Citation: Mochun Zhang, Shuo Feng, Yunling Wu, Yanguang Li. Cathode Materials for Rechargeable Magnesium-Ion Batteries: A Review[J]. Acta Physico-Chimica Sinica, ;2023, 39(2): 220505. doi: 10.3866/PKU.WHXB202205050 shu

Cathode Materials for Rechargeable Magnesium-Ion Batteries: A Review

  • Corresponding author: Yunling Wu, ylwu@suda.edu.cn Yanguang Li, 
  • These authors contributed equally to this work.
  • Received Date: 23 May 2022
    Revised Date: 22 June 2022
    Accepted Date: 24 June 2022
    Available Online: 29 June 2022

    Fund Project: the National Natural Science Foundation of China U2002213the National Natural Science Foundation of China 51972219the National Natural Science Foundation of China 22005209

  • Using renewable energy sources such as wind, solar, and tidal power is one of the most effective ways to address the global energy crisis and the ensuing environmental issues. As essential complementary components to renewable energy, high-performance energy storage devices and systems are urgently required. Since the 1990s, the global battery market has been dominated by lithium-ion batteries (LIBs) owing to their high energy density and long cycle life. They have been widely used in portable electronics, and more recently, in electric vehicles. However, lithium resources are limited and unevenly distributed; therefore, the manufacturing costs of LIBs are still high. There is also increasing concern about their operational safety. Thus, it is crucial to develop next-generation battery technologies with lower costs and higher safety. In recent years, magnesium-ion batteries (MIBs) have attracted increasing attention as one of the most promising multivalent ion batteries. The use of magnesium is encouraged owing to its good air stability, lower reduction potential (−2.356 V vs. standard hydrogen electrode), higher volumetric specific capacity (3833 mAh∙cm−3), and dendrite-free deposition upon cycling. Moreover, magnesium reserves (2.3%) are 1045 times more than those of lithium (0.0022%), because of which, MIBs are considerably less expensive than LIBs. The development of MIBs has, however, encountered a few challenges arising from the comprising cathodes, electrolytes, and anodes. Mg2+ ions with smaller radii and higher charge densities have strong Coulomb interactions with electrode materials, which leads to sluggish kinetics and high diffusion barriers during de-/intercalation. Contemporary electrolytes generally have poor chemical compatibility with cathodes of MIBs, narrow electrochemical windows, and high deposition overpotential, which limits the development of high-voltage MIBs. Moreover, Mg tends to react with organic solvents (especially carbonates and nitriles), forming passivation layers on the surfaces, which increase the interfacial resistance and lead to battery irreversibility. Therefore, material design and technological innovation are crucial for developing commercially viable MIBs. This review focuses on recent advances on MIB cathode materials. First, we present a brief description of the characteristics of MIBs and discuss their strengths and drawbacks. Then, we overview three types of cathode materials, namely, intercalation-type cathodes, conversion-type cathodes, and organic cathodes, followed by a summary of their limitations and recent efforts for addressing the above-mentioned challenges. We conclude with perspectives for future research directions.
  • 加载中
    1. [1]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    2. [2]

      Kittner, N.; Lill, F.; Kammen, D. M. Nat. Energy 2017, 2, 17125. doi: 10.1038/nenergy.2017.125  doi: 10.1038/nenergy.2017.125

    3. [3]

      Andrews, J. L.; Mukherjee, A.; Yoo, H. D.; Parija, A.; Marley, P. M.; Fakra, S.; Prendergast, D.; Cabana, J.; Klie, R. F.; Banerjee, S. Chem 2018, 4, 564. doi: 10.1016/j.chempr.2017.12.018  doi: 10.1016/j.chempr.2017.12.018

    4. [4]

      Goodenough, J. B.; Park, K. S. J. Am. Chem. Soc. 2013, 135, 1167. doi: 10.1021/ja3091438  doi: 10.1021/ja3091438

    5. [5]

