Citation: Tianmi Tang, Zhenlu Wang, Jingqi Guan. Electronic Structure Regulation of Single-Site M-N-C Electrocatalysts for Carbon Dioxide Reduction[J]. Acta Physico-Chimica Sinica, ;2023, 39(4): 220803. doi: 10.3866/PKU.WHXB202208033 shu

Electronic Structure Regulation of Single-Site M-N-C Electrocatalysts for Carbon Dioxide Reduction

  • Corresponding author: Jingqi Guan, guanjq@jlu.edu.cn
  • Received Date: 24 August 2022
    Revised Date: 5 September 2022
    Accepted Date: 8 September 2022
    Available Online: 14 September 2022

    Fund Project: the National Natural Science Foundation of China 22075099the Education Department of Jilin Province, China JJKH20220967KJthe Education Department of Jilin Province, China JJKH20220968CY

  • The current global population and economy depends on fossil fuel consumption; however, the uncontrolled exploitation of fossil fuels has caused a series of energy crises and environmental problems, such as energy exhaustion, annual temperature rise, climate deterioration, and ocean acidification, which have already threatened the sustainable development of all living organisms. Therefore, finding renewable and reliable energy sources as well as reducing carbon dioxide (CO2) emissions have become the key focus in recent years. During the electrocatalytic CO2 reduction reaction (CO2RR) under relatively mild conditions, CO2 is converted into valuable products, such as C1, C2, and C2+ hydrocarbons, which is an effective strategy towards realizing "carbon neutrality". Electrocatalytic CO2RR is complex as it involves multiple electron/proton transfer processes. The reaction mechanism is also complex and involves many intermediates, which ultimately affects product selectivity. The large-scale application of the CO2RR requires the development of cheap and efficient electrocatalysts. Atomically dispersed metal and nitrogen co-doped carbon (M-N-C) materials, with large surface areas, 100% atomic availability, unsaturated coordination, and relatively uniform active sites, are promising catalysts for the CO2RR. M-N-C materials also have adjustable properties. For example, tuning the coordination environment of the central metal ions changes the electronic properties and atomic structures of the metal ions, which provides a new way for designing catalysts with high CO2RR performances. Therefore, it is of great significance to investigate the effect of regulating the electronic structure of M-N-C materials at the atomic level on catalytic activity and selectivity during the CO2RR. Additionally, the reduction potentials of the half reactions of most CO2RR products are within ±0.2 V of the hydrogen evolution reaction (HER), and most catalysts that bind CO2 are rich in electrons and active for the HER. Therefore, it is also necessary to design catalysts that can kinetically inhibit the competitive HER during the CO2RR. In this review, we discuss the synthesis methods of M-N-C materials, the reaction pathways of CO2 reduction to C1, C2, and C2+ hydrocarbons, and the main factors affecting the CO2RR. Specifically, three strategies for regulating the electronic structures and geometric configurations of M-N-C materials are systematically reviewed, namely, the modification of the carbon base surface of M-N-C materials, selection of appropriate central metal ions, and regulation of the coordination environment of the central metal ions. The effects of different active sites on the selectivity towards various products during the catalytic CO2RR are also discussed in detail. Finally, we highlight the current challenges and future development directions of M-N-C materials for the electrocatalytic CO2RR.
  • 加载中
    1. [1]

      Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/C3CS60323G  doi: 10.1039/C3CS60323G

    2. [2]

      Spinner, N. S.; Vega, J. A.; Mustain, W. E. Catal. Sci. Technol. 2012, 2, 19. doi: 10.1039/C1CY00314C  doi: 10.1039/C1CY00314C

    3. [3]

      Ye, C.; Yu, X.; Li, W.; He, L.; Hao, G.; Lu, A. Acta Phys. -Chim. Sin. 2022, 38, 2004054.
       

    4. [4]

      Huang, X.; Ma, Y.; Zhi, L. Acta Phys. -Chim. Sin. 2022, 38, 2011050.
       

    5. [5]

      Xiao, L.; Wang, Z.; Guan, J. Coord. Chem. Rev. 2022, 472, 214777. doi: 10.1016/j.ccr.2022.214777  doi: 10.1016/j.ccr.2022.214777

    6. [6]

      Shakun, J. D.; Clark, P. U.; He, F.; Marcott, S. A.; Mix, A. C.; Liu, Z.; Otto-Bliesner, B.; Schmittner, A.; Bard, E. Nature 2012, 484, 49. doi: 10.1038/nature10915  doi: 10.1038/nature10915

    7. [7]

      Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. Nature 2019, 575, 87. doi: 10.1038/s41586-019-1681-6  doi: 10.1038/s41586-019-1681-6

    8. [8]

      Vasileff, A.; Xu, C.; Jiao, Y.; Zheng, Y.; Qiao, S. -Z. Chem 2018, 4, 1809. doi: 10.1016/j.chempr.2018.05.001  doi: 10.1016/j.chempr.2018.05.001

    9. [9]

      Jiao, Y.; Zheng, Y.; Chen, P.; Jaroniec, M.; Qiao, S. -Z. J. Am. Chem. Soc. 2017, 139, 18093. doi: 10.1021/jacs.7b10817  doi: 10.1021/jacs.7b10817

    10. [10]

      Liu, J.; Guo, C.; Vasileff, A.; Qiao, S. Curr. Opin. Green Sustain. Chem. 2017, 1, 1600006. doi: 10.1002/smtd.201600006  doi: 10.1002/smtd.201600006

    11. [11]

      Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Adv. Mater. 2016, 28, 3423. doi: 10.1002/adma.201504766  doi: 10.1002/adma.201504766

    12. [12]

      Li, C. W.; Ciston, J.; Kanan, M. W. Nature 2014, 508, 504. doi: 10.1038/nature13249  doi: 10.1038/nature13249

    13. [13]

      Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. Nat. Commun. 2014, 5, 4948. doi: 10.1038/ncomms5948  doi: 10.1038/ncomms5948

    14. [14]

      Li, K.; Peng, B.; Peng, T. ACS Catal. 2016, 6, 7485. doi: 10.1021/acscatal.6b02089  doi: 10.1021/acscatal.6b02089

    15. [15]

      Guan, J.; Berlinger, S. A.; Li, X.; Chao, Z.; Sousae Silva, V.; Banta, S.; West, A. C. J. Biotechnol. 2017, 245, 21. doi: 10.1016/j.jbiotec.2017.02.004  doi: 10.1016/j.jbiotec.2017.02.004

    16. [16]

      Sandrini, G.; Matthijs, H. C. P.; Verspagen, J. M. H.; Muyzer, G.; Huisman, J. ISME J. 2014, 8, 589. doi: 10.1038/ismej.2013.179  doi: 10.1038/ismej.2013.179

    17. [17]

