Citation: Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes[J]. Acta Physico-Chimica Sinica, ;2023, 39(2): 220504. doi: 10.3866/PKU.WHXB202205045 shu

Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes

  • Corresponding author: Yongyao Xia, yyxial@fudan.edu.cn
  • Received Date: 18 May 2022
    Revised Date: 10 June 2022
    Accepted Date: 14 June 2022
    Available Online: 17 June 2022

    Fund Project: the National Natural Science Foundation of China 21935003

  • The ever-worsening world-wide energy crisis and environmental issues are encouraging the development of green and renewable energy. Thus, rechargeable batteries are being developed and employed for energy storage and conversion in various electronic equipment. When compared with metal lithium batteries, aqueous rechargeable batteries have gained significant attention due to their advantages of high safety, low cost, and environmental friendliness. Among the various known rechargeable batteries (Li+, Na+, K+, NH4+, Mg2+, Ca2+, and Al3+), aqueous zinc-ion batteries (ZIBs) are considered as promising energy storage devices because the zinc electrode exhibits high capacity (820 mAh∙g−1) and low potential (−0.76 V vs. Standard hydrogen electrode (SHE)). To date, various ZIBs cathode materials with excellent performance have been developed, such as manganese- and vanadium-based oxides, Prussian blue and its analogues, and organic compounds. Unfortunately, some of these materials, especially manganese- and vanadium-based oxides, suffer from critical structural collapse, dissolution, and cathode/electrolyte interfacial side reactions, which lead to low Coulombic efficiency and poor cycle performance. The poor cycle performance is one of the main obstacles hindering the large-scale application of manganese- and vanadium-based oxides. Therefore, the structural design of cathodes and electrolyte regulation strategies have been extensively investigated to solve these problems and improve electrochemical performance. In comparison, electrolyte regulation is an important and effective strategy for improving the performance of ZIBs cathodes. It is well known that a strong interaction force exists between Zn2+ and H2O, therefore, Zn2+ can coordinate with six H2O molecules to form [Zn(H2O)6]2+ in the dilute aqueous electrolyte, while forming numerous hydrogen bonds between the H2O molecules. The Zn2+-solvation structure and hydrogen bonds can be destructed and restructured by changing the anion, and using highly concentrated electrolyte and/or organic solvent, thereby decreasing the number of H2O molecules in the solvated structure and the activity of free water. Furthermore, additives can change the pH value of the aqueous electrolyte and build a dissolution equilibrium between the cathode and electrolyte. Hence, an appropriate electrolyte regulation strategy can broaden the electrochemical stability window of electrolytes, improve the working potential, suppress the occurrence of interfacial side reactions, and prevent the dissolution of the active materials, thereby improving the electrochemical performance of ZIBs. Herein, we review the possible electrolyte regulation strategies for enhancing the electrochemical performance of ZIBs cathodes and classify regulation strategy into two main categories: 1) Solute (including different zinc salts, additive, and water-in-salt) and 2) Solvent (composite of organic/inorganic hybrid electrolytes). We then discuss the advantages and challenges of each strategy, and finally predict the possible future direction of electrolyte development.
  • 加载中
    1. [1]

      Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1 (4), 16013. doi: 10.1038/natrevmats.2016.13  doi: 10.1038/natrevmats.2016.13

    2. [2]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334 (6058), 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    3. [3]

      Luo, J. Y.; Xia, Y. Y. Adv. Funct. Mater. 2007, 17 (18), 3877. doi: 10.1002/adfm.200700638  doi: 10.1002/adfm.200700638

    4. [4]

      Yan, L.; Qi, Y. E.; Dong, X. L.; Wang, Y. G.; Xia, Y. Y. eScience 2021, 1, 212. doi: 10.1016/j.esci.2021.12.002  doi: 10.1016/j.esci.2021.12.002

    5. [5]

      Li, H.; Liu, S. Y.; Yuan, T. C.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G. Y.; Bai, H. T.; Chen, X.; Chen, Z. X.; Cao, Y. L. Acta Phys. -Chim. Sin. 2020, 36 (5), 1905027.  doi: 10.3866/PKU.WHXB201905027

    6. [6]

      Jiang, L. W.; Lu, Y. X.; Zhao, C. L.; Liu, L. L.; Zhang, J. N.; Zhang, Q. Q.; Shen, X.; Zhao, J. M.; Yu, X. Q.; Li, H.; et al. Nano Energy 2019, 4 (6), 495. doi: 10.1038/s41560-019-0388-0  doi: 10.1038/s41560-019-0388-0

    7. [7]

      Lang, J. H.; Jiang, C. L.; Fang, Y.; Shi, L.; Miao, S. J.; Tang, Y. B. Adv. Energy Mater. 2019, 9 (29), 1901099. doi: 10.1002/aenm.201901099  doi: 10.1002/aenm.201901099

    8. [8]

      Xu, Y. N.; Deng, X. W.; Li, Q. D.; Zhang, G. B.; Xiong, F. Y.; Tan, S. S.; Wei, Q. L.; Lu, J.; Li, J. T.; An, Q. Y.; et al. Chem 2019, 5 (5), 1194. doi: 10.1016/j.chempr.2019.02.014  doi: 10.1016/j.chempr.2019.02.014

    9. [9]

