Citation: Rui Hao, Weixiang Guan, Fei Liu, Leilei Zhang, Aiqin Wang. Reaction Mechanism of Cellulose Conversion to Lactic Acid with Lewis Acid Catalysts[J]. Acta Physico-Chimica Sinica, ;2022, 38(10): 220502. doi: 10.3866/PKU.WHXB202205027 shu

Reaction Mechanism of Cellulose Conversion to Lactic Acid with Lewis Acid Catalysts

  • Corresponding author: Weixiang Guan, wxguan@dicp.ac.cn Aiqin Wang, aqwang@dicp.ac.cn
  • Received Date: 12 May 2022
    Revised Date: 31 May 2022
    Accepted Date: 1 June 2022
    Available Online: 7 June 2022

    Fund Project: the National Key R&D Program of China 2018YFB1501602National Natural Science Foundation of China 22132006the China Postdoctoral Science Foundation 2021M690149

  • Because fossil fuels are continuously depleted, valorization of biomass into valuable liquid products and chemicals is of great significance yet it remains challenging. Among many biomass-derived products, lactic acid is one of the most important renewable monomers for preparing the degradable polymer polylactic acid. The use of raw biomass to produce lactic acid through catalytic conversion is an attractive approach. In this work, the catalytic reaction performance and mechanism of different Lewis acids (Y3+, Sc3+, and Al3+) for the production of lactic acid from cellulose were investigated in detail by isotopic nuclear magnetic resonance (NMR) and mass spectrometry. The production of lactic acid from cellulose includes tandem and competing reactions. The order of catalytic activity for the one-pot conversion of cellulose into lactic acid is as follows: Y3+ > Al3+ > Sc3+. The main tandem reactions involve the hydrolysis of cellulose into glucose, the isomerization of glucose into fructose (the order of catalytic activity, the same below: Y3+ > Al3+, Y3+ > Sc3+), the cleavage of fructose via a retro-aldol reaction to glyceraldehyde (GLY) and 1, 3-dihydroxyacetone (DHA) (Sc3+ > Y3+ > Al3+), and the conversion of DHA or GLY to the final product lactic acid (Al3+ > Y3+ > Sc3+). It was found that the process of glucose isomerization to fructose was the key step to the final selectivity of the tandem reaction of cellulose conversion to lactic acid, and it was clarified that the production of lactic acid from DHA underwent a keto-enol (K-E) tautomerization process rather than a classical 1, 2-shift process. First, DHA was transformed into GLY via the isomerization process, then the adjacent hydroxyl group of GLY was removed in the form of water to produce an α, β-unsaturated species. After that, the α, β-unsaturated species underwent K-E tautomerization to generate unsaturated aldehyde-ketone intermediates. Meanwhile, a molecule of water was added to aldehyde-ketone intermediates to obtain a diol product, the hydrogen atom at the methine position was transferred and the lactic acid was finally obtained through the K-E tautomerization process. The in-depth understanding of the reaction mechanism presented in this work will help to design more selective catalysts for cellulose conversion into value-added oxygen-containing small molecule chemicals.
  • 加载中
    1. [1]

      Pang, X.; Zhuang, X.; Tang, Z.; Chen, X. Biotechnol. J. 2010, 5 (11), 1125. doi: 10.1002/biot.201000135  doi: 10.1002/biot.201000135

    2. [2]

      Ilyas, R. A.; Sapuan, S. M.; Harussani, M. M.; Hakimi, M.; Haziq, M. Z. M.; Atikah, M. S. N.; Asyraf, M. R. M.; Ishak, M. R.; Razman, M. R.; Nurazzi, N. M.; et al. Polymers (Basel) 2021, 13 (8), 1326. doi: 10.3390/polym13081326  doi: 10.3390/polym13081326

    3. [3]

      Zhang, J.; Lu, F.; Yu, W.; Lu, R.; Xu, J. Chin. J. Catal. 2016, 37 (1), 177. doi: 10.1016/S1872-2067(15)60976-7  doi: 10.1016/S1872-2067(15)60976-7

    4. [4]

      Wang, F. -F.; Liu, J.; Li, H.; Liu, C. -L.; Yang, R. -Z.; Dong, W. -S. Green Chem. 2015, 17 (4), 2455. doi: 10.1039/c4gc02131b  doi: 10.1039/c4gc02131b

    5. [5]

      Marianou, A. A.; Michailof, C. C.; Ipsakis, D.; Triantafyllidis, K.; Lappas, A. A. Green Chem. 2019, 21 (22), 6161. doi: 10.1039/c9gc02622c  doi: 10.1039/c9gc02622c

    6. [6]

      Alves de Oliveira, R.; Komesu, A.; Vaz Rossell, C. E.; Maciel Filho, R. Biochem. Eng. J. 2018, 133, 219. doi: 10.1016/j.bej.2018.03.003  doi: 10.1016/j.bej.2018.03.003

    7. [7]

      Dusselier, M.; Van Wouwe, P.; Dewaele, A.; Makshina, E.; Sels, B. F. Energy Environ. Sci. 2013, 6 (5), 1415. doi: 10.1039/c3ee00069a  doi: 10.1039/c3ee00069a

    8. [8]

      Wang, Y.; Deng, W.; Wang, B.; Zhang, Q.; Wan, X.; Tang, Z.; Wang, Y.; Zhu, C.; Cao, Z.; Wang, G.; et al. Nat. Commun. 2013, 4, 2141. doi: 10.1038/ncomms3141  doi: 10.1038/ncomms3141