      Canepa, P.; Sai Gautam, G.; Hannah, D. C.; Malik, R.; Liu, M.; Gallagher, K. G.; Persson, K. A.; Ceder, G. Chem. Rev. 2017, 117, 4287. doi: 10.1021/acs.chemrev.6b00614  doi: 10.1021/acs.chemrev.6b00614

    6. [6]

      Guo, Z.; Zhao, S.; Li, T.; Su, D.; Guo, S.; Wang, G. Adv. Energy Mater. 2020, 10, 1903591. doi: 10.1002/aenm.201903591  doi: 10.1002/aenm.201903591

    7. [7]

      Bonnick, P.; Muldoon, J. Adv. Funct. Mater. 2020, 30, 1910510. doi: 10.1002/adfm.201910510  doi: 10.1002/adfm.201910510

    8. [8]

      Muldoon, J.; Bucur, C. B.; Oliver, A. G.; Sugimoto, T.; Matsui, M.; Kim, H. S.; Allred, G. D.; Zajicek, J.; Kotani, Y. Energy Environ. Sci. 2012, 5, 5941. doi: 10.1039/c2ee03029b  doi: 10.1039/c2ee03029b

    9. [9]

      Attias, R.; Salama, M.; Hirsch, B.; Goffer, Y.; Aurbach, D. Joule 2019, 3, 27. doi: 10.1016/j.joule.2018.10.028  doi: 10.1016/j.joule.2018.10.028

    10. [10]

      Yang, Y. Y.; Wang, J. Z.; Du, J. Z.; Du, A. B.; Zhao, J. W.; Cui, G. L. CIESC J. 2021, 72, 3116.  doi: 10.11949/0438-1157.20210124

    11. [11]

      Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Nature 2000, 407, 724. doi: 10.1038/35037553  doi: 10.1038/35037553

    12. [12]

      Zhang, R.; Yu, X.; Nam, K.-W.; Ling, C.; Arthur, T. S.; Song, W.; Knapp, A. M.; Ehrlich, S. N.; Yang, X.-Q.; Matsui, M. Electrochem. Commun. 2012, 23, 110. doi: 10.1016/j.elecom.2012.07.021  doi: 10.1016/j.elecom.2012.07.021

    13. [13]

      Pan, B.; Zhou, D.; Huang, J.; Zhang, L.; Burrell, A. K.; Vaughey, J. T.; Zhang, Z.; Liao, C. J. Electrochem. Soc. 2016, 163, A580. doi: 10.1149/2.0021605jes  doi: 10.1149/2.0021605jes

    14. [14]

      Rong, Z.; Malik, R.; Canepa, P.; Sai Gautam, G.; Liu, M.; Jain, A.; Persson, K.; Ceder, G. Chem. Mater. 2015, 27, 6016. doi: 10.1021/acs.chemmater.5b02342  doi: 10.1021/acs.chemmater.5b02342

    15. [15]

      Yu, S. H.; Lee, S. H.; Lee, D. J.; Sung, Y. E.; Hyeon, T. Small 2016, 12, 2146. doi: 10.1002/smll.201502299  doi: 10.1002/smll.201502299

    16. [16]

      Wu, F.; Yushin, G. Energy Environ. Sci. 2017, 10, 435. doi: 10.1039/c6ee02326f  doi: 10.1039/c6ee02326f

    17. [17]

      Arthur, T. S.; Zhang, R.; Ling, C.; Glans, P. A.; Fan, X.; Guo, J.; Mizuno, F. ACS Appl. Mater. Interfaces 2014, 6, 7004. doi: 10.1021/am5015327  doi: 10.1021/am5015327

    18. [18]

      Lu, D.; Liu, H.; Huang, T.; Xu, Z.; Ma, L.; Yang, P.; Qiang, P.; Zhang, F.; Wu, D. J. Mater. Chem. A 2018, 6, 17297. doi: 10.1039/c8ta05230a  doi: 10.1039/c8ta05230a

    19. [19]

