Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction
- Corresponding author: Qiang Li, qiang.li@seu.edu.cn Jinlan Wang, jlwang@seu.edu.cn
Citation: Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction[J]. Acta Physico-Chimica Sinica, ;2023, 39(1): 220700. doi: 10.3866/PKU.WHXB202207007
Li, Y.; Wang, H.; Priest, C.; Li, S.; Xu, P.; Wu, G. Adv. Mater. 2021, 33, e2000381. doi: 10.1002/adma.202000381
doi: 10.1002/adma.202000381
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998. doi: 10.1126/science.aad4998
doi: 10.1126/science.aad4998
Ding, Y.; Cai, P.; Wen, Z. Chem. Soc. Rev. 2021, 50, 1495. doi: 10.1039/d0cs01239d
doi: 10.1039/d0cs01239d
Yan, Z.; Hitt, J. L.; Turner, J. A.; Mallouk, T. E. Proc. Natl. Acad. Sci. USA 2020, 117, 12558. doi: 10.1073/pnas.1821686116
doi: 10.1073/pnas.1821686116
Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Sun, X. Adv. Mater. 2016, 28, 215. doi: 10.1002/adma.201502696
doi: 10.1002/adma.201502696
Song, J.; Wei, C.; Huang, Z. -F.; Liu, C.; Zeng, L.; Wang, X.; Xu, Z. J. Chem. Soc. Rev. 2020, 49, 2196. doi: 10.1039/c9cs00607a
doi: 10.1039/c9cs00607a
Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. Nat. Energy 2016, 1, 15006. doi: 10.1038/nenergy.2015.6
doi: 10.1038/nenergy.2015.6
Zhang, L.; Jia, Y.; Gao, G.; Yan, X.; Chen, N.; Chen, J.; Soo, M. T.; Wood, B.; Yang, D.; Du, A.; et al. Chem 2018, 4, 285. doi: 10.1016/j.chempr.2017.12.005
doi: 10.1016/j.chempr.2017.12.005
Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Chem. Soc. Rev. 2021, 50, 7745. doi: 10.1039/d1cs00135c
doi: 10.1039/d1cs00135c
Zhang, W.; Cao, R. Chem 2021, 7, 1981. doi: 10.1016/j.chempr.2021.07.012
doi: 10.1016/j.chempr.2021.07.012
Zhang, J. -Y.; Yan, Y.; Mei, B.; Qi, R.; He, T.; Wang, Z.; Fang, W.; Zaman, S.; Su, Y.; Ding, S.; et al. Energy Environ. Sci. 2021, 14, 365. doi: 10.1039/d0ee03500a
doi: 10.1039/d0ee03500a
Fei, H.; Dong, J.; Feng, Y.; Allen, C. S.; Wan, C.; Volosskiy, B.; Li, M.; Zhao, Z.; Wang, Y.; Sun, H.; et al. Nat. Catal. 2018, 1, 63. doi: 10.1038/s41929-017-0008-y
doi: 10.1038/s41929-017-0008-y
Liu, J.; Xiao, J.; Luo, B.; Tian, E.; Waterhouse, G. I. N. Chem. Eng. J. 2022, 427, 132038. doi: 10.1016/j.cej.2021.131686
doi: 10.1016/j.cej.2021.131686
Zhao, C. X.; Li, B. Q.; Liu, J. N.; Zhang, Q. Angew. Chem. Int. Ed. 2021, 60, 4448. doi: 10.1002/anie.202003917
doi: 10.1002/anie.202003917
Li, X.; Yang, X.; Liu, L.; Zhao, H.; Li, Y.; Zhu, H.; Chen, Y.; Guo, S.; Liu, Y.; Tan, Q.; Wu, G. ACS Catal. 2021, 11, 7450. doi: 10.1021/acscatal.0c05446
doi: 10.1021/acscatal.0c05446
Wu, Y. -J.; Wu, X. -H.; Tu, T. -X.; Zhang, P. -F.; Li, J. -T.; Zhou, Y.; Huang, L.; Sun, S. -G. Appl. Catal. B Environ. 2020, 278, 119259. doi: 10.1016/j.apcatb.2020.119259
doi: 10.1016/j.apcatb.2020.119259
Ban, J. J.; Wen, X. H.; Xu, H. J.; Wang, Z.; Liu, X. H.; Cao, G. Q.; Shao, G. S.; Hu, J. H. Adv. Funct. Mater. 2021, 31, 2010472. doi: 10.1002/adfm.202010472
doi: 10.1002/adfm.202010472
Huang, Q. E.; Wang, B.; Ye, S.; Liu, H.; Chi, H.; Liu, X.; Fan, H.; Li, M.; Ding, C.; Li, Z.; et al. ACS Catal. 2021, 12, 491. doi: 10.1021/acscatal.1c04644.
