Citation: Shaopeng Li, Jing Du, Bin Zhang, Yanzhen Liu, Qingqing Mei, Qinglei Meng, Minghua Dong, Juan Du, Zhijuan Zhao, Lirong Zheng, Buxing Han, Meiting Zhao, Huizhen Liu. Selective Hydrogenation of 5-(Hydroxymethyl)furfural to 5-Methylfurfural by Exploiting the Synergy between Steric Hindrance and Hydrogen Spillover[J]. Acta Physico-Chimica Sinica, ;2022, 38(10): 220601. doi: 10.3866/PKU.WHXB202206019 shu

Selective Hydrogenation of 5-(Hydroxymethyl)furfural to 5-Methylfurfural by Exploiting the Synergy between Steric Hindrance and Hydrogen Spillover

  • Corresponding author: Meiting Zhao, mtzhao@tju.edu.cn Huizhen Liu, liuhz@iccas.ac.cn
  • Received Date: 14 June 2022
    Revised Date: 7 July 2022
    Accepted Date: 21 July 2022
    Available Online: 29 July 2022

    Fund Project: the National Key Research and Development Program of China 2017YFA0403003the National Key Research and Development Program of China 2017YFA0403101National Natural Science Foundation of China 21871277National Natural Science Foundation of China 21603235National Natural Science Foundation of China 21403248National Natural Science Foundation of China 21905195China Postdoctoral Science Foundation 2021M702435Beijing Municipal Science & Technology Commission Z191100007219009

  • Selective hydrogenation is a vital class of reaction. Various unsaturated functional groups in organic compounds, such as aromatic rings, alkynyl (C≡C), carbonyl (C=O), nitro (-NO2), and alkenyl (C=C) groups, are typical targets in selective hydrogenation. Therefore, selectivity is a key indicator of the efficiency of a designed hydrogenation reaction. 5-(Hydroxymethyl)furfural (HMF) is an important platform compound in the context of biomass conversion, and recently, the hydrogenation of HMF to produce fuels and other valuable chemicals has received significant attention. Controlling the selectivity of HMF hydrogenation is paramount because of the different reducible functional groups (C=O, C-OH, and C=C) in HMF. Moreover, the exploration of new routes for hydrogenating HMF to valuable chemicals is becoming attractive. 5-Methylfurfural (MF) is also an important organic compound; thus, the selective hydrogenation of HMF to MF is an essential synthetic route. However, this reaction has challenging thermodynamic and kinetic aspects, making it difficult to realize. Herein, we propose a strategy to design a highly efficient catalytic system for selective hydrogenation by exploiting the synergy between steric hindrance and hydrogen spillover. The design and preparation of the Pt@PVP/Nb2O5 catalyst (PVP = polyvinyl pyrrolidone; Nb2O5 = niobium(V) oxide) were also conducted. Surprisingly, HMF could be converted to MF with 92% selectivity at 100% HMF conversion. The reaction pathway was revealed through the combination of control experiments and density functional theory calculations. Although PVP blocked HMF from accessing the surface of Pt, hydrogen (H2) could be activated on the surface of Pt due to its small molecular size, and the activated H2 could migrate to the surface of Nb2O5 through a phenomenon called H2 spillover. The Lewis acidic surface of Nb2O5 could not adsorb the C=O group but could adsorb and activate the C-OH group of HMF; therefore, when HMF was adsorbed on Nb2O5, the C-OH groups were hydrogenated by the spilled over H2 to form MF. The high selectivity of this reaction was realized because of the unique combination of steric effects, hydrogen spillover, and tuning of the electronic states of the Pt and Nb2O5 surfaces. This new route for producing MF has great potential for practical application owing to its discovered advantages. We believe that this novel strategy can be used to design catalysts for other selective hydrogenation reactions. Furthermore, this study demonstrates a significant breakthrough in selective hydrogenation, which will be of interest to researchers working on the utilization of biomass, organic synthesis, catalysis, and other related fields.
  • 加载中
    1. [1]

      Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.; Cairney, J.; Eckert, C. A.; Frederick, W. J., Jr.; Hallett, J. P.; Leak, D. J.; Liotta, C. L.; et al. Science 2006, 311, 484. doi: 10.1126/science.1114736  doi: 10.1126/science.1114736

    2. [2]

      Román-Leshkov, Y.; Barrett, C. J.; Liu, Z. Y.; Dumesic, J. A. Nature 2007, 447, 982. doi: 10.1038/nature05923  doi: 10.1038/nature05923

