.; Xie, C.; Liu, Z.; Du, S.; Chen, W.; Yan, D.; Tao, L.; Shu, Z.; et al. J. Am. Chem. Soc. 2020, 142 (28), 12087. doi: 10.1021/jacs.0c00257  doi: 10.1021/jacs.0c00257

    75. [75]

      Zeng, L.; Zhao, Z.; Lv, F.; Xia, Z.; Lu, S. -Y.; Li, J.; Sun, K.; Wang, K.; Sun, Y.; Huang, Q.; et al. Nat. Commun. 2022, 13 (1), 3822. doi: 10.1038/s41467-022-31406-0  doi: 10.1038/s41467-022-31406-0

    76. [76]

      Shi, Z.; Wang, Y.; Li, J.; Wang, X.; Wang, Y.; Li, Y.; Xu, W.; Jiang, Z.; Liu, C.; Xing, W.; Ge, J. Joule 2021, 5 (8), 2164. doi: 10.1016/j.joule.2021.05.018  doi: 10.1016/j.joule.2021.05.018

    77. [77]

      Eum, D.; Kim, B.; Song, J. -H.; Park, H.; Jang, H. -Y.; Kim, S. J.; Cho, S. -P.; Lee, M. H.; Heo, J. H.; Park, J.; et al. Nat. Mater. 2022, 21 (6), 664. doi: 10.1038/s41563-022-01209-1  doi: 10.1038/s41563-022-01209-1

    78. [78]

      Li, J. Nano-Micro Lett. 2022, 14 (1), 112. doi: 10.1007/s40820-022-00857-x  doi: 10.1007/s40820-022-00857-x

    79. [79]

      Huang, Z. -F.; Xi, S.; Song, J.; Dou, S.; Li, X.; Du, Y.; Diao, C.; Xu, Z. J.; Wang, X. Nat. Commun. 2021, 12 (1), 3992. doi: 10.1038/s41467-021-24182-w  doi: 10.1038/s41467-021-24182-w

    80. [80]

      Assat, G.; Tarascon, J. -M. Nat. Energy 2018, 3 (5), 373. doi: 10.1038/s41560-018-0097-0  doi: 10.1038/s41560-018-0097-0

    81. [81]

      Yang, H.; Li, F.; Zhan, S.; Liu, Y.; Li, W.; Meng, Q.; Kravchenko, A.; Liu, T.; Yang, Y.; Fang, Y.; et al. Nat. Catal. 2022, 5 (5), 414. doi: 10.1038/s41929-022-00783-6  doi: 10.1038/s41929-022-00783-6

    82. [82]

      Nong, H. N.; Reier, T.; Oh, H. -S.; Gliech, M.; Paciok, P.; Vu, T. H. T.; Teschner, D.; Heggen, M.; Petkov, V.; Schlögl, R.; et al. Nat. Catal. 2018, 1 (11), 841. doi: 10.1038/s41929-018-0153-y  doi: 10.1038/s41929-018-0153-y

    83. [83]

      Ren, X.; Wei, C.; Sun, Y.; Liu, X.; Meng, F.; Meng, X.; Sun, S.; Xi, S.; Du, Y.; Bi, Z.; et al. Adv. Mater. 2020, 32 (30), 2001292. doi: 10.1002/adma.202001292  doi: 10.1002/adma.202001292

    84. [84]

      Huang, Z. -F.; Song, J.; Du, Y.; Xi, S.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Nat. Energy 2019, 4 (4), 329. doi: 10.1038/s41560-019-0355-9  doi: 10.1038/s41560-019-0355-9

    85. [85]

      Xu, X.; Pan, Y.; Zhong, Y.; Shi, C.; Guan, D.; Ge, L.; Hu, Z.; Chin, Y. -Y.; Lin, H. -J.; Chen, C. -T.; et al. Adv. Sci. 2022, 9 (14), 2200530. doi: 10.1002/advs.202200530  doi: 10.1002/advs.202200530

    86. [86]

      Li, X.; Cheng, Z.; Wang, X. Electrochem. Energy Rev. 2021, 4 (1), 136. doi: 10.1007/s41918-020-00084-1  doi: 10.1007/s41918-020-00084-1

    87. [87]