      Chen, H. D.; Huang, J. J.; Tian, S. H.; Liu, L.; Qin, T. F.; Song, L.; Liu, Y. P.; Zhang, Y. N.; Wu, X. G.; Lei, S. L.; et al. Adv. Sci. 2021, 8 (14), 2004924. doi: 10.1002/advs.202004924  doi: 10.1002/advs.202004924

    10. [10]

      Kim, D. J.; Yoo, D. J.; Otley, M. T.; Prokofjevs, A.; Pezzato, C.; Owczarek, M.; Lee, S. J.; Choi, J. W.; Stoddart, J. F. Nat. Energy 2019, 4 (1), 51. doi: 10.1038/s41560-018-0291-0  doi: 10.1038/s41560-018-0291-0

    11. [11]

      Zhao, Z. Q.; Fan, X. Y.; Ding, J.; Hu, W. B.; Zhong, C.; Lu, J. ACS Energy Lett. 2019, 4 (9), 2259. doi: 10.1021/acsenergylett.9b01541  doi: 10.1021/acsenergylett.9b01541

    12. [12]

      Hao, J. N.; Li, X. L.; Zeng, X. H.; Li, D.; Mao, J. F.; Guo, Z. P. Energy Environ. Sci. 2020, 13 (11), 3917. doi: 10.1039/d0ee02162h  doi: 10.1039/d0ee02162h

    13. [13]

      Song, J. H.; Xu, K.; Liu, N.; Reed, D.; Li, X. L. Mater. Today 2021, 45, 191. doi: 10.1016/j.mattod.2020.12.003  doi: 10.1016/j.mattod.2020.12.003

    14. [14]

      Wang, D. H.; Li, H. F.; Liu, Z X.; Tang, Z. J.; Liang, G. J.; Mo, F. N.; Yang, Q.; Ma, L. T.; Zhi, C. Y. Small 2018, 14 (51), 1803978. doi: 10.1002/smll.201803978  doi: 10.1002/smll.201803978

    15. [15]

      McLarnon, F. R.; Cairns, E. J. J. Electrochem. Soc. 1991, 138 (2), 645. doi: 10.1149/1.2085653  doi: 10.1149/1.2085653

    16. [16]

      Yan, J.; Wang, J.; Liu, H.; Bakenov, Z.; Gosselink, D.; Chen, P. J. Power Sources 2012, 216, 222. doi: 10.1016/j.jpowsour.2012.05.063  doi: 10.1016/j.jpowsour.2012.05.063

    17. [17]

      Yesibolati, N.; Umirov, N.; Koishybay, A.; Omarova, M.; Kurmanbayeva, I.; Zhang, Y. G.; Zhao, Y.; Bakenov, Z. Electrochim. Acta 2015, 152, 505. doi: 10.1016/j.electacta.2014.11.168  doi: 10.1016/j.electacta.2014.11.168

    18. [18]

      Shoji, T.; Hishinuma, M.; Yamamoto, T. J. Appl. Electrochem. 1988, 18 (4), 521. doi: 10.1007/BF01022245  doi: 10.1007/BF01022245

    19. [19]

      Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Angew. Chem. Int. Ed. 2012, 51 (4), 933. doi: 10.1002/anie.201106307  doi: 10.1002/anie.201106307

    20. [20]

      Wang, D. H.; Wang, L. F.; Liang, G. J.; Li, H. F.; Liu, Z. X.; Tang, Z. J.; Liang, J. B.; Zhi, C. Y. ACS Nano 2019, 13 (9), 10643. doi: 10.1021/acsnano.9b04916  doi: 10.1021/acsnano.9b04916

    21. [21]

      Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S. J.; Song, J. J.; Baboo, J. P.; Choi, S. H.; Kim, J. Chem. Mater. 2015, 27 (10), 3609. doi: 10.1021/cm504717p  doi: 10.1021/cm504717p

    22. [22]

      Huang, J. H.; Wang, Z.; Hou, M. Y.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. Nat. Commun. 2018, 9, 2906. doi: 10.1038/s41467-018-04949-4  doi: 10.1038/s41467-018-04949-4

    23. [23]

      Huang, M.; Meng, J. S.; Huang, Z. H.; Wang, X. P.; Mai, L. Q. J. Mater. Chem. A. 2020, 8 (14), 6631. doi: 10.1039/c9ta13497b  doi: 10.1039/c9ta13497b

    24. [24]

      Ma, L. T.; Chen, S. M.; Long, C. B.; Li, X. L.; Zhao, Y. W.; Liu, Z. X.; Huang, Z. D.; Dong, B. B.; Zapien, J. A.; Zhi, C. Y. Adv. Energy Mater. 2019, 9 (45), 1902446. doi: 10.1002/aenm.201902446  doi: 10.1002/aenm.201902446

    25. [25]

      Wang, Z. Q.; Zhou, M.; Qin, L. P.; Chen, M. H.; Chen, Z. X.; Guo, S.; Wang, L. B.; Fang, G. Z.; Liang, S. Q. eScience 2022, 2, 209. doi: 10.1016/j.esci.2022.03.002  doi: 10.1016/j.esci.2022.03.002

    26. [26]

      He, P. G.; Liu, J. H.; Zhao, X. D.; Ding, Z. P.; Gao, P.; Fan, L. Z. J. Mater. Chem. A. 2020, 8 (20), 10370. doi: 10.1039/d0ta03165h  doi: 10.1039/d0ta03165h

    27. [27]