    3. [3]

      Putten, R. J.; Waal, J. C.; Jong, E.; Rasrendra, C. B.; Heeres, H. J.; Vries, J. G. Chem. Rev. 2013, 113, 1499. doi: 10.1021/cr300182k  doi: 10.1021/cr300182k

    4. [4]

      Vriamont, C.; Haynes, T.; Cague-Murphy, E. M.; Pennetreau, F.; Riant, O.; Hermans, S. J. Catal. 2015, 329, 389. doi: 10.1016/j.jcat.2015.06.003  doi: 10.1016/j.jcat.2015.06.003

    5. [5]

      Fang, R. Q.; Luque, R.; Li, Y. W. Green Chem. 2017, 19, 647. doi: 10.1039/c6gc02018f  doi: 10.1039/c6gc02018f

    6. [6]

      Besson, M.; Gallezot, P.; Pinel, C. Chem. Rev. 2014, 114, 1827. doi: 10.1021/cr4002269  doi: 10.1021/cr4002269

    7. [7]

      Luo, J.; Yun, H.; Mironenko, A. V.; Goulas, K.; Lee, J. D.; Monai, M.; Wang, C.; Vorotnikov, V.; Murray, C. B.; Vlachos, D. G.; et al. ACS Catal. 2016, 6, 4095. doi: 10.1021/acscatal.6b00750  doi: 10.1021/acscatal.6b00750

    8. [8]

      Thananatthanachon, T.; Rauchfuss, T. B. Angew. Chem. Int. Edit. 2010, 49, 6616. doi: 10.1002/anie.201002267  doi: 10.1002/anie.201002267

    9. [9]

      Nilges, P.; Schroder, U. Energ. Environ. Sci. 2013, 6, 2925. doi: 10.1039/c3ee41857j  doi: 10.1039/c3ee41857j

    10. [10]

      Yang, P. P.; Cui, Q. Q.; Zu, Y. H.; Liu, X. H.; Lu, G. Z.; Wang, Y. Q. Catal. Commun. 2015, 66, 55. doi: 10.1016/j.catcom.2015.02.014  doi: 10.1016/j.catcom.2015.02.014

    11. [11]

      Wang, G. H.; Hilgert, J.; Richter, F. H.; Wang, F.; Bongard, H. J.; Spliethoff, B.; Weidenthaler, C.; Schüth, F. Nat. Mater. 2014, 13, 294. doi: 10.1038/nmat3872  doi: 10.1038/nmat3872

    12. [12]

      Alamillo, R.; Tucker, M.; Chia, M.; Pagan-Torres, Y.; Dumesic, J. Green Chem. 2012, 14, 1413. doi: 10.1039/c2gc35039d  doi: 10.1039/c2gc35039d

    13. [13]

      Nakagawa, Y.; Tomishige, K. Catal. Commun. 2010, 12, 154. doi: 10.1016/j.catcom.2010.09.003  doi: 10.1016/j.catcom.2010.09.003

    14. [14]

      Liu, F.; Audemar, M.; Vigier, K. D.; Clacens, J. M.; De, C. F.; Jerome, F. Green Chem. 2014, 16, 4110. doi: 10.1039/c4gc01158a  doi: 10.1039/c4gc01158a

    15. [15]

      Jung, M. E.; Im, G-Y. J. Org. Chem. 2009, 74, 8739. doi: 10.1021/jo902029x  doi: 10.1021/jo902029x

    16. [16]

      Wang, W.; Zhao, X. M.; Wang, J. L.; Geng, X.; Gong, J. F.; Hao, X. Q.; Song, M. P. Tetrahedron Lett. 2014, 55, 3192. doi: 10.1016/j.tetlet.2014.04.020  doi: 10.1016/j.tetlet.2014.04.020

    17. [17]

      Michail, K.; Matzi, V.; Maier, A.; Herwig, R.; Greilberger, J.; Juan, H.; Kunert, O.; Wintersteiger, R. Anal. Bioanal. Chem. 2007, 387, 2801. doi: 10.1007/s00216-007-1121-6  doi: 10.1007/s00216-007-1121-6

    18. [18]

      Tradtrantip, L.; Sonawane, N. D.; Namkung, W.; Verkman, A. S. J. Med. Chem. 2009, 52, 6447. doi: 10.1021/jm9009873  doi: 10.1021/jm9009873

    19. [19]

      Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044. doi: 10.1021/cr068360d  doi: 10.1021/cr068360d

    20. [20]