      Tran, N. A.; Do Van Thanh, N.; Le, M. L. P. Chem. -Eur. J. 2021, 27, 9198. doi: 10.1002/chem.202100223  doi: 10.1002/chem.202100223

    20. [20]

      Yoo, H. D.; Liang, Y.; Dong, H.; Lin, J.; Wang, H.; Liu, Y.; Ma, L.; Wu, T.; Li, Y.; Ru, Q.; et al. Nat. Commun. 2017, 8, 339. doi: 10.1038/s41467-017-00431-9  doi: 10.1038/s41467-017-00431-9

    21. [21]

      Kumar, G.; Sivashanmugam, A.; Muniyandi, N.; Dhawan, S. K.; Trivedi, D. C. Synth. Met. 1996, 80, 279. doi: 10.1016/0379-6779(96)80214-1  doi: 10.1016/0379-6779(96)80214-1

    22. [22]

      Kim, K. I.; Guo, Q.; Tang, L.; Zhu, L.; Pan, C.; Chang, C. H.; Razink, J.; Lerner, M. M.; Fang, C.; Ji, X. L. Angew. Chem. Int. Ed. Engl. 2020, 59, 19924. doi: 10.1002/anie.202009172  doi: 10.1002/anie.202009172

    23. [23]

      Levi, E.; Lancry, E.; Mitelman, A.; Aurbach, D.; Ceder, G.; Morgan, D.; Isnard, O. Chem. Mater. 2006, 18, 5492. doi: 10.1021/cm061656f  doi: 10.1021/cm061656f

    24. [24]

      Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Energy Environ. Sci. 2013, 6, 2265. doi: 10.1039/c3ee40871j  doi: 10.1039/c3ee40871j

    25. [25]

      Ryu, A.; Park, M.-S.; Cho, W.; Kim, J.-S.; Kim, Y.-J. Bull. Korean Chem. Soc. 2013, 34, 3033. doi: 10.5012/bkcs.2013.34.10.3033  doi: 10.5012/bkcs.2013.34.10.3033

    26. [26]

      Levi, E.; Gofer, Y.; Vestfreed, Y.; Lancry, E.; Aurbach, D. Chem. Mater. 2002, 14, 2767. doi: 10.1021/cm021122o  doi: 10.1021/cm021122o

    27. [27]

      Choi, S. H.; Kim, J. S.; Woo, S. G.; Cho, W.; Choi, S. Y.; Choi, J.; Lee, K. T.; Park, M. S.; Kim, Y. J. ACS Appl. Mater. Interfaces 2015, 7, 7016. doi: 10.1021/am508702j  doi: 10.1021/am508702j

    28. [28]

      Tao, Z. L.; Xu, L. N.; Gou, X. L.; Chen, J.; Yuan, H. T. Chem. Commun. 2004, 2080. doi: 10.1039/b403855j  doi: 10.1039/b403855j

    29. [29]

      Liu, M.; Jain, A.; Rong, Z.; Qu, X.; Canepa, P.; Malik, R.; Ceder, G.; Persson, K. A. Energy Environ. Sci. 2016, 9, 3201. doi: 10.1039/c6ee01731b  doi: 10.1039/c6ee01731b

    30. [30]

      Sun, X.; Bonnick, P.; Nazar, L. F. ACS Energy Lett. 2016, 1, 297. doi: 10.1021/acsenergylett.6b00145  doi: 10.1021/acsenergylett.6b00145

    31. [31]

      Kolli, S. K.; Van der Ven, A. Chem. Mater. 2018, 30, 2436. doi: 10.1021/acs.chemmater.8b00552  doi: 10.1021/acs.chemmater.8b00552

    32. [32]

      Emly, A.; Van der Ven, A. Inorg. Chem. 2015, 54, 4394. doi: 10.1021/acs.inorgchem.5b00188  doi: 10.1021/acs.inorgchem.5b00188

    33. [33]