      Han, W. -K.; Wei, J. -X.; Xiao, K.; Ouyang, T.; Peng, X.; Zhao, S.; Liu, Z. -Q. Angew. Chem. Int. Ed. 2022, 61 (31), e202206050. doi: 10.1002/anie.202206050  doi: 10.1002/anie.202206050

    88. [88]

      Li, Z.; Yang, J.; Chen, Z.; Zheng, C.; Wei, L. Q.; Yan, Y.; Hu, H.; Wu, M.; Hu, Z. Adv. Funct. Mater. 2021, 31 (9), 2008822. doi: 10.1002/adfm.202008822  doi: 10.1002/adfm.202008822

    89. [89]

      Tang, T.; Jiang, W. -J.; Niu, S.; Liu, N.; Luo, H.; Chen, Y. -Y.; Jin, S. -F.; Gao, F.; Wan, L. -J.; Hu, J. -S. J. Am. Chem. Soc. 2017, 139 (24), 8320. doi: 10.1021/jacs.7b03507  doi: 10.1021/jacs.7b03507

    90. [90]

      Li, S.; Li, E.; An, X.; Hao, X.; Jiang, Z.; Guan, G. Nanoscale 2021, 13 (30), 12788. doi: 10.1039/D1NR02592A  doi: 10.1039/D1NR02592A

    91. [91]

      Ji, Y.; Yang, L.; Ren, X.; Cui, G.; Xiong, X.; Sun, X. ACS Sustain. Chem. Eng. 2018, 6 (8), 9555. doi: 10.1021/acssuschemeng.8b01841  doi: 10.1021/acssuschemeng.8b01841

    92. [92]

      Song, F.; Bai, L.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. J. Am. Chem. Soc. 2018, 140 (25), 7748. doi: 10.1021/jacs.8b04546  doi: 10.1021/jacs.8b04546

    93. [93]

      Xu, S.; Zhao, H.; Li, T.; Liang, J.; Lu, S.; Chen, G.; Gao, S.; Asiri, A. M.; Wu, Q.; Sun, X. J. Mater. Chem. A 2020, 8 (38), 19729. doi: 10.1039/D0TA05628F  doi: 10.1039/D0TA05628F

    94. [94]

      Guo, Y.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J.; et al. Adv. Mater. 2019, 31 (17), 1807134. doi: 10.1002/adma.201807134  doi: 10.1002/adma.201807134

    95. [95]

      Zhao, Y.; Wei, S.; Pan, K.; Dong, Z.; Zhang, B.; Wu, H. -H.; Zhang, Q.; Lin, J.; Pang, H. Chem. Eng. J. 2021, 421, 129645. doi: 10.1016/j.cej.2021.129645  doi: 10.1016/j.cej.2021.129645

    96. [96]

      Song, J.; Chen, Y.; Huang, H.; Wang, J.; Huang, S. -C.; Liao, Y. -F.; Fetohi, A. E.; Hu, F.; Chen, H. -Y.; Li, L.; et al. Adv. Sci. 2022, 9 (6), 2104522. doi: 10.1002/advs.202104522  doi: 10.1002/advs.202104522

    97. [97]

      Chen, P.; Xu, K.; Tao, S.; Zhou, T.; Tong, Y.; Ding, H.; Zhang, L.; Chu, W.; Wu, C.; Xie, Y. Adv. Mater. 2016, 28 (34), 7527. doi: 10.1002/adma.201601663  doi: 10.1002/adma.201601663

    98. [98]

      Shao, W.; Xiao, M.; Yang, C.; Cheng, M.; Cao, S.; He, C.; Zhou, M.; Ma, T.; Cheng, C.; Li, S. Small 2022, 18 (7), 2105763. doi: 10.1002/smll.202105763  doi: 10.1002/smll.202105763

    99. [99]

      Wang, P.; Luo, Y.; Zhang, G.; Chen, Z.; Ranganathan, H.; Sun, S.; Shi, Z. Nano-Micro Lett. 2022, 14 (1), 120. doi: 10.1007/s40820-022-00860-2  doi: 10.1007/s40820-022-00860-2

    100. [100]

      Li, S.; Wang, L.; Su, H.; Hong, A. N.; Wang, Y.; Yang, H.; Ge, L.; Song, W.; Liu, J.; Ma, T.; et al. Adv. Funct. Mater. 2022, 32 (23), 2200733. doi: 10.1002/adfm.202200733  doi: 10.1002/adfm.202200733