      Corma, A.; de la Torre, O.; Renz, M.; Villandier, N. Angew. Chem. Int. Edit. 2011, 50, 2375. doi: 10.1002/anie.201007508  doi: 10.1002/anie.201007508

    21. [21]

      Mascal, M.; Nikitin, E. B. Angew. Chem. Int. Edit. 2008, 47, 7924. doi: 10.1002/anie.200801594  doi: 10.1002/anie.200801594

    22. [22]

      Li, S.; Dong, M.; Yang, J.; Cheng, X.; Shen, X.; Liu, S.; Wang, Z. -Q.; Gong, X. -Q.; Liu, H.; Han, B. Nat. Commun. 2021, 12, 584. doi: 10.1038/s41467-020-20878-7  doi: 10.1038/s41467-020-20878-7

    23. [23]

      Shao, Y.; Xia, Q. N.; Dong, L.; Liu, X. H.; Han, X.; Parker, S. F.; Cheng, Y. Q.; Daemen, L. L.; Ramirez-Cuesta, A. J.; Yang, S. H.; et al. Nat. Commun. 2017, 8, 16104. doi: 10.1038/ncomms16104  doi: 10.1038/ncomms16104

    24. [24]

      Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P.; et al. Nat. Mater. 2016, 15, 564. doi: 10.1038/NMAT4555  doi: 10.1038/NMAT4555

    25. [25]

      Tamura, M.; Tomishige, K. Angew. Chem. Int. Edit. 2015, 54, 864. doi: 10.1002/anie.201409601  doi: 10.1002/anie.201409601

    26. [26]

      Badri, A.; Binet, C.; Lavalley, J. C. J. Chem. Soc. Faraday T. 1997, 93, 1159. doi: 10.1039/a606628c  doi: 10.1039/a606628c

    27. [27]

      Xia, Q. N.; Chen, Z. J.; Shao, Y.; Gong, X. Q.; Wang, H. F.; Liu, X. H.; Parker, S. F.; Han, X.; Yang, S. H.; Wang, Y. Q. Nat. Commun. 2016, 7, 11162. doi: 10.1038/ncomms11162  doi: 10.1038/ncomms11162

    28. [28]

      Xia, Q. N.; Cuan, Q.; Liu, X. H.; Gong, X. Q.; Lu, G. Z.; Wang, Y. Q. Angew. Chem. Int. Edit. 2014, 53, 9755. doi: 10.1002/anie.201403440  doi: 10.1002/anie.201403440

    29. [29]

      Chen, H. L.; Yang, H.; Briker, Y.; Fairbridge, C.; Omotoso, O.; Ding, L. H.; Zheng, Y.; Ring, Z. Catal. Today 2007, 125, 256. doi: 10.1016/j.cattod.2007.01.024  doi: 10.1016/j.cattod.2007.01.024

    30. [30]

      Karim, W.; Spreafico, C.; Kleibert, A.; Gobrecht, J.; VandeVondele, J.; Ekinci, Y.; van Bokhoven, J. A. Nature 2017, 541, 68. doi: 10.1038/nature20782  doi: 10.1038/nature20782

    31. [31]

      Sodesawa, T.; Sato, S.; Nozaki, F. Stud. Surf. Sci. Catal. 1993, 77, 401. doi: 10.1016/S0167-2991(08)63221-8  doi: 10.1016/S0167-2991(08)63221-8

    32. [32]

      Liu, R. X.; Yu, Y. C.; Yoshida, K.; Li, G. M.; Jiang, H. X.; Zhang, M. H.; Zhao, F. Y.; Fujita, S.; Arai, M. J. Catal. 2010, 269, 191. doi: 10.1016/j.jcat.2009.11.007  doi: 10.1016/j.jcat.2009.11.007

    33. [33]

      Ma, D.; Lu, S.; Liu, X.; Guo, Y.; Wang, Y. Chin. J. Catal. 2019, 40, 609. doi: 10.1016/S1872-2067(19)63317-6  doi: 10.1016/S1872-2067(19)63317-6

  • 加载中
    1. [1]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    2. [2]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    3. [3]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    4. [4]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    5. [5]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    6. [6]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    7. [7]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    8. [8]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    9. [9]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    10. [10]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    11. [11]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    12. [12]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    13. [13]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    14. [14]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    15. [15]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    16. [16]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    17. [17]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    18. [18]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    19. [19]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    20. [20]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

Metrics
  • PDF Downloads(26)
  • Abstract views(547)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return