doi: 10.1021/acscatal.1c04644
Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Nano Res. 2020, 13, 1842. doi: 10.1007/s12274-020-2755-3
doi: 10.1007/s12274-020-2755-3
Liu, J. ACS Catal. 2016, 7, 34. doi: 10.1021/acscatal.6b01534
doi: 10.1021/acscatal.6b01534
Zhang, Q.; Duan, Z.; Li, M.; Guan, J. Chem. Commun. 2020, 56, 794. doi: 10.1039/c9cc09007j
doi: 10.1039/c9cc09007j
Xu, H.; Cheng, D.; Cao, D.; Zeng, X. C. Nat. Catal. 2018, 1, 339. doi: 10.1038/s41929-018-0063-z
doi: 10.1038/s41929-018-0063-z
Lu, J.; Zeng, Y.; Ma, X.; Wang, H.; Gao, L.; Zhong, H.; Meng, Q. Polymers 2019, 11, 828. doi: 10.3390/polym11050828
doi: 10.3390/polym11050828
Wang, J.; Huang, Z.; Liu, W.; Chang, C.; Tang, H.; Li, Z.; Chen, W.; Jia, C.; Yao, T.; Wei, S.; et al. J. Am. Chem. Soc. 2017, 139, 17281. doi: 10.1021/jacs.7b10385
doi: 10.1021/jacs.7b10385
Zhang, L.; Fischer, J.; Jia, Y.; Yan, X.; Xu, W.; Wang, X.; Chen, J.; Yang, D.; Liu, H.; Zhuang, L.; et al. J. Am. Chem. Soc. 2018, 140, 10757. doi: 10.1021/jacs.8b04647
doi: 10.1021/jacs.8b04647
Zhou, Y.; Yang, W.; Utetiwabo, W.; Lian, Y. M.; Yin, X.; Zhou, L.; Yu, P.; Chen, R.; Sun, S. J. Phys. Chem. Lett. 2020, 11, 1404. doi: 10.1021/acs.jpclett.9b03771
doi: 10.1021/acs.jpclett.9b03771
Kresse, G.; Hafner, J. Phys. Rev. B 1993, 48, 13115. doi: 10.1103/PhysRevB.48.13115
doi: 10.1103/PhysRevB.48.13115
Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169
doi: 10.1103/PhysRevB.54.11169
Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758-1775. doi: 10.1103/PhysRevB.59.1758
doi: 10.1103/PhysRevB.59.1758
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
doi: 10.1103/PhysRevLett.77.3865
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. doi: 10.1063/1.3382344
doi: 10.1063/1.3382344
Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456. doi: 10.1002/jcc.21759
doi: 10.1002/jcc.21759
Henkelman, G.; Arnaldsson, A.; Jónsson, H. Comput. Mater. Sci. 2006, 36, 354. doi: 10.1016/j.commatsci.2005.04.010
doi: 10.1016/j.commatsci.2005.04.010
Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. J. Comput. Chem. 2007, 28, 899. doi: 10.1002/jcc.20575
doi: 10.1002/jcc.20575
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901. doi: 10.1063/1.1329672
doi: 10.1063/1.1329672
Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. J. Comput. Chem. 2013, 34, 2557. doi: 10.1002/jcc.23424
doi: 10.1002/jcc.23424
Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. J. Comput. Chem. 2016, 37, 1030. doi: 10.1002/jcc.24300
doi: 10.1002/jcc.24300
Hansen, H. A.; Viswanathan, V.; Nørskov, J. K. J. Phys. Chem. C 2014, 118, 6706. doi: 10.1021/jp4100608
doi: 10.1021/jp4100608
Zhang, X.; Yang, Z.; Lu, Z.; Wang, W. Carbon 2018, 130, 112. doi: 10.1016/j.carbon.2017.12.121
doi: 10.1016/j.carbon.2017.12.121
