Citation: Yanke Yu, Mengqiao Geng, Desheng Wei, Chi He. Effect of Potassium on the Performance of a CuSO4/TiO2 Catalyst Used in the Selective Catalytic Reduction of NOx by NH3[J]. Acta Physico-Chimica Sinica, ;2023, 39(4): 220603. doi: 10.3866/PKU.WHXB202206034 shu

Effect of Potassium on the Performance of a CuSO4/TiO2 Catalyst Used in the Selective Catalytic Reduction of NOx by NH3

  • Corresponding author: Chi He, chi_he@xjtu.edu.cn
  • Received Date: 22 June 2022
    Revised Date: 12 July 2022
    Accepted Date: 13 July 2022
    Available Online: 18 July 2022

    Fund Project: the National Natural Science Foundation of China 21906127the National Natural Science Foundation of China 21876139the National Natural Science Foundation of China 21922606General Financial Grant from the China Postdoctoral Science Foundation 2021M692550

  • Owing to its renewability, abundance, and low environmental impact, biomass is considered to be a viable eco-friendly fuel. Various biofuel-fired power plants have been built worldwide to reduce carbon emissions. Potassium (K) is a typical impurity in the flue gas from biofuel combustion that can deactivate the catalyst used in the selective catalytic reduction of NOx by ammonia (NH3-SCR). CuSO4/TiO2, with excellent sulfur dioxide tolerance, is thought to be a promising vanadium-free catalyst for NH3-SCR; however, the influence of K on the CuSO4/TiO2 catalyst is still unknown. Therefore, in this study, the effect of K on the NH3-SCR performance of CuSO4/TiO2 were investigated and compared with the effect on the performance of the commercial V2O5-WO3/TiO2 (VWTi) catalyst. K-poisoned catalysts were prepared via wet impregnation using potassium acetate as the K source. Nitrogen (N2) adsorption-desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), NH3-temperature programmed desorption (NH3-TPD), H2-temperature programmed reduction (H2-TPR), and in situ diffuse reflectance infrared Fourier-transform spectroscopy (in situ DRIFTS) were used to characterize the prepared catalysts. The NOx conversion over CuSO4/TiO2 with 1.0% (w) K was 92.1% (at 350 ℃), which was higher than the conversion (75.1%) achieved over the commercial VWTi catalyst with the same K content. The XRD, XPS, and H2-TPR results suggested that K reacted with the CuSO4 in the CuSO4/TiO2 catalyst to form CuO and K2SO4. The presence of CuO enhanced the oxidation of NH3 to N2O, NO, and NO2 during NH3-SCR, thereby decreasing the NOx conversion and N2 selectivity over CuSO4/TiO2. Moreover, based on the results from NH3-TPD and in situ DRIFTS of NH3 adsorption, it can be concluded that the Brønsted acid sites (S-OH) were poisoned by K, which restrained the adsorption of NH3 on CuSO4/TiO2. Additionally, the high K content altered the pore structure of the catalyst, leading to a decrease in the specific surface area. However, according to the in situ DRIFTS results, NH3-SCR over K-poisoned CuSO4/TiO2 still followed the Eley-Rideal mechanism: First, NH3 was adsorbed on the Lewis and Brønsted acid sites of the catalyst, and then gaseous NO and O2 reacted with the adsorbed NH3/NH4+ on the acid sites, resulting in the formation of N2 and H2O. Notably, the abundance of acid sites and surface-adsorbed oxygen species on CuSO4/TiO2 could be the main reason for its higher resistance to K-poisoning. In conclusion, our current findings suggested that CuSO4/TiO2 might be a suitable NH3-SCR catalyst for use in the flue gas streams from biofuel-fired power plants.
  • 加载中
    1. [1]

      Fang, X.; Qu, W.; Qin, T.; Hu, X.; Chen, L.; Ma, Z.; Liu, X.; Tang, X. Environ. Sci. Technol. 2022, 56, 6631. doi: 10.1021/acs.est.2c00482  doi: 10.1021/acs.est.2c00482

    2. [2]

      Ding, X. M.; Liang, Y. L.; Zhang, H. L.; Zhao, M.; Wang, J. L.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2022, 38, 2005009.  doi: 10.3866/PKU.WHXB202005009

    3. [3]

      Mesilov, V.; Dahlin, S.; Bergman, S. L.; Xi, S.; Han, J.; Olsson, L. Appl. Catal. B 2021, 299, 120626. doi: 10.1016/j.apcatb.2021.120626  doi: 10.1016/j.apcatb.2021.120626

    4. [4]

      Han, L.; Cai, S.; Gao, M.; Hasegawa, J.; Wang, P.; Zhang, J.; Shi, L.; Zhang, D. Chem. Rev. 2019, 119, 10916. doi: 10.1021/acs.chemrev.9b00202  doi: 10.1021/acs.chemrev.9b00202