      Sun, X.; Bonnick, P.; Duffort, V.; Liu, M.; Rong, Z.; Persson, K. A.; Ceder, G.; Nazar, L. F. Energy Environ. Sci. 2016, 9, 2273. doi: 10.1039/c6ee00724d  doi: 10.1039/c6ee00724d

    34. [34]

      Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Adv. Sci. 2017, 4, 1600275. doi: 10.1002/advs.201600275  doi: 10.1002/advs.201600275

    35. [35]

      Ling, C.; Banerjee, D.; Song, W.; Zhang, M.; Matsui, M. J. Mater. Chem. 2012, 22, 13517. doi: 10.1039/c2jm31122d  doi: 10.1039/c2jm31122d

    36. [36]

      Li, Y.; Nuli, Y.; Yang, J.; Yilinuer, T.; Wang, J. Chin. Sci. Bull. 2011, 56, 386. doi: 10.1007/s11434-010-4247-4  doi: 10.1007/s11434-010-4247-4

    37. [37]

      Chen, X.; Bleken, F. L.; Løvvik, O. M.; Vullum-Bruer, F. J. Power Sources 2016, 321, 76. doi: 10.1016/j.jpowsour.2016.04.094  doi: 10.1016/j.jpowsour.2016.04.094

    38. [38]

      Orikasa, Y.; Masese, T.; Koyama, Y.; Mori, T.; Hattori, M.; Yamamoto, K.; Okado, T.; Huang, Z. D.; Minato, T.; Tassel, C.; et al. Sci. Rep. 2014, 4, 5622. doi: 10.1038/srep05622  doi: 10.1038/srep05622

    39. [39]

      NuLi, Y.; Yang, J.; Li, Y.; Wang, J. Chem. Commun. 2010, 46, 3794. doi: 10.1039/c002456b  doi: 10.1039/c002456b

    40. [40]

      Zeng, J.; Yang, Y.; Lai, S.; Huang, J.; Zhang, Y.; Wang, J.; Zhao, J. Chem. - Eur. J. 2017, 23, 16898. doi: 10.1002/chem.201704303  doi: 10.1002/chem.201704303

    41. [41]

      Makino, K.; Katayama, Y.; Miura, T.; Kishi, T. J. Power Sources 2001, 99, 66. doi: 10.1016/s0378-7753(01)00480-3  doi: 10.1016/s0378-7753(01)00480-3

    42. [42]

      Makino, K.; Katayama, Y.; Miura, T.; Kishi, T. J. Power Sources 2001, 97–98, 512. doi: 10.1016/s0378-7753(01)00694-2  doi: 10.1016/s0378-7753(01)00694-2

    43. [43]

      Makino, K.; Katayama, Y.; Miura, T.; Kishi, T. J. Power Sources 2002, 112, 85. doi: 10.1016/s0378-7753(02)00345-2  doi: 10.1016/s0378-7753(02)00345-2

    44. [44]

      Huang, Z.-D.; Masese, T.; Orikasa, Y.; Mori, T.; Yamamoto, K. RSC Adv. 2015, 5, 8598. doi: 10.1039/c4ra14416c  doi: 10.1039/c4ra14416c

    45. [45]

      Kitchaev, D. A.; Dacek, S. T.; Sun, W.; Ceder, G. J. Am. Chem. Soc. 2017, 139, 2672. doi: 10.1021/jacs.6b11301  doi: 10.1021/jacs.6b11301

    46. [46]

      Ling, C.; Zhang, R.; Arthur, T. S.; Mizuno, F. Chem. Mater. 2015, 27, 5799. doi: 10.1021/acs.chemmater.5b02488  doi: 10.1021/acs.chemmater.5b02488

    47. [47]

      Rasul, S.; Suzuki, S.; Yamaguchi, S.; Miyayama, M. Solid State Ionics 2012, 225, 542. doi: 10.1016/j.ssi.2012.01.019  doi: 10.1016/j.ssi.2012.01.019

    48. [48]