      Heng, Y. L.; Gu, Z. Y.; Guo, J. Z.; Wu, X. L. Acta Phys. -Chim. Sin. 2021, 37 (3), 2005013.  doi: 10.3866/PKU.WHXB202005013

    28. [28]

      Sun, T. J.; Zheng, S. B.; Du, H. H.; Tao, Z. L. Nano-Micro Lett. 2021, 13 (1), 204. doi: 10.1007/s40820-021-00733-0  doi: 10.1007/s40820-021-00733-0

    29. [29]

      Guo, S.; Qin, L. P.; Zhang, T. S.; Zhou, M.; Zhou, J.; Fang, G. Z.; Liang, S. Q. Energy Storage Mater. 2021, 34, 545. doi: 10.1016/j.ensm.2020.10.019  doi: 10.1016/j.ensm.2020.10.019

    30. [30]

      Poyraz, A. S.; Laughlin, J.; Zec, Z. Electrochim. Acta 2019, 305, 423. doi: 10.1016/j.electacta.2019.03.093  doi: 10.1016/j.electacta.2019.03.093

    31. [31]

      Wang, L. L.; Huang, K. W.; Chen, J. T.; Zheng, J. R. Sci. Adv. 2019, 5 (10), eaax4279. doi: 10.1126/sciadv.aax4279  doi: 10.1126/sciadv.aax4279

    32. [32]

      Yang, G. Z.; Li, Q.; Ma, K. X.; Hong, C.; Wang, C. X. J. Mater. Chem. A. 2020, 8 (16), 8084. doi: 10.1039/d0ta00615g  doi: 10.1039/d0ta00615g

    33. [33]

      Yang, K.; Hu, Y. Y.; Li, L. Y.; Cui, L. L.; He, L.; Wang, S. J.; Zhao, J. W.; Song, Y. F. Nano Energy 2020, 74, 104851. doi: 10.1016/j.nanoen.2020.104851  doi: 10.1016/j.nanoen.2020.104851

    34. [34]

      Qi, Y. E.; Huang, J. H.; Yan, L.; Cao, Y. J.; Xu, J.; Bin, D.; Liao, M. C.; Xia, Y. Y. Chem. Eng. J. 2022, 442, 136349. doi: 10.1016/j.cej.2022.136349  doi: 10.1016/j.cej.2022.136349

    35. [35]

      Huang, J. T.; Zhuo, J.; Liang, S. Q. Acta Phys. -Chim. Sin. 2021, 37 (3), 2005020.  doi: 10.3866/PKU.WHXB202005020

    36. [36]

      Zhang, N.; Chen, X. Y.; Yu, M.; Niu, Z. Q.; Cheng, F. Y.; Chen, J. Chem. Soc. Rev. 2020, 49 (13), 4203. doi: 10.1039/c9cs00349e  doi: 10.1039/c9cs00349e

    37. [37]

      Zhang, T. S.; Tang, Y.; Guo, S.; Cao, X. X.; Pan, A. Q.; Fang, G. Z.; Zhou, J.; Liang, S. Q. Energy Environ. Sci. 2020, 13 (12), 4625. doi: 10.1039/d0ee02620d  doi: 10.1039/d0ee02620d

    38. [38]

      Liu, S. L.; Mao, J. F.; Pang, W. K.; Vongsvivut, J.; Zeng, X. H.; Thomsen, L.; Wang, Y. Y.; Liu, J. W.; Li, D.; Guo, Z. P. Adv. Funct. Mater. 2021, 31 (38), 2104281. doi: 10.1002/adfm.202104281  doi: 10.1002/adfm.202104281

    39. [39]

      Sun, Y. M.; Ji, X. L. Chem. Rev. 2021, 121 (11), 6654. doi: 10.1021/acs.chemrev.1c00191  doi: 10.1021/acs.chemrev.1c00191

    40. [40]

      Chen, S. G.; Zhang, M. F.; Zou, P. M.; Sun, B. Y.; Tao, S. W. Energy Environ. Sci. 2022, 15 (5), 1805. doi: 10.1039/d2ee00004k  doi: 10.1039/d2ee00004k

    41. [41]

      Manalastas, W.; Kumar, S.; Verma, W.; Zhang, L. P.; Yuan, D.; Srinivasan, M. ChemSusChem 2019, 12 (2), 379. doi: 10.1002/cssc.201801523  doi: 10.1002/cssc.201801523

    42. [42]

      Wang, D. H.; Li, Q.; Zhao, Y. W.; Hong, H.; Li, H. F.; Huang, Z. D.; Liang, G. J.; Yang, Q.; Zhi, C. Y. Adv. Energy Mater. 2022, 12 (9), 2102707. doi: 10.1002/aenm.202102707  doi: 10.1002/aenm.202102707

    43. [43]

      Li, M.; Li, Z. L.; Wang, X. P.; Meng, J. S.; Liu, X.; Wu, B. K.; Han, C. H.; Mai, L. Q. Energy Environ. Sci. 2021, 14 (7), 3796. doi: 10.1039/d1ee00030f  doi: 10.1039/d1ee00030f

    44. [44]

      Liu, C. X.; Xie, X. S.; Lu, B. G.; Zhou, J.; Liang, S. Q. ACS Energy Lett. 2021, 6 (3), 1015. doi: 10.1021/acsenergylett.0c02684  doi: 10.1021/acsenergylett.0c02684

    45. [45]

