Citation: Na Lu, Xuedong Jing, Yao Xu, Wei Lu, Kuichao Liu, Zhenyi Zhang. Effective Cascade Modulation of Charge-Carrier Kinetics in the Well-Designed Multi-Component Nanofiber System for Highly-Efficient Photocatalytic Hydrogen Generation[J]. Acta Physico-Chimica Sinica, ;2023, 39(4): 220704. doi: 10.3866/PKU.WHXB202207045 shu

Effective Cascade Modulation of Charge-Carrier Kinetics in the Well-Designed Multi-Component Nanofiber System for Highly-Efficient Photocatalytic Hydrogen Generation

  • Corresponding author: Zhenyi Zhang, zhangzy@dlnu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 22 July 2022
    Revised Date: 22 August 2022
    Accepted Date: 30 August 2022
    Available Online: 31 August 2022

    Fund Project: the National Natural Science Foundation of China 62005036the National Natural Science Foundation of China 12074055the National Natural Science Foundation of China 11904046Natural Science Foundation of Liaoning Province for Excellent Young Scholars, China 2022-YQ-13Liaoning BaiQianWan Talents Program, China, Natural Science Foundation of Liaoning Province, China 2020-MZLH-15Program for Dalian Excellent Talents, China 2020RQ131

  • The photocatalytic reduction of water to hydrogen (H2) over semiconductors potentially offers an economic way to alleviate the global energy crisis and environmental pollution. Optimal modulation of charge-carrier kinetics is of great importance for enhancing the photocatalytic activity of semiconductors for reducing water to green H2. The design and manufacture of semiconductor-based heterostructure systems have emerged as promising tactics for modulating charge-carrier kinetics based on sensitization either via the semiconductor heterojunction effect or localized surface plasmon resonance. However, the cascade modulation of charge-carrier kinetics is still difficult to achieve through rationally coupling the abovementioned sensitization processes in well-designed heterostructures for highly-efficient photocatalytic H2 generation. In this study, we developed a novel quaternary hetero-component nanofibers (HNFs) system by assembling plasmonic Ag nanoparticles (NPs) and two different semiconductors of Ag2S NPs and g-C3N4 nanosheets (NSs) into the electrospun TiO2 nanofibers (NFs) via in situ oxidation (for g-C3N4 exfoliation and Ag2S) and reduction (for Ag) reactions. By combining time-resolved photoluminescence spectroscopy, three-dimensional finite-difference-time-domain simulation, and control experiments, we found that the overlapping absorption peak of plasmonic Ag NPs and g-C3N4 NSs could induce plasmonic resonant energy transfer from the Ag NPs to the neighboring g-C3N4, thereby improving the generation of photoinduced charge carriers of g-C3N4 in the quaternary HNFs system. Simultaneously, plasmonic hot electrons could be generated on the Ag NPs and transferred to the near-by hetero-components of TiO2, g-C3N4, and Ag2S, to boost the generation and separation of photoinduced charge carriers in the system. Furthermore, the energy band structure at the g-C3N4/TiO2 hetero-interface belongs to the "type II" heterojunction, while the energy band structure at the TiO2/Ag2S hetero-interface can be classified as a "type I" heterojunction. This way, the successive "energy band step" could be constructed at the g-C3N4/TiO2/Ag2S hetero-interface, resulting in improved separation and migration of photoinduced charge carriers through the transfer of photoinduced electrons from g-C3N4 to Ag2S across TiO2. Thus, the plasmonic resonant energy transfer, hot electron transfer, and successive energy-band-step-induced charge separation processes were integrated into the as-synthesized quaternary Ag/Ag2S/g-C3N4/TiO2 HNFs system, thereby achieving the effective cascade modulation of the generation, separation, and migration of photoinduced charge carriers. As such, the photocatalytic H2-generation rate of the optimal Ag/Ag2S/g-C3N4/TiO2 HNFs system was higher than that of the mechanically mixed TiO2 NFs, g-C3N4 NSs, Ag NPs, and Ag2S NPs, with the same amounts as the optimal Ag/Ag2S/g-C3N4/TiO2 HNFs photocatalyst, by approximately 9-fold under simulated sunlight irradiation. This interesting cascade modulation of charge-carrier kinetics might open new avenues for the development of highly active semiconductor-based heterostructure system for solar-to-fuels conversion.
  • 加载中
    1. [1]

      Dong, X. B.; Wang, S. X.; Wu, Q.; Liu, K. Y.; Kong, F. G.; Liu, J. X. J. Alloy. Compd. 2021, 875, 160032. doi: 10.1016/j.jallcom.2021.160032  doi: 10.1016/j.jallcom.2021.160032