    101. [101]

      Niu, S.; Jiang, W. -J.; Wei, Z.; Tang, T.; Ma, J.; Hu, J. -S.; Wan, L. -J. J. Am. Chem. Soc. 2019, 141 (17), 7005. doi: 10.1021/jacs.9b01214  doi: 10.1021/jacs.9b01214

    102. [102]

      Joo, J.; Kim, T.; Lee, J.; Choi, S. -I.; Lee, K. Adv. Mater. 2019, 31 (14), 1806682. doi: 10.1002/adma.201806682  doi: 10.1002/adma.201806682

    103. [103]

      Wang, Y. Z.; Yang, M.; Ding, Y. -M.; Li, N. -W.; Yu, L. Adv. Funct. Mater. 2022, 32 (6), 2108681. doi: 10.1002/adfm.202108681  doi: 10.1002/adfm.202108681

    104. [104]

      Guo, Y.; Yuan, P.; Zhang, J.; Xia, H.; Cheng, F.; Zhou, M.; Li, J.; Qiao, Y.; Mu, S.; Xu, Q. Adv. Funct. Mater. 2018, 28 (51), 1805641. doi: 10.1002/adfm.201805641  doi: 10.1002/adfm.201805641

    105. [105]

      Qiao, Y.; Yuan, P.; Pao, C. -W.; Cheng, Y.; Pu, Z.; Xu, Q.; Mu, S.; Zhang, J. Nano Energy 2020, 75, 104881. doi: 10.1016/j.nanoen.2020.104881  doi: 10.1016/j.nanoen.2020.104881

    106. [106]

      Luo, X.; Ji, P.; Wang, P.; Cheng, R.; Chen, D.; Lin, C.; Zhang, J.; He, J.; Shi, Z.; Li, N.; et al. Adv. Energy Mater. 2020, 10 (17), 1903891. doi: 10.1002/aenm.201903891  doi: 10.1002/aenm.201903891

    107. [107]

      Ahsan, M. A.; He, T.; Noveron, J. C.; Reuter, K.; Puente-Santiago, A. R.; Luque, R. Chem. Soc. Rev. 2022, 51 (3), 812. doi: 10.1039/D1CS00498K  doi: 10.1039/D1CS00498K

    108. [108]

      Wang, Y.; Cui, X.; Zhang, J.; Qiao, J.; Huang, H.; Shi, J.; Wang, G. Prog. Mater. Sci. 2022, 128, 100964. doi: 10.1016/j.pmatsci.2022.100964  doi: 10.1016/j.pmatsci.2022.100964

    109. [109]

      Li, J.; Cheng, Y.; Zhang, J.; Fu, J.; Yan, W.; Xu, Q. ACS Appl. Mater. Interfaces 2019, 11 (31), 27798. doi: 10.1021/acsami.9b07469  doi: 10.1021/acsami.9b07469

    110. [110]

      Jiang, S.; Xue, D.; Zhang, J. -N. Chem. -Asian J. 2022, 17 (14), e202200319. doi: 10.1002/asia.202200319  doi: 10.1002/asia.202200319

    111. [111]

      Liang, Q.; Li, Q.; Xie, L.; Zeng, H.; Zhou, S.; Huang, Y.; Yan, M.; Zhang, X.; Liu, T.; Zeng, J.; et al. ACS Nano 2022, 16 (5), 7993. doi: 10.1021/acsnano.2c00901  doi: 10.1021/acsnano.2c00901

    112. [112]

      Xue, D.; Cheng, J.; Yuan, P.; Lu, B. -A.; Xia, H.; Yang, C. -C.; Dong, C. -L.; Zhang, H.; Shi, F.; Mu, S. -C.; et al. Adv. Funct. Mater. 2022, 32 (21), 2113191. doi: 10.1002/adfm.202113191  doi: 10.1002/adfm.202113191

    113. [113]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3 (8), 634. doi: 10.1038/nchem.1095  doi: 10.1038/nchem.1095

    114. [114]

      Hu, Q.; Gao, K.; Wang, X.; Zheng, H.; Cao, J.; Mi, L.; Huo, Q.; Yang, H.; Liu, J.; He, C. Nat. Commun. 2022, 13 (1), 3958. doi: 10.1038/s41467-022-31660-2  doi: 10.1038/s41467-022-31660-2