      Atsonios, K.; Panopoulos, K. D.; Kakaras, E. Int. J. Hydrog. Energy 2016, 41, 792. doi: 10.1016/j.ijhydene.2015.12.001  doi: 10.1016/j.ijhydene.2015.12.001

    18. [18]

      Lin, L.; Wang, K.; Yang, K.; Chen, X.; Fu, X.; Dai, W. Appl. Catal., B 2017, 204, 440. doi: 10.1016/j.apcatb.2016.11.054  doi: 10.1016/j.apcatb.2016.11.054

    19. [19]

      Wu, J.; Liu, M.; Sharma, P. P.; Yadav, R. M.; Ma, L.; Yang, Y.; Zou, X.; Zhou, X. -D.; Vajtai, R.; Yakobson, B. I.; et al. Nano Lett. 2016, 16, 466. doi: 10.1021/acs.nanolett.5b04123  doi: 10.1021/acs.nanolett.5b04123

    20. [20]

      Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; Cao, C.; et al. Nature 2016, 537, 382. doi: 10.1038/nature19060  doi: 10.1038/nature19060

    21. [21]

      Back, S.; Lim, J.; Kim, N. -Y.; Kim, Y. -H.; Jung, Y. Chem. Sci. 2017, 8, 1090. doi: 10.1039/c6sc03911a  doi: 10.1039/c6sc03911a

    22. [22]

      Xiang, Q.; Cheng, B.; Yu, J. Appl. Surf. Sci. 2015, 54, 11350. doi: 10.1002/anie.201411096  doi: 10.1002/anie.201411096

    23. [23]

      Long, R.; Li, Y.; Liu, Y.; Chen, S.; Zheng, X.; Gao, C.; He, C.; Chen, N.; Qi, Z.; Song, L.; et al. J. Am. Chem. Soc. 2017, 139, 4486. doi: 10.1021/jacs.7b00452  doi: 10.1021/jacs.7b00452

    24. [24]

      Xie, H.; Wang, J.; Ithisuphalap, K.; Wu, G.; Li, Q. J. Energy Chem. 2017, 26, 1039. doi: 10.1016/j.jechem.2017.10.025  doi: 10.1016/j.jechem.2017.10.025

    25. [25]

      Zhao, Z.; Lu, G. J. Phys. Chem. C 2019, 123, 4380. doi: 10.1021/acs.jpcc.8b12449  doi: 10.1021/acs.jpcc.8b12449

    26. [26]

      Wang, Y.; Chen, Z.; Han, P.; Du, Y.; Gu, Z.; Xu, X.; Zheng, G. ACS Catal. 2018, 8, 7113. doi: 10.1021/acscatal.8b01014  doi: 10.1021/acscatal.8b01014

    27. [27]

      Guan, A.; Chen, Z.; Quan, Y.; Peng, C.; Wang, Z.; Sham, T. -K.; Yang, C.; Ji, Y.; Qian, L.; Xu, X.; et al. ACS Energy Lett. 2020, 5, 1044. doi: 10.1021/acsenergylett.0c00018  doi: 10.1021/acsenergylett.0c00018

    28. [28]

      Yang, X. -F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Acc. Chem. Res. 2013, 46, 1740. doi: 10.1021/ar300361m  doi: 10.1021/ar300361m

    29. [29]

      Zhu, C.; Fu, S.; Shi, Q.; Du, D.; Lin, Y. Angew. Chem. Int. Ed. 2017, 56, 13944. doi: 10.1002/anie.201703864  doi: 10.1002/anie.201703864

    30. [30]

      Li, X.; Bi, W.; Chen, M.; Sun, Y.; Ju, H.; Yan, W.; Zhu, J.; Wu, X.; Chu, W.; Wu, C.; et al. J. Am. Chem. Soc. 2017, 139, 14889. doi: 10.1021/jacs.7b09074  doi: 10.1021/jacs.7b09074

    31. [31]

      Cheng, Y.; Wang, K.; Qi, Y.; Liu, Z. Acta Phys. -Chim. Sin. 2022, 38, 2006046.
       

    32. [32]

      Tang, T.; Wang, Z.; Guan, J. Adv. Funct. Mater. 2022, 32, 2111504. doi: 10.1002/adfm.202111504  doi: 10.1002/adfm.202111504

    33. [33]

      Zhang, Q.; Guan, J. Adv. Funct. Mater. 2020, 30, 2000768. doi: 10.1002/adfm.202000768  doi: 10.1002/adfm.202000768

    34. [34]

      Bai, X.; Wang, L.; Nan, B.; Tang, T.; Niu, X.; Guan, J. Nano Res. 2022, 15, 6019. doi: 10.1007/s12274-022-4293-7  doi: 10.1007/s12274-022-4293-7

    35. [35]

      Wang, T.; Xu, L.; Chen, Z.; Guo, L.; Zhang, Y.; Li, R.; Peng, T. Appl. Catal., B 2021, 291, 120128. doi: 10.1016/j.apcatb.2021.120128  doi: 10.1016/j.apcatb.2021.120128

    36. [36]

      Zhu, M.; Ye, R.; Jin, K.; Lazouski, N.; Manthiram, K. ACS Energy Lett. 2018, 3, 1381. doi: 10.1021/acsenergylett.8b00519  doi: 10.1021/acsenergylett.8b00519

    37. [37]

      Zhang, C.; Yang, S.; Wu, J.; Liu, M.; Yazdi, S.; Ren, M.; Sha, J.; Zhong, J.; Nie, K.; Jalilov, A. S.; et al. Adv. Energy Mater. 2018, 8, 1703487. doi: 10.1002/aenm.201703487  doi: 10.1002/aenm.201703487

    38. [38]

      Ye, Y.; Cai, F.; Li, H.; Wu, H.; Wang, G.; Li, Y.; Miao, S.; Xie, S.; Si, R.; Wang, J.; et al. Nano Energy 2017, 38, 281. doi: 10.1016/j.nanoen.2017.05.042  doi: 10.1016/j.nanoen.2017.05.042

    39. [39]

      Shi, P. -C.; Yi, J. -D.; Liu, T. -T.; Li, L.; Zhang, L. -J.; Sun, C. -F.; Wang, Y. -B.; Huang, Y. -B.; Cao, R. J. Mater. Chem. A 2017, 5, 12322. doi: 10.1039/C7TA02999C  doi: 10.1039/C7TA02999C

    40. [40]

      Hou, Y.; Liang, Y. -L.; Shi, P. -C.; Huang, Y. -B.; Cao, R. Appl. Catal., B 2020, 271, 118929. doi: 10.1016/j.apcatb.2020.118929  doi: 10.1016/j.apcatb.2020.118929

    41. [41]

      Song, X.; Chen, S.; Guo, L.; Sun, Y.; Li, X.; Cao, X.; Wang, Z.; Sun, J.; Lin, C.; Wang, Y. Adv. Energy Mater. 2018, 8, 1801101. doi: 10.1002/aenm.201801101  doi: 10.1002/aenm.201801101

