Cathode Materials for Rechargeable Magnesium-Ion Batteries: A Review
- Corresponding author: Yunling Wu, ylwu@suda.edu.cn Yanguang Li, †These authors contributed equally to this work.
Citation: Mochun Zhang, Shuo Feng, Yunling Wu, Yanguang Li. Cathode Materials for Rechargeable Magnesium-Ion Batteries: A Review[J]. Acta Physico-Chimica Sinica, ;2023, 39(2): 220505. doi: 10.3866/PKU.WHXB202205050
Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741
doi: 10.1126/science.1212741
Kittner, N.; Lill, F.; Kammen, D. M. Nat. Energy 2017, 2, 17125. doi: 10.1038/nenergy.2017.125
doi: 10.1038/nenergy.2017.125
Andrews, J. L.; Mukherjee, A.; Yoo, H. D.; Parija, A.; Marley, P. M.; Fakra, S.; Prendergast, D.; Cabana, J.; Klie, R. F.; Banerjee, S. Chem 2018, 4, 564. doi: 10.1016/j.chempr.2017.12.018
doi: 10.1016/j.chempr.2017.12.018
Goodenough, J. B.; Park, K. S. J. Am. Chem. Soc. 2013, 135, 1167. doi: 10.1021/ja3091438
doi: 10.1021/ja3091438
Canepa, P.; Sai Gautam, G.; Hannah, D. C.; Malik, R.; Liu, M.; Gallagher, K. G.; Persson, K. A.; Ceder, G. Chem. Rev. 2017, 117, 4287. doi: 10.1021/acs.chemrev.6b00614
doi: 10.1021/acs.chemrev.6b00614
Guo, Z.; Zhao, S.; Li, T.; Su, D.; Guo, S.; Wang, G. Adv. Energy Mater. 2020, 10, 1903591. doi: 10.1002/aenm.201903591
doi: 10.1002/aenm.201903591
Bonnick, P.; Muldoon, J. Adv. Funct. Mater. 2020, 30, 1910510. doi: 10.1002/adfm.201910510
doi: 10.1002/adfm.201910510
Muldoon, J.; Bucur, C. B.; Oliver, A. G.; Sugimoto, T.; Matsui, M.; Kim, H. S.; Allred, G. D.; Zajicek, J.; Kotani, Y. Energy Environ. Sci. 2012, 5, 5941. doi: 10.1039/c2ee03029b
doi: 10.1039/c2ee03029b
Attias, R.; Salama, M.; Hirsch, B.; Goffer, Y.; Aurbach, D. Joule 2019, 3, 27. doi: 10.1016/j.joule.2018.10.028
doi: 10.1016/j.joule.2018.10.028
Yang, Y. Y.; Wang, J. Z.; Du, J. Z.; Du, A. B.; Zhao, J. W.; Cui, G. L. CIESC J. 2021, 72, 3116.