    115. [115]

      Cao, D.; Wang, J.; Xu, H.; Cheng, D. Small 2021, 17 (31), 2101163. doi: 10.1002/smll.202101163  doi: 10.1002/smll.202101163

    116. [116]

      Yao, H.; Wang, X.; Li, K.; Li, C.; Zhang, C.; Zhou, J.; Cao, Z.; Wang, H.; Gu, M.; Huang, M.; Jiang, H. Appl. Catal. B: Environ. 2022, 312, 121378. doi: 10.1016/j.apcatb.2022.121378  doi: 10.1016/j.apcatb.2022.121378

    117. [117]

      Chen, X.; Wan, J.; Wang, J.; Zhang, Q.; Gu, L.; Zheng, L.; Wang, N.; Yu, R. Adv. Mater. 2021, 33 (44), 2104764. doi: 10.1002/adma.202104764  doi: 10.1002/adma.202104764

    118. [118]

      Wei, J.; Xiao, K.; Chen, Y.; Guo, X. -P.; Huang, B.; Liu, Z. -Q. Energy Environ. Sci. 2022. doi: 10.1039/D2EE02151J  doi: 10.1039/D2EE02151J

    119. [119]

      Mu, X.; Gu, X.; Dai, S.; Chen, J.; Cui, Y.; Chen, Q.; Yu, M.; Chen, C.; Liu, S.; Mu, S. Energy Environ. Sci. 2022, 15, 4048. doi: 10.1039/D2EE01337A  doi: 10.1039/D2EE01337A

    120. [120]

      Zhu, J.; Tu, Y.; Cai, L.; Ma, H.; Chai, Y.; Zhang, L.; Zhang, W. Small 2022, 18 (4), 2104824. doi: 10.1002/smll.202104824  doi: 10.1002/smll.202104824

    121. [121]

      Hu, F.; Yu, D.; Ye, M.; Wang, H.; Hao, Y.; Wang, L.; Li, L.; Han, X.; Peng, S. Adv. Energy Mater. 2022, 12 (19), 2200067. doi: 10.1002/aenm.202200067  doi: 10.1002/aenm.202200067

    122. [122]

      He, T.; Wang, W.; Shi, F.; Yang, X.; Li, X.; Wu, J.; Yin, Y.; Jin, M. Nature 2021, 598 (7879), 76. doi: 10.1038/s41586-021-03870-z  doi: 10.1038/s41586-021-03870-z

    123. [123]

      Wang, J.; Han, L.; Huang, B.; Shao, Q.; Xin, H. L.; Huang, X. Nat. Commun. 2019, 10 (1), 5692. doi: 10.1038/s41467-019-13519-1  doi: 10.1038/s41467-019-13519-1

    124. [124]

      He, Y.; Liu, L.; Zhu, C.; Guo, S.; Golani, P.; Koo, B.; Tang, P.; Zhao, Z.; Xu, M.; Zhu, C.; et al. Nat. Catal. 2022, 5 (3), 212. doi: 10.1038/s41929-022-00753-y  doi: 10.1038/s41929-022-00753-y

    125. [125]

      Liu, J.; Qian, G.; Yu, T.; Chen, J.; Zhu, C.; Li, Y.; He, J.; Luo, L.; Yin, S. Chem. Eng. J. 2022, 431, 134247. doi: 10.1016/j.cej.2021.134247  doi: 10.1016/j.cej.2021.134247

    126. [126]

      Wen, Q.; Yang, K.; Huang, D.; Cheng, G.; Ai, X.; Liu, Y.; Fang, J.; Li, H.; Yu, L.; Zhai, T. Adv. Energy Mater. 2021, 11 (46), 2102353. doi: 10.1002/aenm.202102353  doi: 10.1002/aenm.202102353

    127. [127]

      Chen, Y. -Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. -H.; Wan, L. -J.; Hu, J. -S. Adv. Mater. 2017, 29 (39), 1703311. doi: 10.1002/adma.201703311  doi: 10.1002/adma.201703311

    128. [128]

      Zhang, G.; Zeng, J.; Yin, J.; Zuo, C.; Wen, P.; Chen, H.; Qiu, Y. Appl. Catal. B: Environ. 2021, 286, 119902. doi: 10.1016/j.apcatb.2021.119902  doi: 10.1016/j.apcatb.2021.119902

