Citation: Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction[J]. Acta Physico-Chimica Sinica, ;2023, 39(1): 220700. doi: 10.3866/PKU.WHXB202207007 shu

Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction

  • Corresponding author: Qiang Li, qiang.li@seu.edu.cn Jinlan Wang, jlwang@seu.edu.cn
  • Received Date: 5 July 2022
    Revised Date: 31 July 2022
    Accepted Date: 31 July 2022
    Available Online: 9 August 2022

    Fund Project: the National Key Research and Development Program of China 2021YFA1500700National Natural Science Foundation of China 22033002National Natural Science Foundation of China 22173018

  • Understanding the origin of the active site activity in the oxygen evolution reaction (OER) electrocatalysts is key for developing efficient electrocatalysts. However, crucial challenges remain due to the complexity of catalyst structure-activity relationships. Herein, various Co-N-C configurations, including single atoms, diatoms, and clusters, were designed to establish structure-activity relationships by first-principles calculations. It was revealed that the Co-N4 exhibited the best reactivity due to the high coordination number of the metal center and moderate adsorption energies for all reaction intermediates. The diatom and cluster activities originate from the highly coordinated structures formed with reaction intermediates, which serve as coordination ligands. Furthermore, other factors influencing the OER activity based on the Co-N4 configuration are discussed. For example, the weak metal-metal interaction can further optimize the adsorption of oxygen-containing intermediates by tuning antibonding energy levels of Co-O. Subsequently, an ultralow overpotential of 0.23 V for the OER in CoNi-type4 systems can be obtained by extrapolation of the volcano plot derived from the established structure-adsorption-activity relationships. This work uncovers the underlying OER activity mechanisms of Co-N-C catalysts, which helps to further understanding of high-performance of M-N-C base catalysts and will aid in the future design of high-efficiency OER catalysts.
  • 加载中
    1. [1]

      Li, Y.; Wang, H.; Priest, C.; Li, S.; Xu, P.; Wu, G. Adv. Mater. 2021, 33, e2000381. doi: 10.1002/adma.202000381  doi: 10.1002/adma.202000381

    2. [2]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998. doi: 10.1126/science.aad4998  doi: 10.1126/science.aad4998

    3. [3]

      Ding, Y.; Cai, P.; Wen, Z. Chem. Soc. Rev. 2021, 50, 1495. doi: 10.1039/d0cs01239d  doi: 10.1039/d0cs01239d

    4. [4]

      Yan, Z.; Hitt, J. L.; Turner, J. A.; Mallouk, T. E. Proc. Natl. Acad. Sci. USA 2020, 117, 12558. doi: 10.1073/pnas.1821686116  doi: 10.1073/pnas.1821686116

    5. [5]

      Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Sun, X. Adv. Mater. 2016, 28, 215. doi: 10.1002/adma.201502696  doi: 10.1002/adma.201502696

    6. [6]

      Song, J.; Wei, C.; Huang, Z. -F.; Liu, C.; Zeng, L.; Wang, X.; Xu, Z. J. Chem. Soc. Rev. 2020, 49, 2196. doi: 10.1039/c9cs00607a  doi: 10.1039/c9cs00607a

    7. [7]

      Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. Nat. Energy 2016, 1, 15006. doi: 10.1038/nenergy.2015.6  doi: 10.1038/nenergy.2015.6

    8. [8]

      Zhang, L.; Jia, Y.; Gao, G.; Yan, X.; Chen, N.; Chen, J.; Soo, M. T.; Wood, B.; Yang, D.; Du, A.; et al. Chem 2018, 4, 285. doi: 10.1016/j.chempr.2017.12.005  doi: 10.1016/j.chempr.2017.12.005

    9. [9]

      Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Chem. Soc. Rev. 2021, 50, 7745. doi: 10.1039/d1cs00135c  doi: 10.1039/d1cs00135c

    10. [10]

      Zhang, W.; Cao, R. Chem 2021, 7, 1981. doi: 10.1016/j.chempr.2021.07.012  doi: 10.1016/j.chempr.2021.07.012