      Wang, C.; Pei, Z. X.; Meng, Q. Q.; Zhang, C. M.; Sui, X.; Yuan, Z. W.; Wang, S. J.; Chen, Y. Angew. Chem. Int. Ed. 2021, 60 (2), 990. doi: 10.1002/anie.202012030  doi: 10.1002/anie.202012030

    46. [46]

      Zhang, N.; Cheng, F. Y. Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. J. Am. Chem. Soc. 2016, 138 (39), 12894. doi: 10.1021/jacs.6b05958  doi: 10.1021/jacs.6b05958

    47. [47]

      Kasiri, G.; Trócoli, R.; Hashemi, A. B.; La Mantia, F. Electrochim. Acta 2016, 222, 74. doi: 10.1016/j.electacta.2016.10.155  doi: 10.1016/j.electacta.2016.10.155

    48. [48]

      Wan, F.; Zhang, L. L.; Dai, X.; Wang, X. Y.; Niu, Z. Q.; Chen, J. Nat. Commun. 2018, 9, 1656. doi: 10.1038/s41467-018-04060-8  doi: 10.1038/s41467-018-04060-8

    49. [49]

      Xu, L.; Zhang, Y.; Zheng, J.; Jiang, H.; Hu, T.; Meng, C. Mater. Today Energy 2020, 18, 100509. doi: 10.1016/j.mtener.2020.100509  doi: 10.1016/j.mtener.2020.100509

    50. [50]

      Wang, P. J.; Shi, X. D.; Wu, Z. X.; Guo, S.; Zhou, J.; Liang, S. Q. Carbon Energy 2020, 2 (2), 294. doi: 10.1002/cey2.39  doi: 10.1002/cey2.39

    51. [51]

      Zhang, Q.; Xia, K. X.; Ma, Y. L.; Lu, Y.; Li, L.; Liang, J.; Chou, S. L.; Chen, J. ACS Energy Lett. 2021, 6 (8), 2704. doi: 10.1021/acsenergylett.1c01054  doi: 10.1021/acsenergylett.1c01054

    52. [52]

      Yang, G. S.; Huang, J. L.; Wan, X. H.; Liu, B. B.; Zhu, Y. C.; Wang, J. W.; Fontaine, O.; Luo, S. Q.; Hiralal, P.; Guo, Y. Z.; et al. EcoMat 2022, 4 (2), e12165. doi: 10.1002/eom2.12165  doi: 10.1002/eom2.12165

    53. [53]

      Sun, Y. L.; Ma, H. Y.; Zhang, X. Q.; Liu, B.; Liu, L. Y.; Zhang, X.; Feng, J. Z.; Zhang, Q. N.; Ding, Y. X.; Yang, B. J.; et al. Adv. Funct. Mater. 2021, 31 (28), 2101277. doi: 10.1002/adfm.202101277  doi: 10.1002/adfm.202101277

    54. [54]

      Wang, L. J.; Zhang, Y.; Hu, H.L.; Shi, H. Y.; Song, Y.; Guo, D.; Liu, X. X.; Sun, X. Q. ACS Appl. Mater. Interfaces 2019, 11 (45), 42000. doi: 10.1021/acsami.9b10905  doi: 10.1021/acsami.9b10905

    55. [55]

      Patil, N.; de la Cruz, C.; Ciurduc, D.; Mavrandonakis, A.; Palma, J.; Marcilla, R. Adv. Energy Mater. 2021, 11 (26), 2100939. doi: 10.1002/aenm.202100939  doi: 10.1002/aenm.202100939

    56. [56]

      Wu, D.; Housel, L. M.; Kim, S. J.; Sadique, N.; Quilty, C. D.; Wu, L. J.; Tappero, R.; Nicholas, S. L.; Ehrlich, S.; Zhu, Y. M.; et al. Energy Environ. Sci. 2020, 13 (11), 4322. doi: 10.1039/D0EE02168G  doi: 10.1039/D0EE02168G

    57. [57]

      Lee, B.; Yoon, C. S.; Lee, H. R.; Chung, K. Y.; Cho, B. W.; Oh, S. H. Sci. Rep. 2014, 4, 6066. doi: 10.1038/srep06066  doi: 10.1038/srep06066

    58. [58]

      Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P.; et al. Nat. Energy 2016, 1, 16039. doi: 10.1038/NENERGY.2016.39  doi: 10.1038/NENERGY.2016.39

    59. [59]

      Zhang, N.; Cheng, F. Y.; Liu, J. X.; Wang, L. B.; Long, X. H.; Liu, X. S.; Li, F. J.; Chen, J. Nat. Commun. 2017, 8, 405. doi: 10.1038/s41467-017-00467-x  doi: 10.1038/s41467-017-00467-x

    60. [60]

      Zhang, T. S.; Tang, Y.; Fang, G. Z.; Zhang, C. Y.; Zhang, H. L.; Guo, X.; Cao, X. X.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Adv. Funct. Mater. 2020, 30 (30), 2002711. doi: 10.1002/adfm.202002711  doi: 10.1002/adfm.202002711

    61. [61]

      Chamoun, M.; Brant, W. R.; Tai, C. W.; Karlsson, G.; Noréus, D. Energy Storage Mater. 2018, 15, 351. doi: 10.1016/j.ensm.2018.06.019  doi: 10.1016/j.ensm.2018.06.019

    62. [62]

