Citation: Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor[J]. Acta Physico-Chimica Sinica, ;2023, 39(8): 220501. doi: 10.3866/PKU.WHXB202205012 shu

A Single-Ion Polymer Superionic Conductor

  • Corresponding author: Yanbin Shen, ybshen2017@sinano.ac.cn Liwei Chen, lwchen2018@sjtu.edu.cn
  • Received Date: 6 May 2022
    Revised Date: 26 May 2022
    Accepted Date: 27 May 2022
    Available Online: 9 June 2022

    Fund Project: the National Key Research and Development Program of China 2021YFB3800300the National Natural Science Foundation of China 21733012the National Natural Science Foundation of China 22179143

  • All-solid-state batteries (ASSBs) have been considered a promising candidate for the next-generation electrochemical energy storage because of their high theoretical energy density and inherent safety. Lithium superionic conductors with high lithium-ion transference number and good processability are imperative for the development of practical ASSBs. However, the lithium superionic conductors currently available are predominantly limited to hard ceramics. Practical lithium superionic conductors employing flexible polymers are yet to be realized. The rigid and brittle nature of inorganic ceramic electrolytes limits their application in high-performance ASSBs. In this study, we demonstrate a novel design of a ternary random copolymer single-ion superionic conductor (SISC) through the radical polymerization of three different organic monomers that uses an anion-trapping borate ester as a crosslinking agent to copolymerize with vinylene carbonate and methyl vinyl sulfone. The proposed SISC contains abundant solvation sites for lithium-ion transport and anion receptors to immobilize the corresponding anions. Furthermore, the copolymerization of the three different monomers results in a low crystallinity and low glass transition temperature, which facilitates superior chain segment motion and results in a small activation energy for lithium-ion transport. The ionic conductivity and lithium-ion transference number of the SISC are 1.29 mS·cm−1 and 0.94 at room temperature, respectively. The SISC exhibits versatile processability and favorable Young's modulus (3.4 ± 0.4 GPa). The proposed SISC can be integrated into ASSBs through in situ polymerization, which facilitates the formation of suitable electrode/electrolyte contacts. Solid-state symmetric Li||Li cells employing in situ polymerized SISCs show excellent lithium stripping/plating reversibility for more than 1000 h at a current density of 0.25 mA·cm−2. This indicates that the interface between the SISC and lithium metal anode is electrochemically stable. The ASSBs that employ in situ polymerized SISCs coupled with a lithium metal anode and various cathodes, including LiFePO4, LiCoO2, and sulfurized polyacrylonitrile (SPAN), exhibit acceptable electrochemical stability, including high rate performance and good cyclability. In particular, the Li||LiFePO4 ASSBs retained ~ 70% of the discharge capacity when the charge/discharge rate was increased from 1 to 8C. They also demonstrate long-term cycling stability (> 700 cycles at 0.5C rate) at room temperature. A capacity retention of 90% was achieved even at a high rate of 2C after 300 cycles at room temperature. Furthermore, the SISCs have been applied to Li||LiFePO4 pouch cells and exhibit exceptional flexibility and safety. This work provides a novel design principle for the fabrication of polymer-based superionic conductors and is valuable for the development of practical ambient-temperature ASSBs.
  • 加载中
    1. [1]

      Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Nat. Energy 2018, 3, 267. doi: 10.1038/s41560-018-0107-2  doi: 10.1038/s41560-018-0107-2

    2. [2]

      Zeng, G. F.; Liu, Y. N.; Gu, C. Y.; Zhang, K.; An, Y. L.; Wei, C. L.; Feng, J. K.; Ni, J. F. Acta Phys. -Chim. Sin. 2020, 36, 1905006.  doi: 10.3866/PKU.WHXB201905006

    3. [3]

      Ding, P.; Lin, Z.; Guo, X.; Wu, L.; Wang, Y.; Guo, H.; Li, L.; Yu, H. Mater. Today 2021, 51, 449. doi: 10.1016/j.mattod.2021.08.005  doi: 10.1016/j.mattod.2021.08.005

    4. [4]

      Kim, C. S.; Oh, S. M. Electrochim. Acta 2000, 45, 2101. doi: 10.1016/s0013-4686(99)00426-0  doi: 10.1016/s0013-4686(99)00426-0

    5. [5]

      Fei, H. F.; Liu, Y. P.; Wei, C. L.; Zhang, Y. C.; Feng, J. K.; Chen, C. Z.; Yu, H. J. Acta Phys. -Chim. Sin. 2020, 36, 1905015.  doi: 10.3866/PKU.WHXB201905015