    129. [129]

      Zeng, Y.; Zhao, M.; Huang, Z.; Zhu, W.; Zheng, J.; Jiang, Q.; Wang, Z.; Liang, H. Adv. Energy Mater. 2022, 12, 2201713. doi: 10.1002/aenm.202201713  doi: 10.1002/aenm.202201713

    130. [130]

      Oakes, L.; Hanken, T.; Carter, R.; Yates, W.; Pint, C. L. ACS Appl. Mater. Interfaces 2015, 7 (26), 14201. doi: 10.1021/acsami.5b01315  doi: 10.1021/acsami.5b01315

    131. [131]

      Luo, Y.; Zhang, Z.; Yang, F.; Li, J.; Liu, Z.; Ren, W.; Zhang, S.; Liu, B. Energy Environ. Sci. 2021, 14 (8), 4610. doi: 10.1039/D1EE01487K  doi: 10.1039/D1EE01487K

    132. [132]

      Shan, X.; Liu, J.; Mu, H.; Xiao, Y.; Mei, B.; Liu, W.; Lin, G.; Jiang, Z.; Wen, L.; Jiang, L. Angew. Chem. Int. Ed. 2020, 59 (4), 1659. doi: 10.1002/anie.201911617  doi: 10.1002/anie.201911617

    133. [133]

      Xu, W.; Lu, Z.; Sun, X.; Jiang, L.; Duan, X. Acc. Chem. Res. 2018, 51 (7), 1590. doi: 10.1021/acs.accounts.8b00070  doi: 10.1021/acs.accounts.8b00070

    134. [134]

      Li, H.; Chen, S.; Zhang, Y.; Zhang, Q.; Jia, X.; Zhang, Q.; Gu, L.; Sun, X.; Song, L.; Wang, X. Nat. Commun. 2018, 9 (1), 2452. doi: 10.1038/s41467-018-04888-0  doi: 10.1038/s41467-018-04888-0

    135. [135]

      Liu, H.; Li, X.; Chen, L.; Zhu, X.; Dong, P.; Chee, M. O. L.; Ye, M.; Guo, Y.; Shen, J. Adv. Funct. Mater. 2022, 32 (4), 2107308. doi: 10.1002/adfm.202107308  doi: 10.1002/adfm.202107308

    136. [136]

      Du, N.; Roy, C.; Peach, R.; Turnbull, M.; Thiele, S.; Bock, C. Chem. Rev. 2022, 122 (13), 11830. doi: 10.1021/acs.chemrev.1c00854  doi: 10.1021/acs.chemrev.1c00854

    137. [137]

      Park, J. E.; Park, S.; Kim, M. -J.; Shin, H.; Kang, S. Y.; Cho, Y. -H.; Sung, Y. -E. ACS Catal. 2022, 12 (1), 135. doi: 10.1021/acscatal.1c04117  doi: 10.1021/acscatal.1c04117

    138. [138]

      Razmjooei, F.; Morawietz, T.; Taghizadeh, E.; Hadjixenophontos, E.; Mues, L.; Gerle, M.; Wood, B. D.; Harms, C.; Gago, A. S.; Ansar, S. A.; et al. Joule 2021, 5 (7), 1776. doi: 10.1016/j.joule.2021.05.006  doi: 10.1016/j.joule.2021.05.006

    139. [139]

      Lee, J.; Jung, H.; Park, Y. S.; Woo, S.; Yang, J.; Jang, M. J.; Jeong, J.; Kwon, N.; Lim, B.; Han, J. W.; et al. Small 2021, 17 (28), 2100639. doi: 10.1002/smll.202100639  doi: 10.1002/smll.202100639

    140. [140]

      Park, J. E.; Sung, Y. -E.; Choi, C. J. Mater. Chem. A 2022, 10, 20517. doi: 10.1039/D2TA04526E  doi: 10.1039/D2TA04526E

    141. [141]

      Wang, H.; Tong, Y.; Li, K.; Chen, P. J. Colloid Interface Sci. 2022, 628, 306. doi: 10.1016/j.jcis.2022.08.056  doi: 10.1016/j.jcis.2022.08.056

    142. [142]