      Li, G. Z.; Huang, Z. X.; Chen, J. B.; Yao, F.; Liu, J. P.; Li, O. L.; Sun, S. H.; Shi, Z. C. J. Mater. Chem. A 2020, 8 (4), 1975. doi: 10.1039/c9ta11985j  doi: 10.1039/c9ta11985j

    63. [63]

      Li, J. W.; McColl, K.; Lu, X. K.; Sathasivam, S.; Dong, H. B.; Kang, L. Q.; Li, Z. N.; Zhao, S. Y.; Kafizas, A. G.; Wang, R.; et al. Adv. Energy Mater. 2020, 10 (15), 2000058. doi: 10.1002/aenm.202000058  doi: 10.1002/aenm.202000058

    64. [64]

      Liu, Y. Y.; Li, Q.; Ma, K. X.; Yang, G. Z.; Wang, C. X. ACS Nano 2019, 13 (10), 12081. doi: 10.1021/acsnano.9b06484  doi: 10.1021/acsnano.9b06484

    65. [65]

      Ming, F. W.; Liang, H. F.; Lei, Y. J.; Kandambeth, S.; Eddaoudi, M.; Alshareef, H. N. ACS Energy Lett. 2018, 3 (10), 2602. doi: 10.1021/acsenergylett.8b0142  doi: 10.1021/acsenergylett.8b0142

    66. [66]

      Gao, P.; Ru, Q.; Yan, H. L.; Cheng, S. K.; Liu, Y.; Hou, X. H.; Wei, L.; Ling, F. C. C. ChemElectroChem 2020, 7 (1), 283. doi: 10.1002/celc.201901851  doi: 10.1002/celc.201901851

    67. [67]

      Zhang, Y. M.; Li, H. N.; Huang, S. Z.; Fan, S.; Sun, L. N.; Tian, B. B.; Chen, F. M.; Wang, Y.; Shi, Y. M.; Yang, H. Y. Nano-Micro Lett. 2020, 12 (1), 60. doi: 10.1007/s40820-020-0385-7  doi: 10.1007/s40820-020-0385-7

    68. [68]

      Chao, D. L.; Zhou, W. H.; Ye, C.; Zhang, Q. H.; Chen, Y. G.; Gu, L.; Davey, K.; Qiao, S. Z. Angew. Chem. Int. Ed. 2019, 58 (23), 7823. doi: 10.1002/anie.201904174  doi: 10.1002/anie.201904174

    69. [69]

      Shi, H. Y.; Song, Y. Qin, Z. M.; Li, C. C.; Guo, Di.; Liu, X. X.; Sun, X. Q. Angew. Chem. Int. Ed. 2019, 58 (45), 16057. doi: 10.1002/anie.201908853  doi: 10.1002/anie.201908853

    70. [70]

      Liu, Y. Z.; Qin, Z. M.; Yang, X. P.; Liu, J.; Liu, X. X.; Sun, X. Q. ACS Energy Lett. 2022, 7, 1814. doi: 10.1021/acsenergylett.2c00777  doi: 10.1021/acsenergylett.2c00777

    71. [71]

      Li, N.; Li, G. Q.; Li, C. J.; Yang, H. C.; Qin, G. W.; Sun, X. D.; Li, F.; Cheng, H. M. ACS Appl. Mater. Interfaces 2020, 12 (12), 13790. doi: 10.1021/acsami.9b20531  doi: 10.1021/acsami.9b20531

    72. [72]

      Wu, C.; Gu, S. C.; Zhang, Q. H.; Bai, Y.; Li, M.; Yuan, Y. F.; Wang, H. L.; Liu, X. Y.; Yuan, Y. X.; Zhu, N.; et al. Nat. Commun. 2019, 10, 73. doi: 10.1038/s41467-018-07980-7  doi: 10.1038/s41467-018-07980-7

    73. [73]

      Ma, L. T.; Chen, S. M.; Li, H. F.; Ruan, Z. H.; Tang, Z. J.; Liu, Z. X.; Wang, Z. F.; Huang, Y.; Pei, Z. X.; Zapien, J. A.; et al. Energy Environ. Sci. 2018, 11 (9), 2521. doi: 10.1039/c8ee01415a  doi: 10.1039/c8ee01415a

    74. [74]

      Hou, Z. G.; Zhang, X. Q.; Li, X. N.; Zhu, Y. C.; Liang, J. W.; Qian, Y. T. J. Mater. Chem. A 2017, 5 (2), 730. doi: 10.1039/c6ta08736a  doi: 10.1039/c6ta08736a

    75. [75]

      Xu, Y. T.; Zhu, J. J.; Feng, J. Z.; Wang, Y.; Wu, X. X.; Ma, P. J.; Zhang, X.; Wang, G. Z.; Yan, X. B. Energy Storage Mater. 2021, 38, 299. doi: 10.1016/j.ensm.2021.03.019  doi: 10.1016/j.ensm.2021.03.019

    76. [76]

      Hou, Z. G.; Dong, M. F.; Xiong, Y. L.; Zhang, X. Q.; Ao, H. S.; Liu, M. K.; Zhu, Y. C.; Qian, Y. T. Small 2020, 16 (26), 2001228. doi: 10.1002/smll.202001228  doi: 10.1002/smll.202001228

    77. [77]