    5. [5]

      Yang, X. Q.; Yang, H. L.; Lu, H.; Ding, H. X.; Tong, Y. X.; Rao, F.; Zhang, X.; Shen, Q.; Gao, J.; Zhu, G. Q. Acta Phys. -Chim. Sin. 2021, 37, 2005008.  doi: 10.3866/PKU.WHXB202005008

    6. [6]

      Huang, X.; Liu, Z.; Wang, D.; Peng, Y.; Li, J. Catal. Sci. Technol. 2020, 10, 323. doi: 10.1039/C9CY02188D  doi: 10.1039/C9CY02188D

    7. [7]

      Yu, Y.; Yi, X.; Zhang, J.; Tong, Z.; Chen, C.; Ma, M.; He, C.; Wang, J.; Chen, J.; Chen, B. Catal. Sci. Technol. 2021, 11, 5125. doi: 10.1039/D1CY00467K  doi: 10.1039/D1CY00467K

    8. [8]

      Ni, S.; Tang, X.; Yi, H.; Gao, F.; Wang, C.; Shi, Y.; Zhang, R.; Zhu, W. J. Rare Earths 2022, 40, 268. doi: 10.1016/j.jre.2020.12.015  doi: 10.1016/j.jre.2020.12.015

    9. [9]

      Li, L.; Ge, C.; Ji, J.; Tan, W.; Wang, X.; Wei, X.; Guo, K.; Tang, C.; Dong, L. Chin. J. Catal. 2021, 42, 1488. doi: 10.1016/S1872-2067(20)63778-0  doi: 10.1016/S1872-2067(20)63778-0

    10. [10]

      Guo, K.; Ji, J.; Song, W.; Sun, J.; Tang, C.; Dong, L. Appl. Catal. B 2021, 297, 120388. doi: 10.1016/j.apcatb.2021.120388  doi: 10.1016/j.apcatb.2021.120388

    11. [11]

      Zhang, Y.; Zhang, J.; Wang, H.; Yang, W.; Wang, C.; Peng, Y.; Chen, J.; Li, J.; Gao, F. J. Phys. Chem. C 2022, 126, 8720. doi: 10.1021/acs.jpcc.2c01268  doi: 10.1021/acs.jpcc.2c01268

    12. [12]

      Hu, W.; He, J.; Liu, X.; Yu, H.; Jia, X.; Yan, T.; Han, L.; Zhang, D. Environ. Sci. Technol. 2022, 56, 5170. doi: 10.1021/acs.est.1c08715  doi: 10.1021/acs.est.1c08715

    13. [13]

      Kang, L.; Han, L.; Wang, P.; Feng, C.; Zhang, J.; Yan, T.; Deng, J.; Shi, L.; Zhang, D. Environ. Sci. Technol. 2020, 54, 14066. doi: 10.1021/acs.est.0c05038  doi: 10.1021/acs.est.0c05038

    14. [14]

      Yu, Y.; Zhang, J.; Chen, C.; Ma, M.; He, C.; Miao, J.; Li, H.; Chen, J. New J. Chem. 2020, 44, 13598. doi: 10.1039/D0NJ02647F  doi: 10.1039/D0NJ02647F

    15. [15]

      Qi, K.; Xie, J.; Fang, D.; Gong, P.; Li, F.; He, F. J. Cleaner Prod. 2020, 256, 120411. doi: 10.1016/j.jclepro.2020.120411  doi: 10.1016/j.jclepro.2020.120411

    16. [16]

      Yu, Y.; Miao, J.; Wang, J.; He, C.; Chen, J. Catal. Sci. Technol. 2017, 7, 1590. doi: 10.1039/c6cy02626e  doi: 10.1039/c6cy02626e

    17. [17]

      Kong, M.; Liu, Q.; Zhou, J.; Jiang, L.; Tian, Y.; Yang, J.; Ren, S.; Li, J. Chem. Eng. J. 2018, 348, 637. doi: 10.1016/j.cej.2018.05.045  doi: 10.1016/j.cej.2018.05.045

    18. [18]

      Gong, P.; He, F.; Fang, D.; Xie, J. J. Environ. Chem. Eng. 2022, 10, 107895. doi: 10.1016/j.jece.2022.107895.  doi: 10.1016/j.jece.2022.107895

    19. [19]

      Li, J.; Peng, Y.; Chang, H.; Li, X.; Crittenden, J. C.; Hao, J. Front. Environ. Sci. Eng. 2016, 10, 413. doi: 10.1007/s11783-016-0832-3  doi: 10.1007/s11783-016-0832-3

    20. [20]

      Chen, L.; Li, J.; Ge, M. Chem. Eng. J. 2011, 170, 531. doi: 10.1016/j.cej.2010.11.020  doi: 10.1016/j.cej.2010.11.020

    21. [21]