doi: 10.11949/0438-1157.20210124
Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Nature 2000, 407, 724. doi: 10.1038/35037553
doi: 10.1038/35037553
Zhang, R.; Yu, X.; Nam, K.-W.; Ling, C.; Arthur, T. S.; Song, W.; Knapp, A. M.; Ehrlich, S. N.; Yang, X.-Q.; Matsui, M. Electrochem. Commun. 2012, 23, 110. doi: 10.1016/j.elecom.2012.07.021
doi: 10.1016/j.elecom.2012.07.021
Pan, B.; Zhou, D.; Huang, J.; Zhang, L.; Burrell, A. K.; Vaughey, J. T.; Zhang, Z.; Liao, C. J. Electrochem. Soc. 2016, 163, A580. doi: 10.1149/2.0021605jes
doi: 10.1149/2.0021605jes
Rong, Z.; Malik, R.; Canepa, P.; Sai Gautam, G.; Liu, M.; Jain, A.; Persson, K.; Ceder, G. Chem. Mater. 2015, 27, 6016. doi: 10.1021/acs.chemmater.5b02342
doi: 10.1021/acs.chemmater.5b02342
Yu, S. H.; Lee, S. H.; Lee, D. J.; Sung, Y. E.; Hyeon, T. Small 2016, 12, 2146. doi: 10.1002/smll.201502299
doi: 10.1002/smll.201502299
Wu, F.; Yushin, G. Energy Environ. Sci. 2017, 10, 435. doi: 10.1039/c6ee02326f
doi: 10.1039/c6ee02326f
Arthur, T. S.; Zhang, R.; Ling, C.; Glans, P. A.; Fan, X.; Guo, J.; Mizuno, F. ACS Appl. Mater. Interfaces 2014, 6, 7004. doi: 10.1021/am5015327
doi: 10.1021/am5015327
Lu, D.; Liu, H.; Huang, T.; Xu, Z.; Ma, L.; Yang, P.; Qiang, P.; Zhang, F.; Wu, D. J. Mater. Chem. A 2018, 6, 17297. doi: 10.1039/c8ta05230a
doi: 10.1039/c8ta05230a
Tran, N. A.; Do Van Thanh, N.; Le, M. L. P. Chem. -Eur. J. 2021, 27, 9198. doi: 10.1002/chem.202100223
doi: 10.1002/chem.202100223
Yoo, H. D.; Liang, Y.; Dong, H.; Lin, J.; Wang, H.; Liu, Y.; Ma, L.; Wu, T.; Li, Y.; Ru, Q.; et al. Nat. Commun. 2017, 8, 339. doi: 10.1038/s41467-017-00431-9
doi: 10.1038/s41467-017-00431-9
Kumar, G.; Sivashanmugam, A.; Muniyandi, N.; Dhawan, S. K.; Trivedi, D. C. Synth. Met. 1996, 80, 279. doi: 10.1016/0379-6779(96)80214-1
doi: 10.1016/0379-6779(96)80214-1
Kim, K. I.; Guo, Q.; Tang, L.; Zhu, L.; Pan, C.; Chang, C. H.; Razink, J.; Lerner, M. M.; Fang, C.; Ji, X. L. Angew. Chem. Int. Ed. Engl. 2020, 59, 19924. doi: 10.1002/anie.202009172
doi: 10.1002/anie.202009172
Levi, E.; Lancry, E.; Mitelman, A.; Aurbach, D.; Ceder, G.; Morgan, D.; Isnard, O. Chem. Mater. 2006, 18, 5492. doi: 10.1021/cm061656f
doi: 10.1021/cm061656f
Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Energy Environ. Sci. 2013, 6, 2265. doi: 10.1039/c3ee40871j
doi: 10.1039/c3ee40871j
Ryu, A.; Park, M.-S.; Cho, W.; Kim, J.-S.; Kim, Y.-J. Bull. Korean Chem. Soc. 2013, 34, 3033. doi: 10.5012/bkcs.2013.34.10.3033
doi: 10.5012/bkcs.2013.34.10.3033