      Rasul, S.; Suzuki, S.; Yamaguchi, S.; Miyayama, M. Electrochim. Acta 2012, 82, 243. doi: 10.1016/j.electacta.2012.03.095  doi: 10.1016/j.electacta.2012.03.095

    49. [49]

      Feng, Z.; Chen, X.; Qiao, L.; Lipson, A. L.; Fister, T. T.; Zeng, L.; Kim, C.; Yi, T.; Sa, N.; Proffit, D. L.; et al. ACS Appl. Mater. Interfaces 2015, 7, 28438. doi: 10.1021/acsami.5b09346  doi: 10.1021/acsami.5b09346

    50. [50]

      Zhao, X.; Yang, Y.; NuLi, Y.; Li, D.; Wang, Y.; Xiang, X. Chem. Commun. 2019, 55, 6086. doi: 10.1039/c9cc02556a  doi: 10.1039/c9cc02556a

    51. [51]

      Yang, Y.; Wang, W.; Nuli, Y.; Yang, J.; Wang, J. ACS Appl. Mater. Interfaces 2019, 11, 9062. doi: 10.1021/acsami.8b20180  doi: 10.1021/acsami.8b20180

    52. [52]

      Yuan, H.; Yang, Y.; NuLi, Y.; Yang, J.; Wang, J. J. Mater. Chem. A 2018, 6, 17075. doi: 10.1039/c8ta04772c  doi: 10.1039/c8ta04772c

    53. [53]

      Du, A.; Zhao, Y.; Zhang, Z.; Dong, S.; Cui, Z.; Tang, K.; Lu, C.; Han, P.; Zhou, X.; Cui, G. Energy Storage Mater. 2020, 26, 23. doi: 10.1016/j.ensm.2019.12.030  doi: 10.1016/j.ensm.2019.12.030

    54. [54]

      Duffort, V.; Sun, X.; Nazar, L. F. Chem. Commun. 2016, 52, 12458. doi: 10.1039/c6cc05363g  doi: 10.1039/c6cc05363g

    55. [55]

      Tashiro, Y.; Taniguchi, K.; Miyasaka, H. Electrochim. Acta 2016, 210, 655. doi: 10.1016/j.electacta.2016.05.202  doi: 10.1016/j.electacta.2016.05.202

    56. [56]

      Zhang, Z.; Chen, B.; Xu, H.; Cui, Z.; Dong, S.; Du, A.; Ma, J.; Wang, Q.; Zhou, X.; Cui, G. Adv. Funct. Mater. 2018, 28, 1701718. doi: 10.1002/adfm.201701718  doi: 10.1002/adfm.201701718

    57. [57]

      Cheng, X.; Zhang, Z.; Kong, Q.; Zhang, Q.; Wang, T.; Dong, S.; Gu, L.; Wang, X.; Ma, J.; Han, P.; et al. Angew. Chem. Int. Ed. Engl. 2020, 59, 11477. doi: 10.1002/anie.202002177  doi: 10.1002/anie.202002177

    58. [58]

      Qu, X.; Du, A.; Wang, T.; Kong, Q.; Chen, G.; Zhang, Z.; Zhao, J.; Liu, X.; Zhou, X.; Dong, S.; et al. Angew. Chem. Int. Ed. Engl. 2022. doi: 10.1002/anie.202204423  doi: 10.1002/anie.202204423

    59. [59]

      Sano, H.; Senoh, H.; Yao, M.; Sakaebe, H.; Kiyobayashi, T. Chem. Lett. 2012, 41, 1594. doi: 10.1246/cl.2012.1594  doi: 10.1246/cl.2012.1594

    60. [60]

      Senoh, H.; Sakaebe, H.; Tokiwa, H.; Uchida, M.; Sano, H.; Yao, M.; Kiyobayashi, T. ECS Trans. 2015, 69, 33. doi: 10.1149/06919.0033ecst  doi: 10.1149/06919.0033ecst

    61. [61]