    11. [11]

      Zhang, J. -Y.; Yan, Y.; Mei, B.; Qi, R.; He, T.; Wang, Z.; Fang, W.; Zaman, S.; Su, Y.; Ding, S.; et al. Energy Environ. Sci. 2021, 14, 365. doi: 10.1039/d0ee03500a  doi: 10.1039/d0ee03500a

    12. [12]

      Fei, H.; Dong, J.; Feng, Y.; Allen, C. S.; Wan, C.; Volosskiy, B.; Li, M.; Zhao, Z.; Wang, Y.; Sun, H.; et al. Nat. Catal. 2018, 1, 63. doi: 10.1038/s41929-017-0008-y  doi: 10.1038/s41929-017-0008-y

    13. [13]

      Liu, J.; Xiao, J.; Luo, B.; Tian, E.; Waterhouse, G. I. N. Chem. Eng. J. 2022, 427, 132038. doi: 10.1016/j.cej.2021.131686  doi: 10.1016/j.cej.2021.131686

    14. [14]

      Zhao, C. X.; Li, B. Q.; Liu, J. N.; Zhang, Q. Angew. Chem. Int. Ed. 2021, 60, 4448. doi: 10.1002/anie.202003917  doi: 10.1002/anie.202003917

    15. [15]

      Li, X.; Yang, X.; Liu, L.; Zhao, H.; Li, Y.; Zhu, H.; Chen, Y.; Guo, S.; Liu, Y.; Tan, Q.; Wu, G. ACS Catal. 2021, 11, 7450. doi: 10.1021/acscatal.0c05446  doi: 10.1021/acscatal.0c05446

    16. [16]

      Wu, Y. -J.; Wu, X. -H.; Tu, T. -X.; Zhang, P. -F.; Li, J. -T.; Zhou, Y.; Huang, L.; Sun, S. -G. Appl. Catal. B Environ. 2020, 278, 119259. doi: 10.1016/j.apcatb.2020.119259  doi: 10.1016/j.apcatb.2020.119259

    17. [17]

      Ban, J. J.; Wen, X. H.; Xu, H. J.; Wang, Z.; Liu, X. H.; Cao, G. Q.; Shao, G. S.; Hu, J. H. Adv. Funct. Mater. 2021, 31, 2010472. doi: 10.1002/adfm.202010472  doi: 10.1002/adfm.202010472

    18. [18]

      Huang, Q. E.; Wang, B.; Ye, S.; Liu, H.; Chi, H.; Liu, X.; Fan, H.; Li, M.; Ding, C.; Li, Z.; et al. ACS Catal. 2021, 12, 491. doi: 10.1021/acscatal.1c04644.  doi: 10.1021/acscatal.1c04644

    19. [19]

      Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Nano Res. 2020, 13, 1842. doi: 10.1007/s12274-020-2755-3  doi: 10.1007/s12274-020-2755-3

    20. [20]

      Liu, J. ACS Catal. 2016, 7, 34. doi: 10.1021/acscatal.6b01534  doi: 10.1021/acscatal.6b01534

    21. [21]

      Zhang, Q.; Duan, Z.; Li, M.; Guan, J. Chem. Commun. 2020, 56, 794. doi: 10.1039/c9cc09007j  doi: 10.1039/c9cc09007j

    22. [22]

      Xu, H.; Cheng, D.; Cao, D.; Zeng, X. C. Nat. Catal. 2018, 1, 339. doi: 10.1038/s41929-018-0063-z  doi: 10.1038/s41929-018-0063-z

    23. [23]

      Lu, J.; Zeng, Y.; Ma, X.; Wang, H.; Gao, L.; Zhong, H.; Meng, Q. Polymers 2019, 11, 828. doi: 10.3390/polym11050828  doi: 10.3390/polym11050828

    24. [24]