    42. [42]

      Ye, L.; Chai, G.; Wen, Z. Adv. Funct. Mater. 2017, 27, 1606190. doi: 10.1002/adfm.201606190  doi: 10.1002/adfm.201606190

    43. [43]

      Guan, J. J. Power Sources 2021, 506, 230143. doi: 10.1016/j.jpowsour.2021.230143  doi: 10.1016/j.jpowsour.2021.230143

    44. [44]

      Wang, X.; Chen, Z.; Zhao, X.; Yao, T.; Chen, W.; You, R.; Zhao, C.; Wu, G.; Wang, J.; Huang, W.; et al. Angew. Chem. Int. Ed. 2018, 57, 1944. doi: 10.1002/anie.201712451  doi: 10.1002/anie.201712451

    45. [45]

      Wang, Y.; Mao, J.; Meng, X.; Yu, L.; Deng, D.; Bao, X. Chem. Rev. 2019, 119, 1806. doi: 10.1021/acs.chemrev.8b00501  doi: 10.1021/acs.chemrev.8b00501

    46. [46]

      Han, J.; Zhang, M.; Bai, X.; Duan, Z.; Tang, T.; Guan, J. Inorg. Chem. Front. 2022, 9, 3559. doi: 10.1039/D2QI00722C  doi: 10.1039/D2QI00722C

    47. [47]

      Bai, X.; Duan, Z.; Nan, B.; Wang, L.; Tang, T.; Guan, J. Chin. J. Catal. 2022, 43, 2240. doi: 10.1016/S1872-2067(21)64033-0  doi: 10.1016/S1872-2067(21)64033-0

    48. [48]

      Tang, T.; Wang, Z.; Guan, J. Chin. J. Catal. 2022, 43, 636. doi: 10.1016/S1872-2067(21)63945-1  doi: 10.1016/S1872-2067(21)63945-1

    49. [49]

      Ao, X.; Zhang, W.; Li, Z.; Li, J. -G.; Soule, L.; Huang, X.; Chiang, W. -H.; Chen, H. M.; Wang, C.; Liu, M.; et al. ACS Nano 2019, 13, 11853. doi: 10.1021/acsnano.9b05913  doi: 10.1021/acsnano.9b05913

    50. [50]

      Chen, X.; Ma, D. -D.; Chen, B.; Zhang, K.; Zou, R.; Wu, X. -T.; Zhu, Q. -L. Appl. Catal., B 2020, 267, 118720. doi: 10.1016/j.apcatb.2020.118720  doi: 10.1016/j.apcatb.2020.118720

    51. [51]

      Li, X.; Yang, X.; Zhang, J.; Huang, Y.; Liu, B. ACS Catal. 2019, 9, 2521. doi: 10.1021/acscatal.8b04937  doi: 10.1021/acscatal.8b04937

    52. [52]

      Deng, D.; Chen, X.; Yu, L.; Wu, X.; Liu, Q.; Liu, Y.; Yang, H.; Tian, H.; Hu, Y.; Du, P.; et al. Sci. Adv. 2015, 1, e1500462. doi: 10.1126/sciadv.1500462  doi: 10.1126/sciadv.1500462

    53. [53]

      Wang, Y.; Cao, L.; Libretto, N. J.; Li, X.; Li, C.; Wan, Y.; He, C.; Lee, J.; Gregg, J.; Zong, H.; et al. J. Am. Chem. Soc. 2019, 141, 16635. doi: 10.1021/jacs.9b05766  doi: 10.1021/jacs.9b05766

    54. [54]

      González-Cervantes, E.; Crisóstomo, A. A.; Gutiérrez-Alejandre, A.; Varela, A. S. 2019, 11, 4854. doi: 10.1002/cctc.201901196

    55. [55]

      Huan, T. N.; Ranjbar, N.; Rousse, G.; Sougrati, M.; Zitolo, A.; Mougel, V.; Jaouen, F.; Fontecave, M. ACS Catal. 2017, 7, 1520. doi: 10.1021/acscatal.6b03353  doi: 10.1021/acscatal.6b03353

    56. [56]

      Leonard, N.; Ju, W.; Sinev, I.; Steinberg, J.; Luo, F.; Varela, A. S.; Roldan Cuenya, B.; Strasser, P. Chem. Sci. 2018, 9, 5064. doi: 10.1039/C8SC00491A  doi: 10.1039/C8SC00491A

    57. [57]

      Varela, A. S.; Kroschel, M.; Reier, T.; Strasser, P. Catal. Today 2016, 260, 8. doi: 10.1016/j.cattod.2015.06.009  doi: 10.1016/j.cattod.2015.06.009

    58. [58]

      Liu, Z.; Yan, T.; Shi, H.; Pan, H.; Cheng, Y.; Kang, P. ACS Appl. Mater. Interfaces 2022, 14, 7900. doi: 10.1021/acsami.1c21242  doi: 10.1021/acsami.1c21242

    59. [59]

      Varela, A. S.; Kroschel, M.; Leonard, N. D.; Ju, W.; Steinberg, J.; Bagger, A.; Rossmeisl, J.; Strasser, P. ACS Energy Lett. 2018, 3, 812. doi: 10.1021/acsenergylett.8b00273  doi: 10.1021/acsenergylett.8b00273

    60. [60]

      Yu, Z. -L.; Wu, S. -Q.; Chen, L. -W.; Hao, Y. -C.; Su, X.; Zhu, Z.; Gao, W. -Y.; Wang, B.; Yin, A. -X. ACS Appl. Mater. Interfaces 2022, 14, 10648. doi: 10.1021/acsami.1c16689  doi: 10.1021/acsami.1c16689

    61. [61]

      König, M.; Vaes, J.; Klemm, E.; Pant, D. iScience 2019, 19, 135. doi: 10.1016/j.isci.2019.07.014  doi: 10.1016/j.isci.2019.07.014

    62. [62]

      Shen, J.; Kortlever, R.; Kas, R.; Birdja, Y. Y.; Diaz-Morales, O.; Kwon, Y.; Ledezma-Yanez, I.; Schouten, K. J. P.; Mul, G.; Koper, M. T. M. Nat. Commun. 2015, 6, 8177. doi: 10.1038/ncomms9177  doi: 10.1038/ncomms9177

    63. [63]

      Wang, H.; Maiyalagan, T.; Wang, X. ACS Catal. 2012, 2, 781. doi: 10.1021/cs200652y  doi: 10.1021/cs200652y

    64. [64]

      Chai, G. -L.; Guo, Z. -X. Chem. Sci. 2016, 7, 1268. doi: 10.1039/C5SC03695J  doi: 10.1039/C5SC03695J

    65. [65]

      Liu, Y.; Zhao, J.; Cai, Q. Phys. Chem. Chem. Phys. 2016, 18, 5491. doi: 10.1039/C5CP07458D  doi: 10.1039/C5CP07458D