      Dong, H.; Tutusaus, O.; Liang, Y.; Zhang, Y.; Lebens-Higgins, Z.; Yang, W.; Mohtadi, R.; Yao, Y. Nat. Energy 2020, 5, 1043. doi: 10.1038/s41560-020-00734-0  doi: 10.1038/s41560-020-00734-0

    62. [62]

      Pan, B.; Huang, J.; Feng, Z.; Zeng, L.; He, M.; Zhang, L.; Vaughey, J. T.; Bedzyk, M. J.; Fenter, P.; Zhang, Z.; et al. Adv. Energy Mater. 2016, 6, 1600140. doi: 10.1002/aenm.201600140  doi: 10.1002/aenm.201600140

    63. [63]

      Dong, H.; Liang, Y.; Tutusaus, O.; Mohtadi, R.; Zhang, Y.; Hao, F.; Yao, Y. Joule 2019, 3, 782. doi: 10.1016/j.joule.2018.11.022  doi: 10.1016/j.joule.2018.11.022

    64. [64]

      Nakahara, K.; Iwasa, S.; Satoh, M.; Morioka, Y.; Iriyama, J.; Suguro, M.; Hasegawa, E. Chem. Phys. Lett. 2002, 359, 351. doi: 10.1016/s0009-2614(02)00705-4  doi: 10.1016/s0009-2614(02)00705-4

    65. [65]

      Chen, Q.; Nuli, Y. N.; Guo, W.; Yang, J.; Wang, J. L.; Guo, Y. G. Acta Phys. -Chim. Sin. 2013, 29, 2295.  doi: 10.3866/PKU.WHXB201309241

    66. [66]

      Gu, S.; Wu, S.; Cao, L.; Li, M.; Qin, N.; Zhu, J.; Wang, Z.; Li, Y.; Li, Z.; Chen, J.; et al. J. Am. Chem. Soc. 2019, 141, 9623. doi: 10.1021/jacs.9b03467  doi: 10.1021/jacs.9b03467

    67. [67]

      Ha, S. Y.; Lee, Y. W.; Woo, S. W.; Koo, B.; Kim, J. S.; Cho, J.; Lee, K. T.; Choi, N. S. ACS Appl. Mater. Interfaces 2014, 6, 4063. doi: 10.1021/am405619v  doi: 10.1021/am405619v

    68. [68]

      Wu, M.; Cui, Y.; Bhargav, A.; Losovyj, Y.; Siegel, A.; Agarwal, M.; Ma, Y.; Fu, Y. Angew. Chem. Int. Ed. Engl. 2016, 55, 10027. doi: 10.1002/anie.201603897  doi: 10.1002/anie.201603897

    69. [69]

      NuLi, Y.; Guo, Z.; Liu, H.; Yang, J. Electrochem. Commun. 2007, 9, 1913. doi: 10.1016/j.elecom.2007.05.009  doi: 10.1016/j.elecom.2007.05.009

    70. [70]

      NuLi, Y.; Chen, Q.; Wang, W.; Wang, Y.; Yang, J.; Wang, J. Sci. World J. 2014, 2014, 107918. doi: 10.1155/2014/107918  doi: 10.1155/2014/107918

    71. [71]

      Bitenc, J.; Pirnat, K.; Mali, G.; Novosel, B.; Randon Vitanova, A.; Dominko, R. Electrochem. Commun. 2016, 69, 1. doi: 10.1016/j.elecom.2016.05.009  doi: 10.1016/j.elecom.2016.05.009

    72. [72]

      Kaland, H.; Hadler-Jacobsen, J.; Fagerli, F. H.; Wagner, N. P.; Schnell, S. K.; Wiik, K. ACS Appl. Energy Mater. 2020, 3, 10600. doi: 10.1021/acsaem.0c01655  doi: 10.1021/acsaem.0c01655

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    8. [8]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    12. [12]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    18. [18]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

Metrics
  • PDF Downloads(54)
  • Abstract views(1391)
  • HTML views(340)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return