      Lee, J.; Jung, H.; Park, Y. S.; Woo, S.; Kwon, N.; Xing, Y.; Oh, S. H.; Choi, S. M.; Han, J. W.; Lim, B. Chem. Eng. J. 2021, 420, 127670. doi: 10.1016/j.cej.2020.127670  doi: 10.1016/j.cej.2020.127670

    143. [143]

      Park, J. E.; Kim, M. -J.; Lim, M. S.; Kang, S. Y.; Kim, J. K.; Oh, S. -H.; Her, M.; Cho, Y. -H.; Sung, Y. -E. Appl. Catal. B: Environ. 2018, 237, 140. doi: 10.1016/j.apcatb.2018.05.073  doi: 10.1016/j.apcatb.2018.05.073

    144. [144]

      Park, Y. S.; Yang, J.; Lee, J.; Jang, M. J.; Jeong, J.; Choi, W. -S.; Kim, Y.; Yin, Y.; Seo, M. H.; Chen, Z.; et al. Appl. Catal. B: Environ. 2020, 278, 119276. doi: 10.1016/j.apcatb.2020.119276  doi: 10.1016/j.apcatb.2020.119276

    145. [145]

      Hongmei Yu, Z. S. M. H. B. Y. F. D. Y. Y. Strateg. Study Chin. Acad. Eng. 2021, 23 (2), 146. doi: 10.15302/J-SSCAE-2021.02.020  doi: 10.15302/J-SSCAE-2021.02.020

    146. [146]

      Liu, Z.; Sajjad, S. D.; Gao, Y.; Yang, H.; Kaczur, J. J.; Masel, R. I. Int. J. Hydrogen Energy 2017, 42 (50), 29661. doi: 10.1016/j.ijhydene.2017.10.050  doi: 10.1016/j.ijhydene.2017.10.050

    147. [147]

      Jang, D.; Cho, H. -S.; Kang, S. Appl. Energy 2021, 287, 116554. doi: 10.1016/j.apenergy.2021.116554  doi: 10.1016/j.apenergy.2021.116554

    148. [148]

      Yan, X.; Biemolt, J.; Zhao, K.; Zhao, Y.; Cao, X.; Yang, Y.; Wu, X.; Rothenberg, G.; Yan, N. Nat. Commun. 2021, 12 (1), 4143. doi: 10.1038/s41467-021-24284-5  doi: 10.1038/s41467-021-24284-5

    149. [149]

      Phillips, R.; Dunnill, C. W. RSC Adv. 2016, 6 (102), 100643. doi: 10.1039/C6RA22242K  doi: 10.1039/C6RA22242K

    150. [150]

      Gou, W.; Chen, Y.; Zhong, Y.; Xue, Q.; Li, J.; Ma, Y. Chem. Commun. 2022, 58 (55), 7626. doi: 10.1039/D2CC02182J  doi: 10.1039/D2CC02182J

    151. [151]

      Wang, T.; Tao, L.; Zhu, X.; Chen, C.; Chen, W.; Du, S.; Zhou, Y.; Zhou, B.; Wang, D.; Xie, C.; et al. Nat. Catal. 2022, 5 (1), 66. doi: 10.1038/s41929-021-00721-y  doi: 10.1038/s41929-021-00721-y

    152. [152]

      Wu, T.; Xu, S.; Zhang, Z.; Luo, M.; Wang, R.; Tang, Y.; Wang, J.; Huang, F. Adv. Sci. 2022, 9 (25), 2202750. doi: 10.1002/advs.202202750  doi: 10.1002/advs.202202750

    153. [153]

      Li, D.; Li, Z.; Zou, R.; Shi, G.; Huang, Y.; Yang, W.; Yang, W.; Liu, C.; Peng, X. Appl. Catal. B: Environ. 2022, 307, 121170. doi: 10.1016/j.apcatb.2022.121170  doi: 10.1016/j.apcatb.2022.121170

    154. [154]

      Wang, Z.; Qian, G.; Yu, T.; Chen, J.; Shen, F.; Luo, L.; Zou, Y.; Yin, S. Chem. Eng. J. 2022, 434, 134669. doi: 10.1016/j.cej.2022.134669  doi: 10.1016/j.cej.2022.134669

    155. [155]

      Yu, T.; Xu, Q.; Luo, L.; Liu, C.; Yin, S. Chem. Eng. J. 2022, 430, 133117. doi: 10.1016/j.cej.2021.133117  doi: 10.1016/j.cej.2021.133117

