A Single-Ion Polymer Superionic Conductor
- Corresponding author: Yanbin Shen, ybshen2017@sinano.ac.cn Liwei Chen, lwchen2018@sjtu.edu.cn
Citation: Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor[J]. Acta Physico-Chimica Sinica, ;2023, 39(8): 220501. doi: 10.3866/PKU.WHXB202205012
Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Nat. Energy 2018, 3, 267. doi: 10.1038/s41560-018-0107-2
doi: 10.1038/s41560-018-0107-2
Zeng, G. F.; Liu, Y. N.; Gu, C. Y.; Zhang, K.; An, Y. L.; Wei, C. L.; Feng, J. K.; Ni, J. F. Acta Phys. -Chim. Sin. 2020, 36, 1905006.
doi: 10.3866/PKU.WHXB201905006
Ding, P.; Lin, Z.; Guo, X.; Wu, L.; Wang, Y.; Guo, H.; Li, L.; Yu, H. Mater. Today 2021, 51, 449. doi: 10.1016/j.mattod.2021.08.005
doi: 10.1016/j.mattod.2021.08.005
Kim, C. S.; Oh, S. M. Electrochim. Acta 2000, 45, 2101. doi: 10.1016/s0013-4686(99)00426-0
doi: 10.1016/s0013-4686(99)00426-0
Fei, H. F.; Liu, Y. P.; Wei, C. L.; Zhang, Y. C.; Feng, J. K.; Chen, C. Z.; Yu, H. J. Acta Phys. -Chim. Sin. 2020, 36, 1905015.
doi: 10.3866/PKU.WHXB201905015
Han, X. G.; Gong, Y. H.; Fu, K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rublo, G.; et al. Nat. Mater. 2017, 16, 572. doi: 10.1038/nmat4821
doi: 10.1038/nmat4821
Jin, F.; Li, J.; Hu, C. J.; Dong, H. C.; Chen, P.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1399.
doi: 10.3866/PKU.WHXB201904085
Zhao, Q.; Liu, X. T.; Stalin, S.; Khan, K.; Archer, L. A. Nat. Energy 2019, 4, 365. doi: 10.1038/s41560-019-0349-7
doi: 10.1038/s41560-019-0349-7
Ben Youcef, H.; Garcia-Calvo, O.; Lago, N.; Devaraj, S.; Armand, M. Electrochim. Acta 2016, 220, 587. doi: 10.1016/j.electacta.2016.10.122
doi: 10.1016/j.electacta.2016.10.122
Long, L. Z.; Wang, S. J.; Xiao, M.; Meng, Y. Z. J. Mater. Chem. A 2016, 4, 10038. doi: 10.1039/c6ta02621d
doi: 10.1039/c6ta02621d
Wei, Z. Y.; Zhang, Z. H.; Chen, S. J.; Wang, Z. H.; Yao, X. Y.; Deng, Y. H.; Xu, X. X. Energy Storage Mater. 2019, 22, 337. doi: 10.1016/j.ensm.2019.02.004
doi: 10.1016/j.ensm.2019.02.004
Zhao, Y.; Wang, L.; Zhou, Y. A.; Liang, Z.; Tavajohi, N.; Li, B. H.; Li, T. Adv. Sci. 2021, 8, 2003675. doi: 10.1002/advs.202003675
doi: 10.1002/advs.202003675
Zhang, Z.; Huang, Y.; Gao, H.; Li, C.; Hang, J. X.; Liu, P. B. J. Energy Chem. 2021, 60, 259. doi: 10.1016/j.jechem.2021.01.013
doi: 10.1016/j.jechem.2021.01.013
Hu, P.; Chai, J. C.; Duan, Y. L.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. J. Mater. Chem. A 2016, 4, 10070. doi: 10.1039/c6ta02907h
doi: 10.1039/c6ta02907h
Webb, M. A.; Savoie, B. M.; Wang, Z. G.; Miller, T. F. Macromolecules 2015, 48, 7346. doi: 10.1021/acs.macromol.5b01437
doi: 10.1021/acs.macromol.5b01437
Webb, M. A.; Jung, Y.; Pesko, D. M.; Savoie, B. M.; Yamamoto, U.; Coates, G. W.; Balsara, N. P.; Wang, Z. G.; Miller, T. F. ACS Central Sci. 2015, 1, 198. doi: 10.1021/acscentsci.5b00195
doi: 10.1021/acscentsci.5b00195
Savoie, B. M.; Webb, M. A.; Miller, T. F. J. Phys. Chem. Lett. 2017, 8, 641. doi: 10.1021/acs.jpclett.6b02662
doi: 10.1021/acs.jpclett.6b02662
Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nature 1998, 394, 456. doi: 10.1038/28818
doi: 10.1038/28818
Zhou, D.; He, Y. B.; Liu, R. L.; Liu, M.; Du, H. D.; Li, B. H.; Cai, Q.; Yang, Q. H.; Kang, F. Y. Adv. Energy Mater. 2015, 5, 1500353. doi: 10.1002/aenm.201500353
doi: 10.1002/aenm.201500353
Zhao, J. H.; Xie, M. L.; Zhang, H. Y.; Yi, R. W.; Hu, C. J.; Kang, T.; Zheng, L.; Cui, R. G.; Chen, H. W.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2021, 37, 2104003.