    66. [66]

      Yoo, J. S.; Christensen, R.; Vegge, T.; Nørskov, J. K.; Studt, F. ChemSusChem 2016, 9, 358. doi: 10.1002/cssc.201501197  doi: 10.1002/cssc.201501197

    67. [67]

      Hansen, H. A.; Varley, J. B.; Peterson, A. A.; Nørskov, J. K. J. Phys. Chem. Lett. 2013, 4, 388. doi: 10.1021/jz3021155  doi: 10.1021/jz3021155

    68. [68]

      Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. ACS Catal. 2017, 7, 4822. doi: 10.1021/acscatal.7b00687  doi: 10.1021/acscatal.7b00687

    69. [69]

      Nie, X.; Esopi, M. R.; Janik, M. J.; Asthagiri, A. Angew. Chem. Int. Ed. 2013, 52, 2459. doi: 10.1002/anie.201208320  doi: 10.1002/anie.201208320

    70. [70]

      Zheng, Y.; Vasileff, A.; Zhou, X.; Jiao, Y.; Jaroniec, M.; Qiao, S. -Z. J. Am. Chem. Soc. 2019, 141, 7646. doi: 10.1021/jacs.9b02124  doi: 10.1021/jacs.9b02124

    71. [71]

      Zhu, M.; Chen, J.; Guo, R.; Xu, J.; Fang, X.; Han, Y. -F. Appl. Catal. B 2019, 251, 112. doi: 10.1016/j.apcatb.2019.03.047  doi: 10.1016/j.apcatb.2019.03.047

    72. [72]

      Zhao, Y.; Liang, J.; Wang, C.; Ma, J.; Wallace, G. G. Adv. Energy Mater. 2018, 8, 1702524. doi: 10.1002/aenm.201702524  doi: 10.1002/aenm.201702524

    73. [73]

      Huang, Y.; Handoko, A. D.; Hirunsit, P.; Yeo, B. S. ACS Catal. 2017, 7, 1749. doi: 10.1021/acscatal.6b03147  doi: 10.1021/acscatal.6b03147

    74. [74]

      Fan, L.; Xia, C.; Yang, F.; Wang, J.; Wang, H.; Lu, Y. Sci. Adv. 2020, 6, 1. doi:doi:10.1126/sciadv.aay3111  doi: 10.1126/sciadv.aay3111

    75. [75]

      Yang, K. D.; Lee, C. W.; Jin, K.; Im, S. W.; Nam, K. T. J. Phys. Chem. Lett. 2017, 8, 538. doi: 10.1021/acs.jpclett.6b02748  doi: 10.1021/acs.jpclett.6b02748

    76. [76]

      Schouten, K. J. P.; Qin, Z.; Pérez Gallent, E.; Koper, M. T. M. J. Am. Chem. Soc. 2012, 134, 9864. doi: 10.1021/ja302668n  doi: 10.1021/ja302668n

    77. [77]

      Montoya, J. H.; Shi, C.; Chan, K.; Nørskov, J. K. J. Phys. Chem. Lett. 2015, 6, 2032. doi: 10.1021/acs.jpclett.5b00722  doi: 10.1021/acs.jpclett.5b00722

    78. [78]

      Nam, D. -H.; De Luna, P.; Rosas-Hernández, A.; Thevenon, A.; Li, F.; Agapie, T.; Peters, J. C.; Shekhah, O.; Eddaoudi, M.; Sargent, E. H. Nat. Mater. 2020, 19, 266. doi: 10.1038/s41563-020-0610-2  doi: 10.1038/s41563-020-0610-2

    79. [79]

      Karapinar, D.; Huan, N. T.; Ranjbar Sahraie, N.; Li, J.; Wakerley, D.; Touati, N.; Zanna, S.; Taverna, D.; Galvão Tizei, L. H.; Zitolo, A.; et al. Angew. Chem. Int. Ed. 2019, 58, 15098. doi: 10.1002/anie.201907994  doi: 10.1002/anie.201907994

    80. [80]

      Zhao, K.; Nie, X.; Wang, H.; Chen, S.; Quan, X.; Yu, H.; Choi, W.; Zhang, G.; Kim, B.; Chen, J. G. Nat. Commun. 2020, 11, 2455. doi: 10.1038/s41467-020-16381-8  doi: 10.1038/s41467-020-16381-8

    81. [81]

      Pan, F.; Li, B.; Xiang, X.; Wang, G.; Li, Y. ACS Catal. 2019, 9, 2124. doi: 10.1021/acscatal.9b00016  doi: 10.1021/acscatal.9b00016

    82. [82]

      Jia, C.; Tan, X.; Zhao, Y.; Ren, W.; Li, Y.; Su, Z.; Smith, S. C.; Zhao, C. Angew. Chem. Int. Ed. 2021, 60, 23342. doi: 10.1002/anie.202109373  doi: 10.1002/anie.202109373

    83. [83]

      Boppella, R.; Austeria P, M.; Kim, Y.; Kim, E.; Song, I.; Eom, Y.; Kumar, D. P.; Balamurugan, M.; Sim, E.; Kim, D. H.; et al. Adv. Funct. Mater. 2022, 2202351. doi: 10.1002/adfm.202202351  doi: 10.1002/adfm.202202351

    84. [84]

      Ni, W.; Liu, Z.; Zhang, Y.; Ma, C.; Deng, H.; Zhang, S.; Wang, S. Adv. Mater. 2021, 33, 2003238. doi: 10.1002/adma.202003238  doi: 10.1002/adma.202003238

    85. [85]

      Ito, Y.; Cong, W.; Fujita, T.; Tang, Z.; Chen, M. Angew. Chem. Int. Ed. 2015, 54, 2131. doi: 10.1002/anie.201410050  doi: 10.1002/anie.201410050

    86. [86]

      Pan, F.; Li, B.; Sarnello, E.; Hwang, S.; Gang, Y.; Feng, X.; Xiang, X.; Adli, N. M.; Li, T.; Su, D.; et al. Nano Energy 2020, 68, 104384. doi: 10.1016/j.nanoen.2019.104384  doi: 10.1016/j.nanoen.2019.104384

    87. [87]

      Han, S. -G.; Ma, D. -D.; Zhou, S. -H.; Zhang, K.; Wei, W. -B.; Du, Y.; Wu, X. -T.; Xu, Q.; Zou, R.; Zhu, Q. -L. Appl. Catal. B 2021, 283, 119591. doi: 10.1016/j.apcatb.2020.119591  doi: 10.1016/j.apcatb.2020.119591

    88. [88]

      Chen, Z.; Zhang, X.; Jiao, M.; Mou, K.; Zhang, X.; Liu, L. Adv. Energy Mater. 2020, 10, 1903664. doi: 10.1002/aenm.201903664  doi: 10.1002/aenm.201903664