    156. [156]

      Wang, Y.; Qian, G.; Xu, Q.; Zhang, H.; Shen, F.; Luo, L.; Yin, S. Appl. Catal. B: Environ. 2021, 286, 119881. doi: 10.1016/j.apcatb.2021.119881  doi: 10.1016/j.apcatb.2021.119881

    157. [157]

      Jian, J.; Chen, W.; Zeng, D.; Chang, L.; Zhang, R.; Jiang, M.; Yu, G.; Huang, X.; Yuan, H.; Feng, S. J. Mater. Chem. A 2021, 9 (12), 7586. doi: 10.1039/D1TA00693B  doi: 10.1039/D1TA00693B

    158. [158]

      Yang, F.; Luo, Y.; Yu, Q.; Zhang, Z.; Zhang, S.; Liu, Z.; Ren, W.; Cheng, H. -M.; Li, J.; Liu, B. Adv. Funct. Mater. 2021, 31 (21), 2010367. doi: 10.1002/adfm.202010367  doi: 10.1002/adfm.202010367

    159. [159]

      Shi, H.; Zhou, Y. -T.; Yao, R. -Q.; Wan, W. -B.; Ge, X.; Zhang, W.; Wen, Z.; Lang, X. -Y.; Zheng, W. -T.; Jiang, Q. Nat. Commun. 2020, 11 (1), 2940. doi: 10.1038/s41467-020-16769-6  doi: 10.1038/s41467-020-16769-6

    160. [160]

      Yu, T.; Xu, Q.; Qian, G.; Chen, J.; Zhang, H.; Luo, L.; Yin, S. ACS Sustain. Chem. Eng. 2020, 8 (47), 17520. doi: 10.1021/acssuschemeng.0c06782  doi: 10.1021/acssuschemeng.0c06782

    161. [161]

      Li, Y.; Wei, B.; Yu, Z.; Bondarchuk, O.; Araujo, A.; Amorim, I.; Zhang, N.; Xu, J.; Neves, I. C.; Liu, L. ACS Sustain. Chem. Eng. 2020, 8 (27), 10193. doi: 10.1021/acssuschemeng.0c02671  doi: 10.1021/acssuschemeng.0c02671

    162. [162]

      Zhang, X. -Y.; Zhu, Y. -R.; Chen, Y.; Dou, S. -Y.; Chen, X. -Y.; Dong, B.; Guo, B. -Y.; Liu, D. -P.; Liu, C. -G.; Chai, Y. -M. Chem. Eng. J. 2020, 399, 125831. doi: 10.1016/j.cej.2020.125831  doi: 10.1016/j.cej.2020.125831

    163. [163]

      Liu, X.; Yao, Y.; Zhang, H.; Pan, L.; Shi, C.; Zhang, X.; Huang, Z. -F.; Zou, J. -J. ACS Sustain. Chem. Eng. 2020, 8 (48), 17828. doi: 10.1021/acssuschemeng.0c06987  doi: 10.1021/acssuschemeng.0c06987

    164. [164]

      Xue, S.; Liu, Z.; Ma, C.; Cheng, H. -M.; Ren, W. Sci. Bull. 2020, 65 (2), 123. doi: 10.1016/j.scib.2019.10.024  doi: 10.1016/j.scib.2019.10.024

    165. [165]

      Chen, Y.; Yu, J.; Jia, J.; Liu, F.; Zhang, Y.; Xiong, G.; Zhang, R.; Yang, R.; Sun, D.; Liu, H.; et al. Appl. Catal. B: Environ. 2020, 272, 118956. doi: 10.1016/j.apcatb.2020.118956  doi: 10.1016/j.apcatb.2020.118956

    166. [166]

      Yang, H.; Chen, Z.; Guo, P.; Fei, B.; Wu, R. Appl. Catal. B: Environ. 2020, 261, 118240. doi: 10.1016/j.apcatb.2019.118240  doi: 10.1016/j.apcatb.2019.118240

    167. [167]

      Zhu, W.; Chen, W.; Yu, H.; Zeng, Y.; Ming, F.; Liang, H.; Wang, Z. Appl. Catal. B: Environ. 2020, 278, 119326. doi: 10.1016/j.apcatb.2020.119326  doi: 10.1016/j.apcatb.2020.119326

    168. [168]