    2. [2]

      Shan, Z. C.; Clayton, D.; Pan, S. L.; Archana, P. S.; Gupta, A. J. Phys. Chem. B 2014, 118, 14037. doi: 10.1021/jp504346k  doi: 10.1021/jp504346k

    3. [3]

      Kisch, H. Angew. Chem. Int. Ed. 2013, 52, 812. doi: 10.1002/anie.201201200  doi: 10.1002/anie.201201200

    4. [4]

      Yu, W. L.; Yin, J.; Li, Y.; Lai, B.; Jiang, T.; Li, Y. Y.; Liu, H. W.; Liu, J. L.; Zhao, C.; Singh, S. C.; et al. ACS Appl. Energy Mater. 2019, 2, 2751. doi: 10.1021/acsaem.9b00091  doi: 10.1021/acsaem.9b00091

    5. [5]

      Liu, J. Y.; Chen, G.; Sun, J. X. ACS Appl. Nano Mater. 2020, 3, 11017. doi: 10.1021/acsanm.0c02240  doi: 10.1021/acsanm.0c02240

    6. [6]

      An, S. F.; Zhang, G. H.; Li, K, Y.; Huang, Z. N.; Wang, X.; Guo, Y. K.; Hou, J. G.; Song, C. S.; Guo, X. W. Adv. Mater. 2021, 33, 2104361. doi: 10.1002/adma.202104361  doi: 10.1002/adma.202104361

    7. [7]

      Shuang, S.; Lv, R. T.; Cui, X. Y.; Xie, Z.; Zheng, J.; Zhang, Z. J. RSC Adv. 2018, 8, 5784. doi: 10.1039/c7ra13501g  doi: 10.1039/c7ra13501g

    8. [8]

      Xue, B.; Jiang, H. Y.; Sun, T.; Mao, F.; Ma, C. C.; Wu, J. K. J. Photochem. Photobiol. A 2018, 353, 557. doi: 10.1016/j.jphotochem.2017.12.021  doi: 10.1016/j.jphotochem.2017.12.021

    9. [9]

      Wei, X. B.; Shao, C. L.; Li, X. H.; Lu, N.; Wang, K. X.; Zhang, Z. Y.; Liu, Y. C. Nanoscale 2016, 8, 11034. doi: 10.1039/c6nr01491g  doi: 10.1039/c6nr01491g

    10. [10]

      Zhang, Z. Y.; Huang, Y. Z.; Liu, K. C.; Guo, L. J.; Yuan, Q.; Dong, B. Adv. Mater. 2015, 27, 5906. doi: 10.1002/adma.201502203  doi: 10.1002/adma.201502203

    11. [11]

      Hou, W. B.; Cronin, S. B. Adv. Funct. Mater. 2012, 23, 1612. doi: 10.1002/adfm.201202148  doi: 10.1002/adfm.201202148

    12. [12]

      Wang, J.; Sun, Z. G.; Jiang, X. Y.; Yuan, Q.; Dong, D. P.; Zhang, P.; Zhang, Z. Y. Dalton Trans. 2021, 50, 6152. doi: 10.1039/d1dt00743b  doi: 10.1039/d1dt00743b

    13. [13]

      Yan, J. Q.; Li, P.; Bian, H.; Wu, H.; Liu, S. Z. Sustain. Energ. Fules 2017, 1, 95. doi: 10.1039/c6se00048g  doi: 10.1039/c6se00048g

    14. [14]

      Wang, Y. J.; Wu, Q. H.; Li, Y.; Liu, L. M.; Geng, Z. L.; Li, Y. M.; Chen, J.; Bai, W. K.; Jiang, G. Y.; Zhao, Z. J. Mater. Sci. 2018, 53, 11015. doi: 10.1007/s10853-018-2368-3  doi: 10.1007/s10853-018-2368-3

    15. [15]

      Ong, W. L.; Lim, Y. F.; Ong, J. L. T.; Ho, G. W. J. Mater. Chem. A 2015, 3, 6509. doi: 10.1039/c4ta06674j  doi: 10.1039/c4ta06674j

    16. [16]

      Wang, Y. Q.; Shen, S. H. Acta Phys. -Chim. Sin. 2020, 36, 1905080.  doi: 10.3866/PKU.WHXB201905080

    17. [17]

      Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Adv. Mater. 2015, 27, 2150. doi: 10.1002/adma.201500033  doi: 10.1002/adma.201500033