    89. [89]

      Chen, Z.; Zhang, X.; Liu, W.; Jiao, M.; Mou, K.; Zhang, X.; Liu, L. Energy Environ. Sci. 2021, 14, 2349. doi: 10.1039/D0EE04052E  doi: 10.1039/D0EE04052E

    90. [90]

      Yang, X.; Cheng, J.; Fang, B.; Xuan, X.; Liu, N.; Yang, X.; Zhou, J. Nanoscale 2020, 12, 18437. doi: 10.1039/D0NR04391E  doi: 10.1039/D0NR04391E

    91. [91]

      Wu, D.; Li, J.; Xu, S.; Xie, Q.; Pan, Y.; Liu, X.; Ma, R.; Zheng, H.; Gao, M.; Wang, W.; et al. J. Am. Chem. Soc. 2020, 142, 19602. doi: 10.1021/jacs.0c08360  doi: 10.1021/jacs.0c08360

    92. [92]

      Sui, C.; Tan, R.; Chen, Y.; Yin, G.; Wang, Z.; Xu, W.; Li, X. Bioconjug. Chem. 2021, 32, 318. doi: 10.1021/acs.bioconjchem.0c00694  doi: 10.1021/acs.bioconjchem.0c00694

    93. [93]

      Zhang, Q.; Jiang, H.; Niu, D.; Zhang, X.; Sun, S.; Hu, S. ChemistrySelect 2019, 4, 4398. doi: 10.1002/slct.201900690  doi: 10.1002/slct.201900690

    94. [94]

      Lin, L.; Li, H.; Yan, C.; Li, H.; Si, R.; Li, M.; Xiao, J.; Wang, G.; Bao, X. Adv. Mater. 2019, 31, 1903470. doi: 10.1002/adma.201903470  doi: 10.1002/adma.201903470

    95. [95]

      Pan, F.; Zhao, H.; Deng, W.; Feng, X.; Li, Y. Electrochim. Acta 2018, 273, 154. doi: 10.1016/j.electacta.2018.04.047  doi: 10.1016/j.electacta.2018.04.047

    96. [96]

      Ao, C.; Zhao, W.; Ruan, S.; Qian, S.; Liu, Y.; Wang, L.; Zhang, L. Sustain. Energ. Fuels 2020, 4, 6156. doi: 10.1039/D0SE01127D  doi: 10.1039/D0SE01127D

    97. [97]

      Varela, A. S.; Ranjbar Sahraie, N.; Steinberg, J.; Ju, W.; Oh, H. -S.; Strasser, P. Angew. Chem. Int. Ed. 2015, 54, 10758. doi: 10.1002/anie.201502099  doi: 10.1002/anie.201502099

    98. [98]

      Abe, T.; Yoshida, T.; Tokita, S.; Taguchi, F.; Imaya, H.; Kaneko, M. J. Electroanal. Chem. 1996, 412, 125. doi: 10.1016/0022-0728(96)04631-1  doi: 10.1016/0022-0728(96)04631-1

    99. [99]

      Lin, S.; Diercks, C. S.; Zhang, Y.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; et al. Science 2015, 349, 6253. doi:10.1126/science.aac83  doi: 10.1126/science.aac83

    100. [100]

      Zhu, H. -L.; Zheng, Y. -Q.; Shui, M. ACS Appl. Energy Mater. 2020, 3, 3893. doi: 10.1021/acsaem.0c00306  doi: 10.1021/acsaem.0c00306

    101. [101]

      Gonglach, S.; Paul, S.; Haas, M.; Pillwein, F.; Sreejith, S. S.; Barman, S.; De, R.; Müllegger, S.; Gerschel, P.; Apfel, U. -P.; et al. Nat. Commun. 2019, 10, 3864. doi: 10.1038/s41467-019-11868-5  doi: 10.1038/s41467-019-11868-5

    102. [102]

      Chen, Z.; Zhang, J.; Zhang, C.; Cui, R.; Tan, M.; Guo, S.; Wang, H.; Jiao, J.; Lu, T. J. Power Sources 2022, 519, 230788. doi: 10.1016/j.jpowsour.2021.230788  doi: 10.1016/j.jpowsour.2021.230788

    103. [103]

      Yuan, C. -Z.; Li, H. -B.; Jiang, Y. -F.; Liang, K.; Zhao, S. -J.; Fang, X. -X.; Ma, L. -B.; Zhao, T.; Lin, C.; Xu, A. -W. J. Mater. Chem. A 2019, 7, 6894. doi: 10.1039/C8TA11500A  doi: 10.1039/C8TA11500A

    104. [104]

      Pan, F.; Deng, W.; Justiniano, C.; Li, Y. Appl. Catal. B 2018, 226, 463. doi: 10.1016/j.apcatb.2018.01.001  doi: 10.1016/j.apcatb.2018.01.001

    105. [105]

      Ju, W.; Bagger, A.; Hao, G. -P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Nat. Commun. 2017, 8, 944. doi: 10.1038/s41467-017-01035-z  doi: 10.1038/s41467-017-01035-z

    106. [106]

      Bi, W.; Li, X.; You, R.; Chen, M.; Yuan, R.; Huang, W.; Wu, X.; Chu, W.; Wu, C.; Xie, Y. Adv. Mater. 2018, 30, 1706617. doi: 10.1002/adma.201706617  doi: 10.1002/adma.201706617

    107. [107]

      Tan, X.; Yu, C.; Cui, S.; Ni, L.; Guo, W.; Wang, Z.; Chang, J.; Ren, Y.; Yu, J.; Huang, H.; et al. Chem. Eng. J. 2021, 131965. doi: 10.1016/j.cej.2021.131965  doi: 10.1016/j.cej.2021.131965

    108. [108]

      Wang, W. -J.; Cao, C.; Wang, K.; Zhou, T. Inorg. Chem. Front. 2021, 8, 2542. doi: 10.1039/D1QI00126D  doi: 10.1039/D1QI00126D

    109. [109]

      Yuan, C. -Z.; Liang, K.; Xia, X. -M.; Yang, Z. K.; Jiang, Y. -F.; Zhao, T.; Lin, C.; Cheang, T. -Y.; Zhong, S. -L.; Xu, A. -W. Catal. Sci. Technol. 2019, 9, 3669. doi: 10.1039/C9CY00363K  doi: 10.1039/C9CY00363K

    110. [110]

      Wang, X.; Ding, S.; Yue, T.; Zhu, Y.; Fang, M.; Li, X.; Xiao, G.; Zhu, Y.; Dai, L. Nano Energy 2021, 82, 105689. doi: 10.1016/j.nanoen.2020.105689  doi: 10.1016/j.nanoen.2020.105689

    111. [111]

      Cheng, H.; Wu, X.; Li, X.; Nie, X.; Fan, S.; Feng, M.; Fan, Z.; Tan, M.; Chen, Y.; He, G. Chem. Eng. J. 2021, 407, 126842. doi: 10.1016/j.cej.2020.126842  doi: 10.1016/j.cej.2020.126842