Sun, X.; Sun, S.; Gu, S.; Liang, Z.; Zhang, J.; Yang, Y.; Deng, Z.; Wei, P.; Peng, J.; Xu, Y.; et al. Nano Energy 2019, 61, 245. doi: 10.1016/j.nanoen.2019.04.076
doi: 10.1016/j.nanoen.2019.04.076
Zhao, J.; Zhang, J. -J.; Li, Z. -Y.; Bu, X. -H. Small 2020, 16, 2003916. doi: 10.1002/smll.202003916
doi: 10.1002/smll.202003916
Vinogradov, I.; Singh, S.; Lyle, H.; Paolino, M.; Mandal, A.; Rossmeisl, J.; Cuk, T. Nat. Mater. 2022, 21, 88. doi: 10.1038/s41563-021-01118-9
doi: 10.1038/s41563-021-01118-9
Tahir, M.; Pan, L.; Idrees, F.; Zhang, X.; Wang, L.; Zou, J. -J.; Wang, Z. L. Nano Energy 2017, 37, 136. doi: 10.1016/j.nanoen.2017.05.022
doi: 10.1016/j.nanoen.2017.05.022
Betley, T. A.; Wu, Q.; Van Voorhis, T.; Nocera, D. G. Inorg. Chem. 2008, 47, 1849. doi: 10.1021/ic701972n
doi: 10.1021/ic701972n
He, Y. H.; Guo, H.; Hwang, S.; Yang, X. X.; He, Z. Z.; Braaten, J.; Karakalos, S.; Shan, W. T.; Wang, M. Y.; Zhou, H.; et al. Adv. Mater. 2020, 32, 2003577. doi: 10.1002/adma.202003577
doi: 10.1002/adma.202003577
Zhang, N.; Zhou, T.; Ge, J.; Lin, Y.; Du, Z.; Zhong, C. A.; Wang, W.; Jiao, Q.; Yuan, R.; Tian, Y.; et al. Matter 2020, 3, 509. doi: 10.1016/j.matt.2020.06.026
doi: 10.1016/j.matt.2020.06.026
Bajdich, M.; Garcia-Mota, M.; Vojvodic, A.; Norskov, J. K.; Bell, A. T. J. Am. Chem. Soc. 2013, 135, 13521. doi: 10.1021/ja405997s
doi: 10.1021/ja405997s
Qiu, Z.; Tai, C. W.; Niklasson, G. A.; Edvinsson, T. Energy Environ. Sci. 2019, 12, 572. doi: 10.1039/c8ee03282c
doi: 10.1039/c8ee03282c
Mefford, J. T.; Akbashev, A. R.; Kang, M.; Bentley, C. L.; Gent, W. E.; Deng, H. D.; Alsem, D. H.; Yu, Y. S.; Salmon, N. J.; Shapiro, D. A.; et al. Nature 2021, 593, 67. doi: 10.1038/s41586-021-03454-x
doi: 10.1038/s41586-021-03454-x
Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. Science 2011, 334, 1383. doi: 10.1126/science.1212858
doi: 10.1126/science.1212858
Li, Q. K.; Li, X. F.; Zhang, G.; Jiang, J. J. J. Am. Chem. Soc. 2018, 140, 15149. doi: 10.1021/jacs.8b07816
doi: 10.1021/jacs.8b07816
Jin, Z.; Li, P.; Meng, Y.; Fang, Z.; Xiao, D.; Yu, G. Nat. Catal. 2021, 4, 615. doi: 10.1038/s41929-021-00650-w
doi: 10.1038/s41929-021-00650-w
Li, Z.; Wang, Z.; Xi, S.; Zhao, X.; Sun, T.; Li, J.; Yu, W.; Xu, H.; Herng, T. S.; Hai, X.; et al. ACS Nano 2021, 15, 7105. doi: 10.1021/acsnano.1c00251
doi: 10.1021/acsnano.1c00251
Exner, K. S. Chem Catal. 2021, 1, 258. doi: 10.1016/j.checat.2021.06.011
doi: 10.1016/j.checat.2021.06.011
Govindarajan, N.; Koper, M. T. M.; Meijer, E. J.; Calle-Vallejo, F. ACS Catal. 2019, 9, 4218. doi: 10.1021/acscatal.9b00532
doi: 10.1021/acscatal.9b00532
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
A-Yang Wang , Sheng-Hua Zhou , Mao-Yin Ran , Xin-Tao Wu , Hua Lin , Qi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282