      Zeng, X. H.; Mao, J. F.; Hao, J. N.; Liu, J. T.; Liu, S. L.; Wang, Z. J.; Wang, Y. Y.; Zhang, S. L.; Zheng, T.; Liu, J. W.; et al. Adv. Mater. 2021, 33 (11), 2007416. doi: 10.1002/adma.202007416  doi: 10.1002/adma.202007416

    78. [78]

      Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. J. Am. Chem. Soc. 2014, 136 (13), 5039. doi: 10.1021/ja412807w  doi: 10.1021/ja412807w

    79. [79]

      Suo, L. M.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X. L.; Luo, C.; Wang, C. S.; Xu, K. Science 2015, 350 (6263), 938. doi: 10.1126/science.aab1595  doi: 10.1126/science.aab1595

    80. [80]

      Wang, F.; Borodin, O.; Gao, T.; Fan, X.L.; Sun, W.; Han, F. D.; Faraone, A. Dura, J. A.; Xu, K.; Wang, C. S. Nat. Mater. 2018, 17 (6), 543. doi: 10.1038/s41563-018-0063-z  doi: 10.1038/s41563-018-0063-z

    81. [81]

      Zhang, Q.; Ma, Y. L.; Lu, Y.; Li, L.; Wan, F.; Zhang, K.; Chen, J. Nat. Commun. 2020, 11 (1), 4463. doi: 10.1038/s41467-020-18284-0  doi: 10.1038/s41467-020-18284-0

    82. [82]

      Cai, S. Y.; Chu, X. Y.; Liu, C.; Lai, H. W.; Chen, H.; Jiang, Y. Q.; Guo, F.; Xu, Z. K.; Wang, C. S.; Gao, C. Adv. Mater. 2021, 33 (13), 2007470. doi: 10.1002/adma.202007470  doi: 10.1002/adma.202007470

    83. [83]

      Ejigu, A.; Fevre, L. W. L; Dryfe R. A.W. ACS Appl. Mater. Interfaces 2021, 13 (12), 14112. doi: 10.1021/acsami.0c20622  doi: 10.1021/acsami.0c20622

    84. [84]

      Chen, S. G.; Lan, R.; Humphreys, J.; Tao, S. W. Energy Storage Mater. 2020, 28, 205. doi: 10.1016/j.ensm.2020.03.011  doi: 10.1016/j.ensm.2020.03.011

    85. [85]

      Liu, S. C.; He, J. F.; Liu, D. S.; Ye, M. H.; Zhang, Y. F.; Qin, Y. L.; Li, C. C. Energy Storage Mater. 2022, 49, 93. doi: 10.1016/j.ensm.2022.03.038  doi: 10.1016/j.ensm.2022.03.038

    86. [86]

      Li, W.; Wang, K. L.; Zhou, M.; Zhan, H. C.; Cheng, S. J.; Jiang, K. ACS Appl. Mater. Interfaces 2018, 10 (26), 22059. doi: 10.1021/acsami.8b04085  doi: 10.1021/acsami.8b04085

    87. [87]

      Suo, L. M.; Borodin, O.; Sun, W.; Fan, X. L.; Yang, C. Y.; Wang, F.; Gao, T.; Ma, Z. H.; Schroeder, M.; Cresce, A.; et al. Angew. Chem. Int. Ed. 2016, 55 (25), 7136. doi: 10.1002/anie.201602397  doi: 10.1002/anie.201602397

    88. [88]

      Gambou-Bosca, A.; Belanger, D. J. Power Sources 2016, 326, 595. doi: 10.1016/j.jpowsour.2016.04.088  doi: 10.1016/j.jpowsour.2016.04.088

    89. [89]

      Kühnel, R. S; Reber, D.; Remhof, A.; Figi, R.; Bleiner, D.; Battaglia, C. Chem. Commun. 2016, 52 (68), 10435. doi: 10.1039/c6cc03969c  doi: 10.1039/c6cc03969c

    90. [90]

      Hu, P.; Yan, M. Y.; Zhu, T.; Wang, X. P.; Wei, X. J.; Li, J. T.; Zhou, L.; Li, Z. H.; Chen, L. N.; Mai, L. Q. ACS Appl. Mater. Interfaces 2017, 9 (49), 42717. doi: 10.1021/acsami.7b13110  doi: 10.1021/acsami.7b13110

    91. [91]

      Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama, Y.; Yamada, A. Nat. Energy 2016, 1, 16129. doi: 10.1038/NENERGY.2016.129  doi: 10.1038/NENERGY.2016.129

    92. [92]

      Yang, C. Y.; Suo, L. M.; Borodin, O.; Wang, F.; Sun, W.; Gao, T.; Fan, X. L.; Hou, S. Y.; Ma, Z. H.; Amine, K.; et al. Proc. Natl. Acad. Sci. USA 2017, 114 (24), 6197. doi: 10.1073/pnas.1703937114  doi: 10.1073/pnas.1703937114

    93. [93]

      Wu, X. Y.; Xu, Y. K.; Zhang, C.; Leonard, D. P.; Markir, A.; Lu, J.; Ji, X. L. J. Am. Chem. Soc. 2019, 141 (15), 6338. doi: 10.1021/jacs.9b00617  doi: 10.1021/jacs.9b00617

    94. [94]

      Zhao, J. W.; Li, Y. Q.; Peng, X.; Dong, S. M.; Ma, J.; Cui, G. L.; Chen, L. Q. Electrochem. Commun. 2016, 69, 6. doi: 10.1016/j.elecom.2016.05.014  doi: 10.1016/j.elecom.2016.05.014