      Wang, J.; Huang, Z.; Liu, W.; Chang, C.; Tang, H.; Li, Z.; Chen, W.; Jia, C.; Yao, T.; Wei, S.; et al. J. Am. Chem. Soc. 2017, 139, 17281. doi: 10.1021/jacs.7b10385  doi: 10.1021/jacs.7b10385

    25. [25]

      Zhang, L.; Fischer, J.; Jia, Y.; Yan, X.; Xu, W.; Wang, X.; Chen, J.; Yang, D.; Liu, H.; Zhuang, L.; et al. J. Am. Chem. Soc. 2018, 140, 10757. doi: 10.1021/jacs.8b04647  doi: 10.1021/jacs.8b04647

    26. [26]

      Zhou, Y.; Yang, W.; Utetiwabo, W.; Lian, Y. M.; Yin, X.; Zhou, L.; Yu, P.; Chen, R.; Sun, S. J. Phys. Chem. Lett. 2020, 11, 1404. doi: 10.1021/acs.jpclett.9b03771  doi: 10.1021/acs.jpclett.9b03771

    27. [27]

      Kresse, G.; Hafner, J. Phys. Rev. B 1993, 48, 13115. doi: 10.1103/PhysRevB.48.13115  doi: 10.1103/PhysRevB.48.13115

    28. [28]

      Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169  doi: 10.1103/PhysRevB.54.11169

    29. [29]

      Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758-1775. doi: 10.1103/PhysRevB.59.1758  doi: 10.1103/PhysRevB.59.1758

    30. [30]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    31. [31]

      Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. doi: 10.1063/1.3382344  doi: 10.1063/1.3382344

    32. [32]

      Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456. doi: 10.1002/jcc.21759  doi: 10.1002/jcc.21759

    33. [33]

      Henkelman, G.; Arnaldsson, A.; Jónsson, H. Comput. Mater. Sci. 2006, 36, 354. doi: 10.1016/j.commatsci.2005.04.010  doi: 10.1016/j.commatsci.2005.04.010

    34. [34]

      Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. J. Comput. Chem. 2007, 28, 899. doi: 10.1002/jcc.20575  doi: 10.1002/jcc.20575

    35. [35]

      Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901. doi: 10.1063/1.1329672  doi: 10.1063/1.1329672

    36. [36]

      Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. J. Comput. Chem. 2013, 34, 2557. doi: 10.1002/jcc.23424  doi: 10.1002/jcc.23424

    37. [37]

      Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. J. Comput. Chem. 2016, 37, 1030. doi: 10.1002/jcc.24300  doi: 10.1002/jcc.24300

    38. [38]

      Hansen, H. A.; Viswanathan, V.; Nørskov, J. K. J. Phys. Chem. C 2014, 118, 6706. doi: 10.1021/jp4100608  doi: 10.1021/jp4100608

    39. [39]

      Zhang, X.; Yang, Z.; Lu, Z.; Wang, W. Carbon 2018, 130, 112. doi: 10.1016/j.carbon.2017.12.121  doi: 10.1016/j.carbon.2017.12.121

    40. [40]

      Sun, X.; Sun, S.; Gu, S.; Liang, Z.; Zhang, J.; Yang, Y.; Deng, Z.; Wei, P.; Peng, J.; Xu, Y.; et al. Nano Energy 2019, 61, 245. doi: 10.1016/j.nanoen.2019.04.076  doi: 10.1016/j.nanoen.2019.04.076

    41. [41]

      Zhao, J.; Zhang, J. -J.; Li, Z. -Y.; Bu, X. -H. Small 2020, 16, 2003916. doi: 10.1002/smll.202003916  doi: 10.1002/smll.202003916

    42. [42]

      Vinogradov, I.; Singh, S.; Lyle, H.; Paolino, M.; Mandal, A.; Rossmeisl, J.; Cuk, T. Nat. Mater. 2022, 21, 88. doi: 10.1038/s41563-021-01118-9  doi: 10.1038/s41563-021-01118-9

    43. [43]

      Tahir, M.; Pan, L.; Idrees, F.; Zhang, X.; Wang, L.; Zou, J. -J.; Wang, Z. L. Nano Energy 2017, 37, 136. doi: 10.1016/j.nanoen.2017.05.022  doi: 10.1016/j.nanoen.2017.05.022