    112. [112]

      Chen, S.; Li, Y.; Bu, Z.; Yang, F.; Luo, J.; An, Q.; Zeng, Z.; Wang, J.; Deng, S. J. Mater. Chem. A 2021, 9, 1705. doi: 10.1039/D0TA08496D  doi: 10.1039/D0TA08496D

    113. [113]

      Xuan, X.; Cheng, J.; Yang, X.; Zhou, J. ACS Sustain. Chem. Eng. 2020, 8, 1679. doi: 10.1021/acssuschemeng.9b07258  doi: 10.1021/acssuschemeng.9b07258

    114. [114]

      Yang, H.; Wu, Y.; Li, G.; Lin, Q.; Hu, Q.; Zhang, Q.; Liu, J.; He, C. J. Am. Chem. Soc. 2019, 141, 12717. doi: 10.1021/jacs.9b04907  doi: 10.1021/jacs.9b04907

    115. [115]

      Zang, D.; Gao, X. J.; Li, L.; Wei, Y.; Wang, H. Nano Res. 2022. doi: 10.1007/s12274-022-4698-3  doi: 10.1007/s12274-022-4698-3

    116. [116]

      Chen, J.; Li, Z.; Wang, X.; Sang, X.; Zheng, S.; Liu, S.; Yang, B.; Zhang, Q.; Lei, L.; Dai, L.; et al. Angew. Chem. Int. Ed. 2021, 61, e202111683. doi: 10.1002/anie.202111683  doi: 10.1002/anie.202111683

    117. [117]

      Wang, N.; Liu, Z.; Ma, J.; Liu, J.; Zhou, P.; Chao, Y.; Ma, C.; Bo, X.; Liu, J.; Hei, Y.; et al. ACS Sustain. Chem. Eng. 2020, 8, 13813. doi: 10.1021/acssuschemeng.0c05158  doi: 10.1021/acssuschemeng.0c05158

    118. [118]

      Zhang, S.; Kang, P.; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 1734. doi: 10.1021/ja4113885  doi: 10.1021/ja4113885

    119. [119]

      Lei, F.; Liu, W.; Sun, Y.; Xu, J.; Liu, K.; Liang, L.; Yao, T.; Pan, B.; Wei, S.; Xie, Y. Nat. Commun. 2016, 7, 12697. doi: 10.1038/ncomms12697  doi: 10.1038/ncomms12697

    120. [120]

      Zu, X.; Li, X.; Liu, W.; Sun, Y.; Xu, J.; Yao, T.; Yan, W.; Gao, S.; Wang, C.; Wei, S.; et al. Adv. Mater. 2019, 31, 1808135. doi: 10.1002/adma.201808135  doi: 10.1002/adma.201808135

    121. [121]

      Jia, M.; Hong, S.; Wu, T. -S.; Li, X.; Soo, Y. -L.; Sun, Z. Chem. Commun. 2019, 55, 12024. doi: 10.1039/C9CC06178A  doi: 10.1039/C9CC06178A

    122. [122]

      Jiang, Z.; Wang, T.; Pei, J.; Shang, H.; Zhou, D.; Li, H.; Dong, J.; Wang, Y.; Cao, R.; Zhuang, Z.; et al. Energy Environ. Sci. 2020, 13, 2856. doi: 10.1039/d0ee01486a  doi: 10.1039/d0ee01486a

    123. [123]

      Gu, J.; Hsu, C. -S.; Bai, L.; Chen Hao, M.; Hu, X. Science 2019, 364, 1091. doi: 10.1126/science.aaw7515  doi: 10.1126/science.aaw7515

    124. [124]

      Wang, Y.; Wang, M.; Zhang, Z.; Wang, Q.; Jiang, Z.; Lucero, M.; Zhang, X.; Li, X.; Gu, M.; Feng, Z.; et al. ACS Catal. 2019, 9, 6252. doi: 10.1021/acscatal.9b01617  doi: 10.1021/acscatal.9b01617

    125. [125]

      Zhang, Z.; Ma, C.; Tu, Y.; Si, R.; Wei, J.; Zhang, S.; Wang, Z.; Li, J. -F.; Wang, Y.; Deng, D. Nano Res. 2019, 12, 2313. doi: 10.1007/s12274-019-2316-9  doi: 10.1007/s12274-019-2316-9

    126. [126]

      Pan, F.; Zhang, H.; Liu, K.; Cullen, D.; More, K.; Wang, M.; Feng, Z.; Wang, G.; Wu, G.; Li, Y. ACS Catal. 2018, 8, 3116. doi: 10.1021/acscatal.8b00398  doi: 10.1021/acscatal.8b00398

    127. [127]

      Geng, Z.; Cao, Y.; Chen, W.; Kong, X.; Liu, Y.; Yao, T.; Lin, Y. Appl. Catal. B 2019, 240, 234. doi: 10.1016/j.apcatb.2018.08.075  doi: 10.1016/j.apcatb.2018.08.075

    128. [128]

      Luangchaiyaporn, J.; Wielend, D.; Solonenko, D.; Seelajaroen, H.; Gasiorowski, J.; Monecke, M.; Salvan, G.; Zahn, D. R. T.; Sariciftci, N. S.; Thamyongkit, P. Electrochim. Acta 2021, 367, 137506. doi: 10.1016/j.electacta.2020.137506  doi: 10.1016/j.electacta.2020.137506

    129. [129]

      Hu, X. -M.; Rønne, M. H.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Angew. Chem. Int. Ed. 2017, 56, 6468. doi: 10.1002/anie.201701104  doi: 10.1002/anie.201701104

    130. [130]

      Morlanés, N.; Takanabe, K.; Rodionov, V. ACS Catal. 2016, 6, 3092. doi: 10.1021/acscatal.6b00543  doi: 10.1021/acscatal.6b00543

    131. [131]

      Han, N.; Wang, Y.; Ma, L.; Wen, J.; Li, J.; Zheng, H.; Nie, K.; Wang, X.; Zhao, F.; Li, Y.; et al. Chem 2017, 3, 652. doi: 10.1016/j.chempr.2017.08.002  doi: 10.1016/j.chempr.2017.08.002

    132. [132]

      Boutin, E.; Wang, M.; Lin, J. C.; Mesnage, M.; Mendoza, D.; Lassalle-Kaiser, B.; Hahn, C.; Jaramillo, T. F.; Robert, M. Angew. Chem. Int. Ed. 2019, 58, 16172. doi: 10.1002/anie.201909257  doi: 10.1002/anie.201909257

    133. [133]