    6. [6]

      Han, X. G.; Gong, Y. H.; Fu, K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rublo, G.; et al. Nat. Mater. 2017, 16, 572. doi: 10.1038/nmat4821  doi: 10.1038/nmat4821

    7. [7]

      Jin, F.; Li, J.; Hu, C. J.; Dong, H. C.; Chen, P.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1399.  doi: 10.3866/PKU.WHXB201904085

    8. [8]

      Zhao, Q.; Liu, X. T.; Stalin, S.; Khan, K.; Archer, L. A. Nat. Energy 2019, 4, 365. doi: 10.1038/s41560-019-0349-7  doi: 10.1038/s41560-019-0349-7

    9. [9]

      Ben Youcef, H.; Garcia-Calvo, O.; Lago, N.; Devaraj, S.; Armand, M. Electrochim. Acta 2016, 220, 587. doi: 10.1016/j.electacta.2016.10.122  doi: 10.1016/j.electacta.2016.10.122

    10. [10]

      Long, L. Z.; Wang, S. J.; Xiao, M.; Meng, Y. Z. J. Mater. Chem. A 2016, 4, 10038. doi: 10.1039/c6ta02621d  doi: 10.1039/c6ta02621d

    11. [11]

      Wei, Z. Y.; Zhang, Z. H.; Chen, S. J.; Wang, Z. H.; Yao, X. Y.; Deng, Y. H.; Xu, X. X. Energy Storage Mater. 2019, 22, 337. doi: 10.1016/j.ensm.2019.02.004  doi: 10.1016/j.ensm.2019.02.004

    12. [12]

      Zhao, Y.; Wang, L.; Zhou, Y. A.; Liang, Z.; Tavajohi, N.; Li, B. H.; Li, T. Adv. Sci. 2021, 8, 2003675. doi: 10.1002/advs.202003675  doi: 10.1002/advs.202003675

    13. [13]

      Zhang, Z.; Huang, Y.; Gao, H.; Li, C.; Hang, J. X.; Liu, P. B. J. Energy Chem. 2021, 60, 259. doi: 10.1016/j.jechem.2021.01.013  doi: 10.1016/j.jechem.2021.01.013

    14. [14]

      Hu, P.; Chai, J. C.; Duan, Y. L.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. J. Mater. Chem. A 2016, 4, 10070. doi: 10.1039/c6ta02907h  doi: 10.1039/c6ta02907h

    15. [15]

      Webb, M. A.; Savoie, B. M.; Wang, Z. G.; Miller, T. F. Macromolecules 2015, 48, 7346. doi: 10.1021/acs.macromol.5b01437  doi: 10.1021/acs.macromol.5b01437

    16. [16]

      Webb, M. A.; Jung, Y.; Pesko, D. M.; Savoie, B. M.; Yamamoto, U.; Coates, G. W.; Balsara, N. P.; Wang, Z. G.; Miller, T. F. ACS Central Sci. 2015, 1, 198. doi: 10.1021/acscentsci.5b00195  doi: 10.1021/acscentsci.5b00195

    17. [17]

      Savoie, B. M.; Webb, M. A.; Miller, T. F. J. Phys. Chem. Lett. 2017, 8, 641. doi: 10.1021/acs.jpclett.6b02662  doi: 10.1021/acs.jpclett.6b02662

    18. [18]

      Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nature 1998, 394, 456. doi: 10.1038/28818  doi: 10.1038/28818

    19. [19]

      Zhou, D.; He, Y. B.; Liu, R. L.; Liu, M.; Du, H. D.; Li, B. H.; Cai, Q.; Yang, Q. H.; Kang, F. Y. Adv. Energy Mater. 2015, 5, 1500353. doi: 10.1002/aenm.201500353  doi: 10.1002/aenm.201500353

    20. [20]

      Zhao, J. H.; Xie, M. L.; Zhang, H. Y.; Yi, R. W.; Hu, C. J.; Kang, T.; Zheng, L.; Cui, R. G.; Chen, H. W.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2021, 37, 2104003.  doi: 10.3866/PKU.WHXB202104003

    21. [21]

      Lin, Y.; Wang, X. M.; Liu, J.; Miller, J. D. Nano Energy 2017, 31, 478. doi: 10.1016/j.nanoen.2016.11.045  doi: 10.1016/j.nanoen.2016.11.045