      Zhai, P.; Zhang, Y.; Wu, Y.; Gao, J.; Zhang, B.; Cao, S.; Zhang, Y.; Li, Z.; Sun, L.; Hou, J. Nat. Commun. 2020, 11 (1), 5462. doi: 10.1038/s41467-020-19214-w  doi: 10.1038/s41467-020-19214-w

    169. [169]

      Zhang, B.; Zhang, L.; Tan, Q.; Wang, J.; Liu, J.; Wan, H.; Miao, L.; Jiang, J. Energy Environ. Sci. 2020, 13 (9), 3007. doi: 10.1039/D0EE02020F  doi: 10.1039/D0EE02020F

    170. [170]

      Qian, G.; Yu, G.; Lu, J.; Luo, L.; Wang, T.; Zhang, C.; Ku, R.; Yin, S.; Chen, W.; Mu, S. J. Mater. Chem. A 2020, 8 (29), 14545. doi: 10.1039/D0TA04388E  doi: 10.1039/D0TA04388E

    171. [171]

      Yu, X.; Yu, Z. -Y.; Zhang, X. -L.; Zheng, Y. -R.; Duan, Y.; Gao, Q.; Wu, R.; Sun, B.; Gao, M. -R.; Wang, G.; et al. J. Am. Chem. Soc. 2019, 141 (18), 7537. doi: 10.1021/jacs.9b02527  doi: 10.1021/jacs.9b02527

    172. [172]

      Luo, Y.; Tang, L.; Khan, U.; Yu, Q.; Cheng, H. -M.; Zou, X.; Liu, B. Nat. Commun. 2019, 10 (1), 269. doi: 10.1038/s41467-018-07792-9  doi: 10.1038/s41467-018-07792-9

    173. [173]

      Sun, H.; Min, Y.; Yang, W.; Lian, Y.; Lin, L.; Feng, K.; Deng, Z.; Chen, M.; Zhong, J.; Xu, L.; et al. ACS Catal. 2019, 9 (10), 8882. doi: 10.1021/acscatal.9b02264  doi: 10.1021/acscatal.9b02264

    174. [174]

      Yu, C.; Xu, F.; Luo, L.; Abbo, H. S.; Titinchi, S. J. J.; Shen, P. K.; Tsiakaras, P.; Yin, S. Electrochim. Acta 2019, 317, 191. doi: 10.1016/j.electacta.2019.05.150  doi: 10.1016/j.electacta.2019.05.150

    175. [175]

      Liang, C.; Zou, P.; Nairan, A.; Zhang, Y.; Liu, J.; Liu, K.; Hu, S.; Kang, F.; Fan, H. J.; Yang, C. Energy Environ. Sci. 2020, 13 (1), 86. doi: 10.1039/C9EE02388G  doi: 10.1039/C9EE02388G

    176. [176]

      Hao, W.; Wu, R.; Huang, H.; Ou, X.; Wang, L.; Sun, D.; Ma, X.; Guo, Y. Energy Environ. Sci. 2020, 13 (1), 102. doi: 10.1039/C9EE00839J  doi: 10.1039/C9EE00839J

    177. [177]

      Cao, L. -M.; Hu, Y. -W.; Tang, S. -F.; Iljin, A.; Wang, J. -W.; Zhang, Z. -M.; Lu, T. -B. Adv. Sci. 2018, 5 (10), 1800949. doi: 10.1002/advs.201800949  doi: 10.1002/advs.201800949

    178. [178]

      Yu, F.; Zhou, H.; Huang, Y.; Sun, J.; Qin, F.; Bao, J.; Goddard, W. A.; Chen, S.; Ren, Z. Nat. Commun. 2018, 9 (1), 2551. doi: 10.1038/s41467-018-04746-z  doi: 10.1038/s41467-018-04746-z

    179. [179]

      Sun, H.; Xu, X.; Yan, Z.; Chen, X.; Jiao, L.; Cheng, F.; Chen, J. J. Mater. Chem. A 2018, 6 (44), 22062. doi: 10.1039/C8TA02999G  doi: 10.1039/C8TA02999G

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    10. [10]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    11. [11]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    15. [15]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    16. [16]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    17. [17]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    18. [18]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    19. [19]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    20. [20]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

Metrics
  • PDF Downloads(64)
  • Abstract views(1459)
  • HTML views(353)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return