Levi, E.; Gofer, Y.; Vestfreed, Y.; Lancry, E.; Aurbach, D. Chem. Mater. 2002, 14, 2767. doi: 10.1021/cm021122o
doi: 10.1021/cm021122o
Choi, S. H.; Kim, J. S.; Woo, S. G.; Cho, W.; Choi, S. Y.; Choi, J.; Lee, K. T.; Park, M. S.; Kim, Y. J. ACS Appl. Mater. Interfaces 2015, 7, 7016. doi: 10.1021/am508702j
doi: 10.1021/am508702j
Tao, Z. L.; Xu, L. N.; Gou, X. L.; Chen, J.; Yuan, H. T. Chem. Commun. 2004, 2080. doi: 10.1039/b403855j
doi: 10.1039/b403855j
Liu, M.; Jain, A.; Rong, Z.; Qu, X.; Canepa, P.; Malik, R.; Ceder, G.; Persson, K. A. Energy Environ. Sci. 2016, 9, 3201. doi: 10.1039/c6ee01731b
doi: 10.1039/c6ee01731b
Sun, X.; Bonnick, P.; Nazar, L. F. ACS Energy Lett. 2016, 1, 297. doi: 10.1021/acsenergylett.6b00145
doi: 10.1021/acsenergylett.6b00145
Kolli, S. K.; Van der Ven, A. Chem. Mater. 2018, 30, 2436. doi: 10.1021/acs.chemmater.8b00552
doi: 10.1021/acs.chemmater.8b00552
Emly, A.; Van der Ven, A. Inorg. Chem. 2015, 54, 4394. doi: 10.1021/acs.inorgchem.5b00188
doi: 10.1021/acs.inorgchem.5b00188
Sun, X.; Bonnick, P.; Duffort, V.; Liu, M.; Rong, Z.; Persson, K. A.; Ceder, G.; Nazar, L. F. Energy Environ. Sci. 2016, 9, 2273. doi: 10.1039/c6ee00724d
doi: 10.1039/c6ee00724d
Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Adv. Sci. 2017, 4, 1600275. doi: 10.1002/advs.201600275
doi: 10.1002/advs.201600275
Ling, C.; Banerjee, D.; Song, W.; Zhang, M.; Matsui, M. J. Mater. Chem. 2012, 22, 13517. doi: 10.1039/c2jm31122d
doi: 10.1039/c2jm31122d
Li, Y.; Nuli, Y.; Yang, J.; Yilinuer, T.; Wang, J. Chin. Sci. Bull. 2011, 56, 386. doi: 10.1007/s11434-010-4247-4
doi: 10.1007/s11434-010-4247-4
Chen, X.; Bleken, F. L.; Løvvik, O. M.; Vullum-Bruer, F. J. Power Sources 2016, 321, 76. doi: 10.1016/j.jpowsour.2016.04.094
doi: 10.1016/j.jpowsour.2016.04.094
Orikasa, Y.; Masese, T.; Koyama, Y.; Mori, T.; Hattori, M.; Yamamoto, K.; Okado, T.; Huang, Z. D.; Minato, T.; Tassel, C.; et al. Sci. Rep. 2014, 4, 5622. doi: 10.1038/srep05622
doi: 10.1038/srep05622
NuLi, Y.; Yang, J.; Li, Y.; Wang, J. Chem. Commun. 2010, 46, 3794. doi: 10.1039/c002456b
doi: 10.1039/c002456b
Zeng, J.; Yang, Y.; Lai, S.; Huang, J.; Zhang, Y.; Wang, J.; Zhao, J. Chem. - Eur. J. 2017, 23, 16898. doi: 10.1002/chem.201704303
doi: 10.1002/chem.201704303
Makino, K.; Katayama, Y.; Miura, T.; Kishi, T. J. Power Sources 2001, 99, 66. doi: 10.1016/s0378-7753(01)00480-3
doi: 10.1016/s0378-7753(01)00480-3
Makino, K.; Katayama, Y.; Miura, T.; Kishi, T. J. Power Sources 2001, 97–98, 512. doi: 10.1016/s0378-7753(01)00694-2