    22. [22]

      Gu, L. Acta Phys. -Chim. Sin. 2018, 34, 331.  doi: 10.3866/PKU.WHXB201709281

    23. [23]

      Hu, C. J.; Shen, Y. B.; Shen, M.; Liu, X.; Chen, H. W.; Liu, C. H.; Kang, T.; Jin, F.; Li, L.; Li, J.; et al. J. Am. Chem. Soc. 2020, 142, 18035. doi: 10.1021/jacs.0c07060  doi: 10.1021/jacs.0c07060

    24. [24]

      Rojaee, R.; Cavallo, S.; Mogurampelly, S.; Wheatle, B. K.; Yurkiv, V.; Deivanayagam, R.; Foroozan, T.; Rasul, M. G.; Sharifi-Asl, S.; Phakatkar, A. H.; et al. Adv. Funct. Mater. 2020, 30, 1910749. doi: 10.1002/adfm.201910749  doi: 10.1002/adfm.201910749

    25. [25]

      Vazquez, M.; Liu, M. D.; Zhang, Z. J.; Chandresh, A.; Kanj, A. B.; Wenzel, W.; Heinke, L. ACS Appl. Mater. Interfaces 2021, 13, 21166. doi: 10.1021/acsami.1c00366  doi: 10.1021/acsami.1c00366

    26. [26]

      Pan, J.; Zhang, Y.; Wang, J.; Bai, Z.; Cao, R.; Wang, N.; Dou, S.; Huang, F. Adv. Mater. 2022, 34, 2107183. doi: 10.1002/adma.202107183  doi: 10.1002/adma.202107183

    27. [27]

      Meng, N.; Lian, F.; Cui, G. L. Small 2021, 17, 2005762. doi: 10.1002/smll.202005762  doi: 10.1002/smll.202005762

    28. [28]

      Yu, X. R.; Ma, J.; Mou, C. B.; Cui, G. L. Acta Phys. -Chim. Sin. 2022, 38, 1912061.  doi: 10.3866/PKU.WHXB201912061

    29. [29]

      Park, C. H.; Sun, Y. K.; Kim, D. W. Electrochim. Acta 2004, 50, 375. doi: 10.1016/j.electacta.2004.01.110  doi: 10.1016/j.electacta.2004.01.110

    30. [30]

      Sun, X. G.; Hou, J.; Kerr, J. B. Electrochim. Acta 2005, 50, 1139. doi: 10.1016/j.electacta.2004.08.011  doi: 10.1016/j.electacta.2004.08.011

    31. [31]

      Kaneko, F.; Wada, S.; Nakayama, M.; Wakihara, M.; Kuroki, S. ChemPhysChem 2009, 10, 1911. doi: 10.1002/cphc.200900191  doi: 10.1002/cphc.200900191

    32. [32]

      Lin, Z.; Guo, X.; Wang, Z.; Wang, B.; He, S.; O'Dell, L. A.; Huang, J.; Li, H.; Yu, H.; Chen, L. Nano Energy 2020, 73, 104786. doi: 10.1016/j.nanoen.2020.104786  doi: 10.1016/j.nanoen.2020.104786

    33. [33]

      Shin, D. M.; Bachman, J. E.; Taylor, M. K.; Kamcev, J.; Park, J. G.; Ziebel, M. E.; Velasquez, E.; Jarenwattananon, N. N.; Sethi, G. K.; Cui, Y.; et al. Adv. Mater. 2020, 32, 1905771. doi: 10.1002/adma.201905771  doi: 10.1002/adma.201905771

    34. [34]

      Shim, J.; Lee, J. S.; Lee, J. H.; Kim, H. J.; Lee, J. C. ACS Appl. Mater. Interfaces 2016, 8, 27740. doi: 10.1021/acsami.6b09601  doi: 10.1021/acsami.6b09601

    35. [35]

      Hu, C. J.; Chen, H. W.; Shen, Y. B.; Lu, D.; Zhao, Y. F.; Lu, A. H.; Wu, X. D.; Lu, W.; Chen, L. W. Nat. Commun. 2017, 8, 479. doi: 10.1038/s41467-017-00656-8  doi: 10.1038/s41467-017-00656-8

    36. [36]

      Li, M. R.; Frerichs, J. E.; Kolek, M.; Sun, W.; Zhou, D.; Huang, C. J.; Hwang, B. J.; Hansen, M. R.; Winter, M.; Bieker, P. Adv. Funct. Mater. 2020, 30, 1910123. doi: 10.1002/adfm.201910123  doi: 10.1002/adfm.201910123