      Wang, M.; Torbensen, K.; Salvatore, D.; Ren, S.; Joulié, D.; Dumoulin, F.; Mendoza, D.; Lassalle-Kaiser, B.; Işci, U.; Berlinguette, C. P.; et al. Nat. Commun. 2019, 10, 3602. doi: 10.1038/s41467-019-11542-w  doi: 10.1038/s41467-019-11542-w

    134. [134]

      Pan, Y.; Lin, R.; Chen, Y.; Liu, S.; Zhu, W.; Cao, X.; Chen, W.; Wu, K.; Cheong, W. -C.; Wang, Y.; et al. J. Am. Chem. Soc. 2018, 140, 4218. doi: 10.1021/jacs.8b00814  doi: 10.1021/jacs.8b00814

    135. [135]

      Zhang, Z.; Xiao, J.; Chen, X. -J.; Yu, S.; Yu, L.; Si, R.; Wang, Y.; Wang, S.; Meng, X.; Wang, Y.; et al. Angew. Chem. Int. Ed. 2018, 57, 16339. doi: 10.1002/anie.201808593  doi: 10.1002/anie.201808593

    136. [136]

      Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; et al. Energy Environ. Sci. 2018, 11, 893. doi: 10.1039/c7ee03245e  doi: 10.1039/c7ee03245e

    137. [137]

      Yang, H. B.; Hung, S. -F.; Liu, S.; Yuan, K.; Miao, S.; Zhang, L.; Huang, X.; Wang, H. -Y.; Cai, W.; Chen, R.; et al. Nat. Energy 2018, 3, 140. doi: 10.1038/s41560-017-0078-8  doi: 10.1038/s41560-017-0078-8

    138. [138]

      Fan, Q.; Hou, P.; Choi, C.; Wu, T. S.; Hong, S.; Li, F.; Soo, Y. L.; Kang, P.; Jung, Y.; Sun, Z. Adv. Energy Mater. 2019, 10, 1903068. doi: 10.1002/aenm.201903068  doi: 10.1002/aenm.201903068

    139. [139]

      Zhao, C.; Dai, X.; Yao, T.; Chen, W.; Wang, X.; Wang, J.; Yang, J.; Wei, S.; Wu, Y.; Li, Y. J. Am. Chem. Soc. 2017, 139, 8078. doi: 10.1021/jacs.7b02736  doi: 10.1021/jacs.7b02736

    140. [140]

      Weng, Z.; Wu, Y.; Wang, M.; Jiang, J.; Yang, K.; Huo, S.; Wang, X. -F.; Ma, Q.; Brudvig, G. W.; Batista, V. S.; et al. Nat. Commun. 2018, 9, 415. doi: 10.1038/s41467-018-02819-7  doi: 10.1038/s41467-018-02819-7

    141. [141]

      Albo, J.; Vallejo, D.; Beobide, G.; Castillo, O.; Castaño, P.; Irabien, A. ChemSusChem 2017, 10, 1100. doi: 10.1002/cssc.v10.6  doi: 10.1002/cssc.v10.6

    142. [142]

      Jiang, X.; Li, H.; Xiao, J.; Gao, D.; Si, R.; Yang, F.; Li, Y.; Wang, G.; Bao, X. NanoEnergy 2018, 52, 345. doi: 10.1016/j.nanoen.2018.07.047  doi: 10.1016/j.nanoen.2018.07.047

    143. [143]

      Han, L.; Song, S.; Liu, M.; Yao, S.; Liang, Z.; Cheng, H.; Ren, Z.; Liu, W.; Lin, R.; Qi, G.; et al. J. Am. Chem. Soc. 2020, 142, 12563. doi: 10.1021/jacs.9b12111  doi: 10.1021/jacs.9b12111

    144. [144]

      Chen, Z.; Mou, K.; Yao, S.; Liu, L. ChemSusChem 2018, 11, 2944. doi: 10.1002/cssc.201800925  doi: 10.1002/cssc.201800925

    145. [145]

      Yang, F.; Song, P.; Liu, X.; Mei, B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W. Angew. Chem. Int. Ed. 2018, 57, 12303. doi: 10.1002/anie.201805871  doi: 10.1002/anie.201805871

    146. [146]

      Wen, X.; Bai, L.; Li, M.; Guan, J. ACS Sustain. Chem. Eng. 2019, 7, 9249. doi: 10.1021/acssuschemeng.9b00105  doi: 10.1021/acssuschemeng.9b00105

    147. [147]

      Wen, X.; Qi, H.; Cheng, Y.; Zhang, Q.; Hou, C.; Guan, J. Chin. J. Chem. 2020, 38, 941. doi: 10.1002/cjoc.202000073  doi: 10.1002/cjoc.202000073

    148. [148]

      Guan, J.; Duan, Z.; Zhang, F.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q.; Chen, J. Q.; Tang, C.; Li, C. Nat. Catal. 2018, 1, 870. doi: 10.1038/s41929-018-0158-6  doi: 10.1038/s41929-018-0158-6

    149. [149]

      Bai, L.; Duan, Z.; Wen, X.; Si, R.; Guan, J. Appl. Catal. B 2019, 257, 117930. doi: 10.1016/j.apcatb.2019.117930  doi: 10.1016/j.apcatb.2019.117930

    150. [150]

      Feng, J.; Gao, H.; Zheng, L.; Chen, Z.; Zeng, S.; Jiang, C.; Dong, H.; Liu, L.; Zhang, S.; Zhang, X. Nat. Commun. 2020, 11, 4341. doi: 10.1038/s41467-020-18143-y  doi: 10.1038/s41467-020-18143-y

    151. [151]

      Zhang, H.; Li, J.; Xi, S.; Du, Y.; Hai, X.; Wang, J.; Xu, H.; Wu, G.; Zhang, J.; Lu, J.; et al. Angew. Chem. Int. Ed. 2019, 58, 14871. doi: 10.1002/anie.201906079  doi: 10.1002/anie.201906079

    152. [152]

      Zhong, H.; Meng, F.; Zhang, Q.; Liu, K.; Zhang, X. Nano Res. 2019, 12, 2318. doi: 10.1007/s12274-019-2339-2  doi: 10.1007/s12274-019-2339-2

    153. [153]

      An, B.; Zhou, J.; Zhu, Z.; Li, Y.; Wang, L.; Zhang, J. Fuel 2022, 310, 122472. doi: 10.1016/j.fuel.2021.122472  doi: 10.1016/j.fuel.2021.122472

    154. [154]

      Wang, C.; Zhang, D. -H.; Zheng, W. -H.; Zhu, C. -Y.; Zhang, M.; Geng, Y.; Su, Z. -M. Appl. Surf. Sci. 2022, 573, 151544. doi: 10.1016/j.apsusc.2021.151544  doi: 10.1016/j.apsusc.2021.151544

    155. [155]

      Li, Q. -X.; Si, D. -H.; Lin, W.; Wang, Y. -B.; Zhu, H. -J.; Huang, Y. -B.; Cao, R. Sci. China: Chem. 2022, doi: 10.1007/s11426-022-1263-5  doi: 10.1007/s11426-022-1263-5