    44. [44]

      Betley, T. A.; Wu, Q.; Van Voorhis, T.; Nocera, D. G. Inorg. Chem. 2008, 47, 1849. doi: 10.1021/ic701972n  doi: 10.1021/ic701972n

    45. [45]

      He, Y. H.; Guo, H.; Hwang, S.; Yang, X. X.; He, Z. Z.; Braaten, J.; Karakalos, S.; Shan, W. T.; Wang, M. Y.; Zhou, H.; et al. Adv. Mater. 2020, 32, 2003577. doi: 10.1002/adma.202003577  doi: 10.1002/adma.202003577

    46. [46]

      Zhang, N.; Zhou, T.; Ge, J.; Lin, Y.; Du, Z.; Zhong, C. A.; Wang, W.; Jiao, Q.; Yuan, R.; Tian, Y.; et al. Matter 2020, 3, 509. doi: 10.1016/j.matt.2020.06.026  doi: 10.1016/j.matt.2020.06.026

    47. [47]

      Bajdich, M.; Garcia-Mota, M.; Vojvodic, A.; Norskov, J. K.; Bell, A. T. J. Am. Chem. Soc. 2013, 135, 13521. doi: 10.1021/ja405997s  doi: 10.1021/ja405997s

    48. [48]

      Qiu, Z.; Tai, C. W.; Niklasson, G. A.; Edvinsson, T. Energy Environ. Sci. 2019, 12, 572. doi: 10.1039/c8ee03282c  doi: 10.1039/c8ee03282c

    49. [49]

      Mefford, J. T.; Akbashev, A. R.; Kang, M.; Bentley, C. L.; Gent, W. E.; Deng, H. D.; Alsem, D. H.; Yu, Y. S.; Salmon, N. J.; Shapiro, D. A.; et al. Nature 2021, 593, 67. doi: 10.1038/s41586-021-03454-x  doi: 10.1038/s41586-021-03454-x

    50. [50]

      Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. Science 2011, 334, 1383. doi: 10.1126/science.1212858  doi: 10.1126/science.1212858

    51. [51]

      Li, Q. K.; Li, X. F.; Zhang, G.; Jiang, J. J. J. Am. Chem. Soc. 2018, 140, 15149. doi: 10.1021/jacs.8b07816  doi: 10.1021/jacs.8b07816

    52. [52]

      Jin, Z.; Li, P.; Meng, Y.; Fang, Z.; Xiao, D.; Yu, G. Nat. Catal. 2021, 4, 615. doi: 10.1038/s41929-021-00650-w  doi: 10.1038/s41929-021-00650-w

    53. [53]

      Li, Z.; Wang, Z.; Xi, S.; Zhao, X.; Sun, T.; Li, J.; Yu, W.; Xu, H.; Herng, T. S.; Hai, X.; et al. ACS Nano 2021, 15, 7105. doi: 10.1021/acsnano.1c00251  doi: 10.1021/acsnano.1c00251

    54. [54]

      Exner, K. S. Chem Catal. 2021, 1, 258. doi: 10.1016/j.checat.2021.06.011  doi: 10.1016/j.checat.2021.06.011

    55. [55]

      Govindarajan, N.; Koper, M. T. M.; Meijer, E. J.; Calle-Vallejo, F. ACS Catal. 2019, 9, 4218. doi: 10.1021/acscatal.9b00532  doi: 10.1021/acscatal.9b00532

  • 加载中
    1. [1]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    2. [2]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    3. [3]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    4. [4]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    5. [5]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    6. [6]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    7. [7]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    8. [8]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    9. [9]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    10. [10]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    11. [11]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    12. [12]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    13. [13]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    14. [14]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    15. [15]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    16. [16]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    17. [17]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    18. [18]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    19. [19]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    20. [20]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

Metrics
  • PDF Downloads(0)
  • Abstract views(280)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return