    37. [37]

      Huggins, R. A. Ionics 2002, 8, 300. doi: 10.1007/bf02376083  doi: 10.1007/bf02376083

    38. [38]

      Huang, K. Q.; Feng, M.; Goodenough, J. B. J. Am. Ceram. Soc. 1998, 81, 357. doi: 10.1111/j.1151-2916.1998.tb02341.x  doi: 10.1111/j.1151-2916.1998.tb02341.x

    39. [39]

      Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer 1987, 28, 2324. doi: 10.1016/0032-3861(87)90394-6  doi: 10.1016/0032-3861(87)90394-6

    40. [40]

      Chen, S. L.; Feng, F.; Yin, Y. M.; Lizo, X. Z.; Ma, Z. F. Energy Storage Mater. 2019, 22, 57. doi: 10.1016/j.ensm.2018.12.023  doi: 10.1016/j.ensm.2018.12.023

    41. [41]

      Chai, J.; Liu, Z.; Ma, J.; Wang, J.; Liu, X.; Liu, H.; Zhang, J.; Cui, G.; Chen, L. Adv. Sci. 2017, 4. 1600377. doi: 10.1002/advs.201600377  doi: 10.1002/advs.201600377

    42. [42]

      Chen, S. L.; Feng, F.; Che, H. Y.; Yin, Y. M.; Ma, Z. F. Chem. Eng. J. 2021, 406, 126736. doi: 10.1016/j.cej.2020.126736  doi: 10.1016/j.cej.2020.126736

    43. [43]

      Ma, C.; Feng, Y. M.; Xing, F. Z.; Zhou, L.; Yanq, Y.; Xia, Q. B.; Zhou, L. J.; Zhang, L. J.; Chen, L. B.; Ivey, D. G.; et al. J. Mater. Chem. A 2019, 7, 19970. doi: 10.1039/c9ta07551h  doi: 10.1039/c9ta07551h

    44. [44]

      Li, Y.; Zhang, L.; Sun, Z.; Gao, G.; Lu, S.; Zhu, M.; Zhang, Y.; Jia, Z.; Xiao, C.; Bu, H.; et al. J. Mater. Chem. A 2020, 8, 9579. doi: 10.1039/D0TA03677C  doi: 10.1039/D0TA03677C

    45. [45]

      Zeng, X. X.; Yin, Y. X.; Li, N. W.; Du, W. C.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2016, 138, 15825. doi: 10.1021/jacs.6b10088  doi: 10.1021/jacs.6b10088

    46. [46]

      Alvarado, J.; Schroeder, M. A.; Zhang, M. H.; Borodin, O.; Gobrogge, E.; Olguin, M.; Ding, M. S.; Gobet, M.; Greenbaum, S.; Meng, Y. S.; et al. Mater. Today 2018, 21, 341. doi: 10.1016/j.mattod.2018.02.005  doi: 10.1016/j.mattod.2018.02.005

    47. [47]

      Choe, H. S.; Giaccai, J.; Alamgir, M.; Abraham, K. M. Electrochim. Acta 1995, 40, 2289. doi: 10.1016/0013-4686(95)00180-m  doi: 10.1016/0013-4686(95)00180-m

    48. [48]

      Lee, A. S.; Lee, J. H.; Hong, S. M.; Lee, J. -C.; Hwang, S. S.; Koo, C. M. Electrochim. Acta 2016, 215, 36. doi: 10.1016/j.electacta.2016.08.084  doi: 10.1016/j.electacta.2016.08.084

    49. [49]

      Oh, K. S.; Kim, J. H.; Kim, S. H.; Oh, D.; Han, S. P.; Jung, K.; Wang, Z. Y.; Shi, L. Y.; Su, Y. X.; Yim, T.; et al. Adv. Energy Mater. 2021, 11, 2101813. doi: 10.1002/aenm.202101813  doi: 10.1002/aenm.202101813

  • 加载中
    1. [1]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    2. [2]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    3. [3]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    4. [4]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    5. [5]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    6. [6]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    7. [7]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    8. [8]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    9. [9]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    10. [10]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    11. [11]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    12. [12]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    13. [13]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    14. [14]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    15. [15]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    16. [16]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    17. [17]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    18. [18]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    19. [19]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    20. [20]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

Metrics
  • PDF Downloads(8)
  • Abstract views(589)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return