    156. [156]

      Chen, C.; Sun, X.; Yan, X.; Wu, Y.; Liu, H.; Zhu, Q.; Bediako, B. B. A.; Han, B. Angew. Chem. Int. Ed. 2020, 59, 11123. doi: 10.1002/anie.202004226  doi: 10.1002/anie.202004226

    157. [157]

      Liu, F. -W.; Bi, J.; Sun, Y.; Luo, S.; Kang, P. ChemSusChem 2018, 11, 1656. doi: 10.1002/cssc.201800136  doi: 10.1002/cssc.201800136

    158. [158]

      Gong, Y. -N.; Jiao, L.; Qian, Y.; Pan, C. -Y.; Zheng, L.; Cai, X.; Liu, B.; Yu, S. -H.; Jiang, H. -L. Angew. Chem. Int. Ed. 2020, 59, 2705. doi: 10.1002/anie.201914977  doi: 10.1002/anie.201914977

    159. [159]

      Zheng, W.; Yang, J.; Chen, H.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z.; et al. Adv. Funct. Mater. 2019, 30, 1907658. doi: 10.1002/adfm.201907658  doi: 10.1002/adfm.201907658

    160. [160]

      Ye, L.; Ying, Y.; Sun, D.; Zhang, Z.; Fei, L.; Wen, Z.; Qiao, J.; Huang, H. Angew. Chem. Int. Ed. 2020, 59, 3244. doi: 10.1002/anie.201912751  doi: 10.1002/anie.201912751

    161. [161]

      Koshy, D. M.; Chen, S.; Lee, D. U.; Stevens, M. B.; Abdellah, A. M.; Dull, S. M.; Chen, G.; Nordlund, D.; Gallo, A.; Hahn, C.; et al. Angew. Chem. Int. Ed. 2020, 59, 4043. doi: 10.1002/anie.201912857  doi: 10.1002/anie.201912857

    162. [162]

      Zhang, Y.; Wang, X.; Zheng, S.; Yang, B.; Li, Z.; Lu, J.; Zhang, Q.; Adli, N. M.; Lei, L.; Wu, G.; et al. Adv. Funct. Mater. 2021, 31, 2104377. doi: 10.1002/adfm.202104377  doi: 10.1002/adfm.202104377

    163. [163]

      Wang, X.; Pan, Y.; Ning, H.; Wang, H.; Guo, D.; Wang, W.; Yang, Z.; Zhao, Q.; Zhang, B.; Zheng, L.; et al. Appl. Catal. B 2020, 266, 118630. doi: 10.1016/j.apcatb.2020.118630  doi: 10.1016/j.apcatb.2020.118630

    164. [164]

      Li, Z.; Wu, R.; Xiao, S.; Yang, Y.; Lai, L.; Chen, J. S.; Chen, Y. Chem. Eng. J. 2022, 430, 132882. doi: 10.1016/j.cej.2021.132882  doi: 10.1016/j.cej.2021.132882

    165. [165]

      Wang, X.; Wang, Y.; Sang, X.; Zheng, W.; Zhang, S.; Shuai, L.; Yang, B.; Li, Z.; Chen, J.; Lei, L.; et al. Angew. Chem. Int. Ed. 2021, 60, 4192. doi: 10.1002/anie.202013427  doi: 10.1002/anie.202013427

    166. [166]

      Kim, H.; Shin, D.; Yang, W.; Won, D. H.; Oh, H. -S.; Chung, M. W.; Jeong, D.; Kim, S. H.; Chae, K. H.; Ryu, J. Y.; et al. J. Am. Chem. Soc. 2021, 143, 925. doi: 10.1021/jacs.0c11008  doi: 10.1021/jacs.0c11008

    167. [167]

      Zhao, D.; Yu, K.; Song, P.; Feng, W.; Hu, B.; Cheong, W. -C.; Zhuang, Z.; Liu, S.; Sun, K.; Zhang, J.; et al. Energy Environ. Sci. 2022, doi: 10.1039/D2EE00878E  doi: 10.1039/D2EE00878E

    168. [168]

      Miao, Q.; Lu, C.; Xu, Q.; Yang, S.; Liu, M.; Liu, S.; Yu, C.; Zhuang, X.; Jiang, Z.; Zeng, G. Chem. Eng. J. 2022, 450, 138427. doi: 10.1016/j.cej.2022.138427  doi: 10.1016/j.cej.2022.138427

    169. [169]

      Dong, W.; Zhang, N.; Li, S.; Min, S.; Peng, J.; Liu, W.; Zhan, D.; Bai, H. J. Mater. Chem. A 2022, 10, 10892. doi: 10.1039/D2TA01285E  doi: 10.1039/D2TA01285E

    170. [170]

      Lu, B.; Liu, Q.; Chen, S. ACS Catal. 2020, 10, 7584. doi: 10.1021/acscatal.0c01950  doi: 10.1021/acscatal.0c01950

    171. [171]

      Cao, S.; Wei, S.; Wei, X.; Zhou, S.; Chen, H.; Hu, Y.; Wang, Z.; Liu, S.; Guo, W.; Lu, X. Small 2021, 17, 2100949. doi: 10.1002/smll.202100949  doi: 10.1002/smll.202100949

    172. [172]

      Chen, Y.; Ma, L.; Chen, C.; Hu, W.; Zou, L.; Zou, Z.; Yang, H. J. CO2 Util. 2020, 42, 101316. doi: 10.1016/j.jcou.2020.101316  doi: 10.1016/j.jcou.2020.101316

    173. [173]

      He, M.; An, W.; Wang, Y.; Men, Y.; Liu, S. Small 2021, 17, 2104445. doi: 10.1002/smll.202104445  doi: 10.1002/smll.202104445

    174. [174]

      Chen, Y.; Li, G.; Zeng, Y.; Yan, L.; Wang, X.; Yang, L.; Wu, Q.; Hu, Z. Nano Res. 2022, 15, 7896. doi: 10.1007/s12274-022-4441-0  doi: 10.1007/s12274-022-4441-0

    175. [175]

      Li, H.; Liu, T.; Wei, P.; Lin, L.; Gao, D.; Wang, G.; Bao, X. Angew. Chem. Int. Ed. 2021, 60, 14329. doi: 10.1002/anie.202102657  doi: 10.1002/anie.202102657

    176. [176]

      Zhang, Y.; Zhou, Q.; Qiu, Z. -F.; Zhang, X. -Y.; Chen, J. -Q.; Zhao, Y.; Gong, F.; Sun, W. -Y. Adv. Funct. Mater. 2022, 2203677. doi: 10.1002/adfm.202203677  doi: 10.1002/adfm.202203677

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    6. [6]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    9. [9]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    13. [13]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    14. [14]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    20. [20]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(6)
  • Abstract views(145)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return