    18. [18]

      Cao, S. W.; Yu, J. G. J. Phys. Chem. Lett. 2014, 5, 2101. doi: 10.1021/jz500546b  doi: 10.1021/jz500546b

    19. [19]

      Gao, S.; Zhang, Z. Y.; Liu, K. C.; Dong, B. Appl. Catal. B: Environ. 2016, 188, 245. doi: 10.1016/j.apcatb.2016.01.074  doi: 10.1016/j.apcatb.2016.01.074

    20. [20]

      Lu, N.; Zhang, M. Y.; Jing, X. D.; Zhang, P.; Zhu, Y. A.; Zhang, Z. Y. Energy Environ. Mater. 2022, 0, 1. doi: 10.1002/eem2.12338  doi: 10.1002/eem2.12338

    21. [21]

      Jiang, D. L.; Chen, L. L.; Xie, J. M.; Chen, M. Dalton Trans. 2014, 43, 4878. doi: 10.1039/c3dt53526f  doi: 10.1039/c3dt53526f

    22. [22]

      Zhang, N.; Li, M. J.; Tan, C. F.; Peh, C. K. N.; Sum, T. C.; Ho, G. W. J. Mater. Chem. A 2017, 5, 21570. doi: 10.1039/c7ta06473j  doi: 10.1039/c7ta06473j

    23. [23]

      Lim, W. P.; Zhang, Z. H.; Low, H. Y. L.; Chin, W. S. Angew. Chem. Int. Ed. 2004, 43, 5685. doi: 10.1002/anie.200460566  doi: 10.1002/anie.200460566

    24. [24]

      An, S. F.; Guo, Y. K.; He, X. Y.; Gao, P.; Hou, G. J.; Hou, J. G.; Song, C. S.; Guo. X. W. Appl. Catal. B: Environ. 2022, 310, 121323. doi: 10.1016/j.apcatb.2022.121323  doi: 10.1016/j.apcatb.2022.121323

    25. [25]

      Lu, W.; Ding, T.; Lu, N.; Zhang, J. M.; Yun, K.; Zhang, P.; Zhang, Z. Y. Appl. Surf. Sci. 2022, 592, 153348. doi: 10.1016/j.apsusc.2022.153348  doi: 10.1016/j.apsusc.2022.153348

    26. [26]

      Hou, S. C.; Lu, N.; Zhu, Y. A.; Zhang, J. M.; Zhang, X. L.; Yan, Y.; Zhang, P.; Zhang, Z. Y. J. Alloy. Compd. 2022, 900, 163409. doi: 10.1016/j.jallcom.2021.163409  doi: 10.1016/j.jallcom.2021.163409

    27. [27]

      Lu, N.; Jing, X. D.; Zhang, J. M.; Zhang, P.; Qiao, Q.; Zhang, Z. Y. Chem. Eng. J. 2022, 431, 134001. doi: 10.1016/j.cej.2021.134001  doi: 10.1016/j.cej.2021.134001

    28. [28]

      Wu, J. L.; Zhang, Z. Y.; Fang, Y. R.; Liu, K. C.; Huang, J. D.; Yuan, Q.; Dong, B. Chem. Eng. J. 2022, 437, 135308. doi: 10.1016/j.cej.2022.135308  doi: 10.1016/j.cej.2022.135308

    29. [29]

      Waterhouse, G. I. N.; Bowmaker, G. A.; Metson, J. B. Phys. Chem. Chem. Phys. 2001, 3, 3838. doi: 10.1039/b103226g  doi: 10.1039/b103226g

    30. [30]

      Lin, D. D.; Wu, H.; Zhang, R; Pan, W. Chem. Mater. 2009, 21, 3479. doi: 10.1021/cm900225p  doi: 10.1021/cm900225p

    31. [31]

      Wen, X. G.; Wang, S. H.; Xie, Y. T; Li, X. Y.; Yang, S. H. J. Phys. Chem. B 2005, 109, 10100. doi: 10.1021/jp050126o  doi: 10.1021/jp050126o

    32. [32]

      Mei, Z. H.; Wang, G. H.; Yan, S. D.; Wang, J. Acta Phys. -Chim. Sin. 2021, 37, 2009097.  doi: 10.3866/PKU.WHXB202009097

    33. [33]

      Wang, J. L.; Feng, H.; Chen, K. M.; Fan, W. L.; Yang, Q. Dalton Trans. 2014, 43, 3990. doi: 10.1039/c3dt52693c  doi: 10.1039/c3dt52693c