doi: 10.1016/s0378-7753(01)00694-2
Makino, K.; Katayama, Y.; Miura, T.; Kishi, T. J. Power Sources 2002, 112, 85. doi: 10.1016/s0378-7753(02)00345-2
doi: 10.1016/s0378-7753(02)00345-2
Huang, Z.-D.; Masese, T.; Orikasa, Y.; Mori, T.; Yamamoto, K. RSC Adv. 2015, 5, 8598. doi: 10.1039/c4ra14416c
doi: 10.1039/c4ra14416c
Kitchaev, D. A.; Dacek, S. T.; Sun, W.; Ceder, G. J. Am. Chem. Soc. 2017, 139, 2672. doi: 10.1021/jacs.6b11301
doi: 10.1021/jacs.6b11301
Ling, C.; Zhang, R.; Arthur, T. S.; Mizuno, F. Chem. Mater. 2015, 27, 5799. doi: 10.1021/acs.chemmater.5b02488
doi: 10.1021/acs.chemmater.5b02488
Rasul, S.; Suzuki, S.; Yamaguchi, S.; Miyayama, M. Solid State Ionics 2012, 225, 542. doi: 10.1016/j.ssi.2012.01.019
doi: 10.1016/j.ssi.2012.01.019
Rasul, S.; Suzuki, S.; Yamaguchi, S.; Miyayama, M. Electrochim. Acta 2012, 82, 243. doi: 10.1016/j.electacta.2012.03.095
doi: 10.1016/j.electacta.2012.03.095
Feng, Z.; Chen, X.; Qiao, L.; Lipson, A. L.; Fister, T. T.; Zeng, L.; Kim, C.; Yi, T.; Sa, N.; Proffit, D. L.; et al. ACS Appl. Mater. Interfaces 2015, 7, 28438. doi: 10.1021/acsami.5b09346
doi: 10.1021/acsami.5b09346
Zhao, X.; Yang, Y.; NuLi, Y.; Li, D.; Wang, Y.; Xiang, X. Chem. Commun. 2019, 55, 6086. doi: 10.1039/c9cc02556a
doi: 10.1039/c9cc02556a
Yang, Y.; Wang, W.; Nuli, Y.; Yang, J.; Wang, J. ACS Appl. Mater. Interfaces 2019, 11, 9062. doi: 10.1021/acsami.8b20180
doi: 10.1021/acsami.8b20180
Yuan, H.; Yang, Y.; NuLi, Y.; Yang, J.; Wang, J. J. Mater. Chem. A 2018, 6, 17075. doi: 10.1039/c8ta04772c
doi: 10.1039/c8ta04772c
Du, A.; Zhao, Y.; Zhang, Z.; Dong, S.; Cui, Z.; Tang, K.; Lu, C.; Han, P.; Zhou, X.; Cui, G. Energy Storage Mater. 2020, 26, 23. doi: 10.1016/j.ensm.2019.12.030
doi: 10.1016/j.ensm.2019.12.030
Duffort, V.; Sun, X.; Nazar, L. F. Chem. Commun. 2016, 52, 12458. doi: 10.1039/c6cc05363g
doi: 10.1039/c6cc05363g
Tashiro, Y.; Taniguchi, K.; Miyasaka, H. Electrochim. Acta 2016, 210, 655. doi: 10.1016/j.electacta.2016.05.202
doi: 10.1016/j.electacta.2016.05.202
Zhang, Z.; Chen, B.; Xu, H.; Cui, Z.; Dong, S.; Du, A.; Ma, J.; Wang, Q.; Zhou, X.; Cui, G. Adv. Funct. Mater. 2018, 28, 1701718. doi: 10.1002/adfm.201701718
doi: 10.1002/adfm.201701718
Cheng, X.; Zhang, Z.; Kong, Q.; Zhang, Q.; Wang, T.; Dong, S.; Gu, L.; Wang, X.; Ma, J.; Han, P.; et al. Angew. Chem. Int. Ed. Engl. 2020, 59, 11477. doi: 10.1002/anie.202002177
doi: 10.1002/anie.202002177
Qu, X.; Du, A.; Wang, T.; Kong, Q.; Chen, G.; Zhang, Z.; Zhao, J.; Liu, X.; Zhou, X.; Dong, S.; et al. Angew. Chem. Int. Ed. Engl. 2022. doi: 10.1002/anie.202204423