    95. [95]

      Wan, F.; Zhang, Y.; Zhang, L. L.; Liu, D. B.; Wang, C. D.; Song, L.; Niu, Z. Q.; Chen, J. Angew. Chem. Int. Ed. 2019, 58 (21), 7062. doi: 10.1002/anie.201902679  doi: 10.1002/anie.201902679

    96. [96]

      Zhang, L. Y.; Chen, L.; Zhou, X. F.; Liu, Z. P. Adv. Energy Mater. 2015, 5 (2), 1400930. doi: 10.1002/aenm.201400930  doi: 10.1002/aenm.201400930

    97. [97]

      Zhang, L.; Rodríguez-Pérez, I. A.; Jiang, H.; Zhang, C.; Leonard, D. P.; Guo, Q. B.; Wang, W. F.; Han, S. M.; Wang, L. M.; Ji, X. L. Adv. Funct. Mater. 2019, 29 (30), 1902653. doi: 10.1002/adfm.201902653  doi: 10.1002/adfm.201902653

    98. [98]

      Bin, D.; Wang, Y. R.; Tamirat, A. G.; Zhu, P.; Yang, B. B.; Wang, J.; Huang, J. H.; Xia, Y. Y. ACS Sustain. Chem. Eng. 2021, 9 (8), 3223. doi: 10.1021/acssuschemeng.0c08651  doi: 10.1021/acssuschemeng.0c08651

    99. [99]

      Li, L. P.; Liu, S. L.; Liu, W. C.; Ba, D. L.; Liu, W. L.; Gui, Q. Y.; Chen, Y.; Hu, Z. Q.; Li, Y. Y.; Liu, J. P. Nano-Micro Lett. 2021, 13 (1), 34. doi: 10.1007/s40820-020-00554-7  doi: 10.1007/s40820-020-00554-7

    100. [100]

      Yang, B. B.; Qin, T.; Du, Y. Y.; Zhang, Y. L.; Wang, J.; Chen, T. T.; Ge, M.; Bin, D.; Ge, C. W.; Lu, H. B. Chem. Commun. 2022, 58 (10), 1550. doi: 10.1039/d1cc06325a  doi: 10.1039/d1cc06325a

    101. [101]

      Tang, X. Y.; Wang, P.; Bai, M.; Wang, Z. Q.; Wang, H. L.; Zhang, M.; Ma, Y. Adv. Sci. 2021, 8 (23), 2102053. doi: 10.1002/advs.202102053  doi: 10.1002/advs.202102053

    102. [102]

      Wang, L.; Yan, S.; Quilty, C. D.; Kuang, J.; Dunkin, M. R.; Ehrlich, S. N.; Ma, L.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C. Adv. Mater. Interfaces 2021, 8 (9), 2002080. doi: 10.1002/admi.202002080  doi: 10.1002/admi.202002080

    103. [103]

      Chen, W. Y.; Guo, S.; Qin, L. P.; Li, L. Y.; Cao, X. X.; Zhou, J.; Luo, Z. G.; Fang, G. Z.; Liang, S. Q. Adv. Funct. Mater. 2022, 32 (20), 2112609. doi: 10.1002/adfm.202112609  doi: 10.1002/adfm.202112609

    104. [104]

      Liu, X.; Luo, Y.; Ma, H.; Zhang, S. J.; Che, P. H.; Zhang, M. Y.; Gao, J.; Xu, J. Angew. Chem. Int. Ed. 2021, 60 (48), 18103. doi: 10.1002/anie.202113265  doi: 10.1002/anie.202113265

    105. [105]

      Chang, N. N.; Li, T. Y.; Li, R.; Wang, S. N.; Yin, Y. B.; Zhang, H. M.; Li, X. F. Energy Environ. Sci. 2020, 13 (10), 3527. doi: 10.1039/d0ee01538e  doi: 10.1039/d0ee01538e

    106. [106]

      Li, G. L.; Yang, Z.; Jiang, Y.; Jin, C. H.; Huang, W.; Ding, X. L.; Huang, Y. H. Nano Energy 2016, 25, 211. doi: 10.1016/j.nanoen.2016.04.051  doi: 10.1016/j.nanoen.2016.04.051

    107. [107]

      Soundharrajan, V.; Sambandam, B.; Kim, S.; Islam, S.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. K.; Kim, J. Energy Storage Mater. 2020, 28, 407. doi: 10.1016/j.ensm.2019.12.021  doi: 10.1016/j.ensm.2019.12.021

    108. [108]

      Shi, J. Q.; Xia, K. X.; Liu, L. J.; Liu, C.; Zhang, Q.; Li, L.; Zhou, X. Z.; Liang, J.; Tao, Z. L. Electrochim. Acta 2020, 358, 136937. doi: 10.1016/j.electacta.2020.136937  doi: 10.1016/j.electacta.2020.136937

    109. [109]

      Cao, L. S.; Li, D.; Hu, E. Y.; Xu, J. J.; Deng, T.; Ma, L.; Wang, Y.; Yang, X. Q.; Wang, C. S. J. Am. Chem. Soc. 2020, 142 (51), 21404. doi: 10.1021/jacs.0c09794  doi: 10.1021/jacs.0c09794

    110. [110]