    34. [34]

      Peng, C. C.; Wang, W. Z.; Zhang, W. W.; Liang, Y. J.; Zhuo, L. Appl. Surf. Sci. 2017, 420, 286. doi: 10.1016/j.apsusc.2017.05.101  doi: 10.1016/j.apsusc.2017.05.101

    35. [35]

      Zhao, S.; Wu, J. B.; Xu, Y.; Zhang, X.; Han, Y. D.; Xing, H. Z. Dalton Trans. 2021, 50, 3253. doi: 10.1039/d0dt04292g  doi: 10.1039/d0dt04292g

    36. [36]

      Lin, L.; Cao, C.; Jin, Q.; Xu, G. S.; Shen, Y. H.; Yuan, Y. P. J. Mater. Chem. A 2015, 3, 10205. doi: 10.1039/c5ta01078k  doi: 10.1039/c5ta01078k

    37. [37]

      Zhang, M. Y.; Shao. C. L.; Guo, Z. C.; Zhang, Z. Y.; Mu, J. B.; Cao, T. P.; Liu, Y. C. ACS Appl. Mater. Interfaces 2011, 3, 369. doi: 10.1021/am100989a  doi: 10.1021/am100989a

    38. [38]

      Wei, C. C.; Zhang, W.; Wang, X. P.; Li, A. H.; Guo, J. P.; Liu, B. Catal. Lett. 2021, 151, 1961. doi: 10.1007/s10562-020-03462-y  doi: 10.1007/s10562-020-03462-y

    39. [39]

      Wang, C. H.; Shao, C. L.; Zhang, X. T.; Liu, Y. C. Inorg. Chem. 2009, 48, 7261. doi: 10.1021/ic9005983  doi: 10.1021/ic9005983

    40. [40]

      Zhang, Z. Y.; Liu, K. C.; Feng, Z. Q.; Bao, Y. N.; Dong, B. Sci. Rep. 2016, 6, 19221. doi: 10.1038/srep19221  doi: 10.1038/srep19221

    41. [41]

      Li, G. M.; Wang, B.; Wang, R. Chin. J. Struct. Chem. 2020, 39, 1675. doi: 10.14102/j.cnki.0254-5861.2011-2685  doi: 10.14102/j.cnki.0254-5861.2011-2685

    42. [42]

      Wu, J. L.; Zhang, Y.; Lu, P.; Fang, G. Q.; Li, X.; Yu, W. W.; Zhang, Z. Y.; Dong, B. Appl. Catal. B: Environ. 2021, 286, 119944. doi: 10.1016/j.apcatb.2021.119944  doi: 10.1016/j.apcatb.2021.119944

    43. [43]

      Xia, P. F.; Zhu, B. C.; Yu, J. G.; CaO, S. W.; Jaroniec, M. J. Mater. Chem. A 2017, 5, 3230. doi: 10.1039/c6ta08310b  doi: 10.1039/c6ta08310b

    44. [44]

      Gao, D. Q.; Xu, Q.; Zhang, J.; Yang, Z. L.; Si, M. S.; Yan, Z. J.; Xue, D. S. Nanoscale 2014, 6, 2577. doi: 10.1039/c3nr04743a  doi: 10.1039/c3nr04743a

    45. [45]

      Feng, N. D.; Wang, Q.; Zheng, A. M.; Zhang, Z. F.; Fan, J.; Liu, S. B.; Amoureux, J. P.; Deng, F. J. Am. Chem. Soc. 2013, 135, 4, 1607. doi: 10.1021/ja312205c  doi: 10.1021/ja312205c

    46. [46]

      Wang, Y. Z.; Chen, D.; Qin, L. S.; Liang, J. H.; Huang, Y. X. Phys. Chem. Chem. Phys. 2019, 21, 25484. doi: 10.1039/c9cp04709c  doi: 10.1039/c9cp04709c

    47. [47]

      Jing, X. D.; Lu, N.; Huang, J. D.; Zhang, P.; Zhang, Z. Y. J. Energy Chem. 2021, 58, 397. doi: 10.1016/j.jechem.2020.10.032  doi: 10.1016/j.jechem.2020.10.032

  • 加载中
    1. [1]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    2. [2]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    3. [3]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    4. [4]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    5. [5]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    6. [6]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    10. [10]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    11. [11]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    12. [12]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    13. [13]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    14. [14]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    15. [15]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    16. [16]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    17. [17]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    20. [20]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

Metrics
  • PDF Downloads(7)
  • Abstract views(197)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return