    9. [9]

      Yang, M.; Qi, H.; Liu, F.; Ren, Y.; Pan, X.; Zhang, L.; Liu, X.; Wang, H.; Pang, J.; Zheng, M.; et al. Joule 2019, 3 (8), 1937. doi: 10.1016/j.joule.2019.05.020  doi: 10.1016/j.joule.2019.05.020

    10. [10]

      Zhou, H.; Jing, Y.; Wang, Y. Acta Phys. -Chim. Sin. 2022, 38, 2203016
       

    11. [11]

      Li, D.; Ni, W.; Hou, Z. Chin. J. Catal. 2017, 38 (11), 1784. doi: 10.1016/S1872-2067(17)62908-5  doi: 10.1016/S1872-2067(17)62908-5

    12. [12]

      Ye, J.; Chen, C.; Zheng, Y.; Zhou, D.; Liu, Y.; Chen, D.; Ni, L.; Xu, G.; Wang, F. Appl. Catal. A: Gen. 2021, 619, 118133. doi: 10.1016/j.apcata.2021.118133  doi: 10.1016/j.apcata.2021.118133

    13. [13]

      Chambon, F.; Rataboul, F.; Pinel, C.; Cabiac, A.; Guillon, E.; Essayem, N. Appl. Catal. B: Environ. 2011, 105 (1–2), 171. doi: 10.1016/j.apcatb.2011.04.009  doi: 10.1016/j.apcatb.2011.04.009

    14. [14]

      Nguyen, V. C.; Dandach, A.; Vu, T. T. H.; Fongarland, P.; Essayem, N. Mol. Catal. 2019, 476, 110518. doi: 10.1016/j.mcat.2019.110518  doi: 10.1016/j.mcat.2019.110518

    15. [15]

      Shi, N.; Liu, Q.; He, X.; Cen, H.; Ju, R.; Zhang, Y.; Ma, L. Bioresour. Technol. Rep. 2019, 5, 66. doi: 10.1016/j.biteb.2018.12.005  doi: 10.1016/j.biteb.2018.12.005

    16. [16]

      Xia, M.; Shen, Z.; Xiao, S.; Peng, B. -Y.; Gu, M.; Dong, W.; Zhang, Y. Appl. Catal. A: Gen. 2019, 583, 117126. doi: 10.1016/j.apcata.2019.117126  doi: 10.1016/j.apcata.2019.117126

    17. [17]

      Wang, F. -F.; Liu, C. -L.; Dong, W. -S. Green Chem. 2013, 15 (8), 2091. doi: 10.1039/c3gc40836a  doi: 10.1039/c3gc40836a

    18. [18]

      Deng, W.; Wang, P.; Wang, B.; Wang, Y.; Yan, L.; Li, Y.; Zhang, Q.; Cao, Z.; Wang, Y. Green Chem. 2018, 20 (3), 735. doi: 10.1039/c7gc02975f  doi: 10.1039/c7gc02975f

    19. [19]

      Xu, S.; Wu, Y.; Li, J.; He, T.; Xiao, Y.; Zhou, C.; Hu, C. ACS Sustain. Chem. Eng. 2020, 8 (10), 4244. doi: 10.1021/acssuschemeng.9b07552  doi: 10.1021/acssuschemeng.9b07552

    20. [20]

      Roman-Leshkov, Y.; Moliner, M.; Labinger, J. A.; Davis, M. E. Angew. Chem. Int. Ed. 2010, 49 (47), 8954. doi: 10.1002/anie.201004689  doi: 10.1002/anie.201004689

    21. [21]

      Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed.; John Wiley & Sons Inc: New York, NY, USA, 1999.

    22. [22]

      Deng, W.; Zhang, Q.; Wang, Y. Catal. Today 2014, 234, 31. doi: 10.1016/j.cattod.2013.12.041  doi: 10.1016/j.cattod.2013.12.041

    23. [23]

      Slak, J.; Pomeroy, B.; Kostyniuk, A.; Grilc, M.; Likozar, B. Chem. Eng. J. 2022, 429, 132325. doi: 10.1016/j.cej.2021.132325  doi: 10.1016/j.cej.2021.132325

    24. [24]

      Bayu, A.; Karnjanakom, S.; Kusakabe, K.; Abudula, A.; Guan, G. Chin. J. Catal. 2017, 38 (3), 426. doi: 10.1016/S1872-2067(17)62754-2  doi: 10.1016/S1872-2067(17)62754-2

    25. [25]

      Liu, M.; Jia, S.; Li, C.; Zhang, A.; Song, C.; Guo, X. Chin. J. Catal. 2014, 35 (5), 723. doi: 10.1016/S1872-2067(14)60071-1  doi: 10.1016/S1872-2067(14)60071-1

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    3. [3]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    4. [4]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    5. [5]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    6. [6]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    7. [7]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    8. [8]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    9. [9]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    10. [10]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    11. [11]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    14. [14]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    15. [15]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    16. [16]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    17. [17]

      Lili Wang Chunxia Chen Lina Jia Li Guo Jingjing Cao . Exploration and Practice in Innovative and Interesting Scientific Research Skills Training for Wood Magnetization. University Chemistry, 2024, 39(6): 246-252. doi: 10.3866/PKU.DXHX202310088

    18. [18]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    19. [19]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    20. [20]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(18)
  • Abstract views(415)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return