      Chen, X.; Geng, Y.; Shan, W.; Liu, F. Ind. Eng. Chem. Res. 2018, 57, 1399. doi: 10.1021/acs.iecr.7b04444  doi: 10.1021/acs.iecr.7b04444

    22. [22]

      Kong, M.; Liu, Q.; Jiang, L.; Tong, W.; Yang, J.; Ren, S.; Li, J.; Tian, Y. Chem. Eng. J. 2019, 370, 518. doi: 10.1016/j.cej.2019.03.156  doi: 10.1016/j.cej.2019.03.156

    23. [23]

      Wu, H.; Li, W.; Guo, L.; Pan, Y.; Xu, X. J. Fuel Chem. Technol. 2011, 39, 550. doi: 10.1016/S1872-5813(11)60034-0  doi: 10.1016/S1872-5813(11)60034-0

    24. [24]

      Byun, S. W.; Lee, S. J.; Kim, M.; Bae, W. B.; Shin, H.; Hazlett, M. J.; Kang, D.; Tesfaye, B.; Park, P. W.; Kang, S. B. Chem. Eng. J. 2022, 444, 136517. doi: 10.1016/j.cej.2022.136517  doi: 10.1016/j.cej.2022.136517

    25. [25]

      Du, X.; Gao, X.; Qiu, K.; Luo, Z.; Cen, K. J. Phys. Chem. C 2015, 119, 1905. doi: 10.1021/jp511475b  doi: 10.1021/jp511475b

    26. [26]

      Madia, G.; Elsener, M.; Koebel, M.; Raimondi, F.; Wokaun, A. Appl. Catal. B 2002, 39, 181. doi: 10.1016/S0926-3373(02)00099-1  doi: 10.1016/S0926-3373(02)00099-1

    27. [27]

      Qi, X.; Han, L.; Deng, J.; Lan, T.; Wang, F.; Shi, L.; Zhang, D. Environ. Sci. Technol. 2022, 56, 5840. doi: 10.1021/acs.est.2c00944  doi: 10.1021/acs.est.2c00944

    28. [28]

      Guo, M.; Mosevitzky, L. B.; Ford, M. E.; Wachs, I. E. Appl. Catal. B 2022, 306, 121108. doi: 10.1016/j.apcatb.2022.121108  doi: 10.1016/j.apcatb.2022.121108

    29. [29]

      Zhang, X.; Xuan, Y.; Wang, B.; Gao, C.; Niu, S.; Zhao, G.; Wang, D.; Li, J.; Lu, C.; Crittenden, J. C. Front. Environ. Sci. Eng. 2021, 16, 88. doi: 10.1007/s11783-021-1447-x  doi: 10.1007/s11783-021-1447-x

    30. [30]

      Ji, J.; Tang, Y.; Han, L.; Ran, P.; Song, W.; Cai, Y.; Tan, W.; Sun, J.; Tang, C.; Dong, L. Chem. Eng. J. 2022, 445, 136530. doi: 10.1016/j.cej.2022.136530  doi: 10.1016/j.cej.2022.136530

    31. [31]

      Han, F.; Yuan, M.; Mine, S.; Sun, H.; Chen, H.; Toyao, T.; Matsuoka, M.; Zhu, K.; Zhang, J.; Wang, W.; et al. ACS Catal. 2019, 9, 10398. doi: 10.1021/acscatal.9b02975  doi: 10.1021/acscatal.9b02975

    32. [32]

      Wang, Y.; Yi, W.; Yu, J.; Zeng, J.; Chang, H. Environ. Sci. Technol. 2020, 54, 12612. doi: 10.1021/acs.est.0c02840  doi: 10.1021/acs.est.0c02840

    33. [33]

      Yu, Y.; Wei, D.; Tong, Z.; Wang, J.; Chen, J.; He, C. Chem. Eng. J. 2022, 442, 136356. doi: 10.1016/j.cej.2022.136356  doi: 10.1016/j.cej.2022.136356

    34. [34]

      Qu, Z.; Wang, Z.; Zhang, X.; Wang, H. Catal. Sci. Technol. 2016, 6, 4491. doi: 10.1039/C5CY02125A  doi: 10.1039/C5CY02125A

    35. [35]

      Zhang, X.; Wang, H.; Wang, Z.; Qu. Z. Appl. Surf. Sci. 2018, 447, 40. doi: 10.1016/j.apsusc.2018.03.220  doi: 10.1016/j.apsusc.2018.03.220

  • 加载中
    1. [1]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    2. [2]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    3. [3]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    4. [4]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    5. [5]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    6. [6]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    7. [7]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    8. [8]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    9. [9]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    10. [10]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    11. [11]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    12. [12]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    13. [13]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    14. [14]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    15. [15]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    16. [16]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    17. [17]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    18. [18]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    19. [19]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(4)
  • Abstract views(123)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return