      Nian, Q. S.; Wang, J. Y.; Liu, S.; Sun, T. J.; Zheng, S. B.; Zhang, Y.; Tao, Z. L.; Chen, J. Angew. Chem. Int. Ed. 2019, 58 (47), 16994. doi: 10.1002/anie.201908913  doi: 10.1002/anie.201908913

    111. [111]

      Xu, W. N.; Zhao, K. N.; Huo, W. C.; Wang, Y. Z.; Yao, G.; Gu, X.; Cheng, H. W.; Mai, L. Q.; Hu, C. G.; Wang, X. D. Nano Energy 2019, 62, 275. doi: 10.1016/j.nanoen.2019.05.042  doi: 10.1016/j.nanoen.2019.05.042

    112. [112]

      Hao, J. N.; Yuan, L. B.; Ye, C.; Chao, D. L.; Davey, K.; Guo, Z. P.; Qiao, S. Z. Angew. Chem. Int. Ed. 2021, 60 (13), 7366. doi: 10.1002/anie.202016531  doi: 10.1002/anie.202016531

    113. [113]

      Huang, Z. D.; Wang, T. R.; Li, X. L.; Cui, H. L.; Liang, G. J.; Yang, Q.; Chen, Z.; Chen, A.; Guo, Y.; Fan, J.; et al. Adv. Mater. 2022, 34 (4), 2106180. doi: 10.1002/adma.202106180  doi: 10.1002/adma.202106180

    114. [114]

      Zhang, Y. J.; Zhu, M.; Wu, K.; Yu, F. F.; Wang, G. Y.; Xu, G.; Wu, M. H.; Liu, H. K.; Dou, S. X.; Wu, C. J. Mater. Chem. A 2021, 9 (7), 4253. doi: 10.1039/d0ta11668h  doi: 10.1039/d0ta11668h

    115. [115]

      Wang, N.; Yang, Y.; Qiu, Q.; Dong, X. L.; Wang, Y. G.; Xia, Y. Y. ChemSusChem 2020, 13 (20), 5556. doi: 10.1002/cssc.202001750  doi: 10.1002/cssc.202001750

    116. [116]

      Sun, Y. P.; Xu, Z.; Xu, X. W.; Nie, Y.; Tu, T.; Zhou, A. J.; Zhang, J.; Qiu, L. C.; Chen, F.; Xie, J.; et al. Energy Storage Mater. 2022, 48, 192. doi: 10.1016/j.ensm.2022.03.023  doi: 10.1016/j.ensm.2022.03.023

    117. [117]

      Ma, G. Q.; Miao, L. S.; Dong, Y.; Yuan, W. T.; Nie, X. Y.; Di, S. L.; Wang, Y. Y.; Wang, L. B.; Zhang, N. Energy Storage Mater. 2022, 47, 203. doi: 10.1016/j.ensm.2022.02.019  doi: 10.1016/j.ensm.2022.02.019

    118. [118]

      Wu, S. L.; Su, B. Z.; Sun, M. Z.; Gu, S.; Lu, Z. G.; Zhang, K. L.; Yu, D. Y. W.; Huang, B. L.; Wang, P. F.; Lee, C. S.; et al. Adv. Mater. 2021, 33 (41), 2102390. doi: 10.1002/adma.202102390  doi: 10.1002/adma.202102390

    119. [119]

      Naveed, A.; Yang, H. J.; Yang, J.; Nuli, Y. N.; Wang, J. L. Angew. Chem. Int. Ed. 2019, 58 (9), 2760. doi: 10.1002/anie.201813223  doi: 10.1002/anie.201813223

    120. [120]

      Chen, Y.; Guo, S.; Qin, L. P.; Wan, Q. W.; Pan, Y. C.; Zhou, M.; Long, M. Q.; Fang, G. Z.; Liang, S. Q. Batteries Supercaps 2022, 5 (5), e202200001. doi: 10.1002/batt.202200001  doi: 10.1002/batt.202200001

    121. [121]

      Wang, F.; Blanc, L. E.; Li, Q.; Faraone, A.; Ji, X.; Chen-Mayer, H. H.; Paul, R. L.; Dura, J. A.; Hu, E. Y.; Xu, K.; et al. Adv. Energy Mater. 2021, 11 (41), 2102016. doi: 10.1002/aenm.202102016  doi: 10.1002/aenm.202102016

    122. [122]

      Li, C. C.; Wu, W. L.; Shi, H. Y.; Qin, Z. M.; Yang, D.; Yang, X. P.; Song, Y.; Guo, D.; Liu, X. X.; Sun, X. Q. Chem. Commun. 2021, 57 (51), 6253. doi: 10.1039/d1cc00584g  doi: 10.1039/d1cc00584g

    123. [123]

      Ming, F. W.; Zhu, Y. P.; Huang, G.; Emwas, A. H.; Liang, H. F.; Cui, Y.; Alshareef, H. N. J. Am. Chem. Soc. 2022, 144 (16), 7160. doi: 10.1021/jacs.1c12764  doi: 10.1021/jacs.1c12764

    124. [124]

      Liu, Z. X.; Luo, X. B.; Qin, L. P.; Fang, G. Z.; Liang, S. Q. Adv. Power. Mater. 2022, 1 (2), 100011. doi: 10.1016/j.apmate.2021.10.002  doi: 10.1016/j.apmate.2021.10.002

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    6. [6]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    17. [17]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    18. [18]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

Metrics
  • PDF Downloads(62)
  • Abstract views(1361)
  • HTML views(250)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return