doi: 10.1002/anie.202204423
Sano, H.; Senoh, H.; Yao, M.; Sakaebe, H.; Kiyobayashi, T. Chem. Lett. 2012, 41, 1594. doi: 10.1246/cl.2012.1594
doi: 10.1246/cl.2012.1594
Senoh, H.; Sakaebe, H.; Tokiwa, H.; Uchida, M.; Sano, H.; Yao, M.; Kiyobayashi, T. ECS Trans. 2015, 69, 33. doi: 10.1149/06919.0033ecst
doi: 10.1149/06919.0033ecst
Dong, H.; Tutusaus, O.; Liang, Y.; Zhang, Y.; Lebens-Higgins, Z.; Yang, W.; Mohtadi, R.; Yao, Y. Nat. Energy 2020, 5, 1043. doi: 10.1038/s41560-020-00734-0
doi: 10.1038/s41560-020-00734-0
Pan, B.; Huang, J.; Feng, Z.; Zeng, L.; He, M.; Zhang, L.; Vaughey, J. T.; Bedzyk, M. J.; Fenter, P.; Zhang, Z.; et al. Adv. Energy Mater. 2016, 6, 1600140. doi: 10.1002/aenm.201600140
doi: 10.1002/aenm.201600140
Dong, H.; Liang, Y.; Tutusaus, O.; Mohtadi, R.; Zhang, Y.; Hao, F.; Yao, Y. Joule 2019, 3, 782. doi: 10.1016/j.joule.2018.11.022
doi: 10.1016/j.joule.2018.11.022
Nakahara, K.; Iwasa, S.; Satoh, M.; Morioka, Y.; Iriyama, J.; Suguro, M.; Hasegawa, E. Chem. Phys. Lett. 2002, 359, 351. doi: 10.1016/s0009-2614(02)00705-4
doi: 10.1016/s0009-2614(02)00705-4
Chen, Q.; Nuli, Y. N.; Guo, W.; Yang, J.; Wang, J. L.; Guo, Y. G. Acta Phys. -Chim. Sin. 2013, 29, 2295.
doi: 10.3866/PKU.WHXB201309241
Gu, S.; Wu, S.; Cao, L.; Li, M.; Qin, N.; Zhu, J.; Wang, Z.; Li, Y.; Li, Z.; Chen, J.; et al. J. Am. Chem. Soc. 2019, 141, 9623. doi: 10.1021/jacs.9b03467
doi: 10.1021/jacs.9b03467
Ha, S. Y.; Lee, Y. W.; Woo, S. W.; Koo, B.; Kim, J. S.; Cho, J.; Lee, K. T.; Choi, N. S. ACS Appl. Mater. Interfaces 2014, 6, 4063. doi: 10.1021/am405619v
doi: 10.1021/am405619v
Wu, M.; Cui, Y.; Bhargav, A.; Losovyj, Y.; Siegel, A.; Agarwal, M.; Ma, Y.; Fu, Y. Angew. Chem. Int. Ed. Engl. 2016, 55, 10027. doi: 10.1002/anie.201603897
doi: 10.1002/anie.201603897
NuLi, Y.; Guo, Z.; Liu, H.; Yang, J. Electrochem. Commun. 2007, 9, 1913. doi: 10.1016/j.elecom.2007.05.009
doi: 10.1016/j.elecom.2007.05.009
NuLi, Y.; Chen, Q.; Wang, W.; Wang, Y.; Yang, J.; Wang, J. Sci. World J. 2014, 2014, 107918. doi: 10.1155/2014/107918
doi: 10.1155/2014/107918
Bitenc, J.; Pirnat, K.; Mali, G.; Novosel, B.; Randon Vitanova, A.; Dominko, R. Electrochem. Commun. 2016, 69, 1. doi: 10.1016/j.elecom.2016.05.009
doi: 10.1016/j.elecom.2016.05.009
Kaland, H.; Hadler-Jacobsen, J.; Fagerli, F. H.; Wagner, N. P.; Schnell, S. K.; Wiik, K. ACS Appl. Energy Mater. 2020, 3, 10600. doi: 10.1021/acsaem.0c01655
doi: 10.1021/acsaem.0c01655
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225