doi: 10.3866/PKU.WHXB202104003
Lin, Y.; Wang, X. M.; Liu, J.; Miller, J. D. Nano Energy 2017, 31, 478. doi: 10.1016/j.nanoen.2016.11.045
doi: 10.1016/j.nanoen.2016.11.045
Gu, L. Acta Phys. -Chim. Sin. 2018, 34, 331.
doi: 10.3866/PKU.WHXB201709281
Hu, C. J.; Shen, Y. B.; Shen, M.; Liu, X.; Chen, H. W.; Liu, C. H.; Kang, T.; Jin, F.; Li, L.; Li, J.; et al. J. Am. Chem. Soc. 2020, 142, 18035. doi: 10.1021/jacs.0c07060
doi: 10.1021/jacs.0c07060
Rojaee, R.; Cavallo, S.; Mogurampelly, S.; Wheatle, B. K.; Yurkiv, V.; Deivanayagam, R.; Foroozan, T.; Rasul, M. G.; Sharifi-Asl, S.; Phakatkar, A. H.; et al. Adv. Funct. Mater. 2020, 30, 1910749. doi: 10.1002/adfm.201910749
doi: 10.1002/adfm.201910749
Vazquez, M.; Liu, M. D.; Zhang, Z. J.; Chandresh, A.; Kanj, A. B.; Wenzel, W.; Heinke, L. ACS Appl. Mater. Interfaces 2021, 13, 21166. doi: 10.1021/acsami.1c00366
doi: 10.1021/acsami.1c00366
Pan, J.; Zhang, Y.; Wang, J.; Bai, Z.; Cao, R.; Wang, N.; Dou, S.; Huang, F. Adv. Mater. 2022, 34, 2107183. doi: 10.1002/adma.202107183
doi: 10.1002/adma.202107183
Meng, N.; Lian, F.; Cui, G. L. Small 2021, 17, 2005762. doi: 10.1002/smll.202005762
doi: 10.1002/smll.202005762
Yu, X. R.; Ma, J.; Mou, C. B.; Cui, G. L. Acta Phys. -Chim. Sin. 2022, 38, 1912061.
doi: 10.3866/PKU.WHXB201912061
Park, C. H.; Sun, Y. K.; Kim, D. W. Electrochim. Acta 2004, 50, 375. doi: 10.1016/j.electacta.2004.01.110
doi: 10.1016/j.electacta.2004.01.110
Sun, X. G.; Hou, J.; Kerr, J. B. Electrochim. Acta 2005, 50, 1139. doi: 10.1016/j.electacta.2004.08.011
doi: 10.1016/j.electacta.2004.08.011
Kaneko, F.; Wada, S.; Nakayama, M.; Wakihara, M.; Kuroki, S. ChemPhysChem 2009, 10, 1911. doi: 10.1002/cphc.200900191
doi: 10.1002/cphc.200900191
Lin, Z.; Guo, X.; Wang, Z.; Wang, B.; He, S.; O'Dell, L. A.; Huang, J.; Li, H.; Yu, H.; Chen, L. Nano Energy 2020, 73, 104786. doi: 10.1016/j.nanoen.2020.104786
doi: 10.1016/j.nanoen.2020.104786
Shin, D. M.; Bachman, J. E.; Taylor, M. K.; Kamcev, J.; Park, J. G.; Ziebel, M. E.; Velasquez, E.; Jarenwattananon, N. N.; Sethi, G. K.; Cui, Y.; et al. Adv. Mater. 2020, 32, 1905771. doi: 10.1002/adma.201905771
doi: 10.1002/adma.201905771
Shim, J.; Lee, J. S.; Lee, J. H.; Kim, H. J.; Lee, J. C. ACS Appl. Mater. Interfaces 2016, 8, 27740. doi: 10.1021/acsami.6b09601
doi: 10.1021/acsami.6b09601
Hu, C. J.; Chen, H. W.; Shen, Y. B.; Lu, D.; Zhao, Y. F.; Lu, A. H.; Wu, X. D.; Lu, W.; Chen, L. W. Nat. Commun. 2017, 8, 479. doi: 10.1038/s41467-017-00656-8
doi: 10.1038/s41467-017-00656-8
Li, M. R.; Frerichs, J. E.; Kolek, M.; Sun, W.; Zhou, D.; Huang, C. J.; Hwang, B. J.; Hansen, M. R.; Winter, M.; Bieker, P. Adv. Funct. Mater. 2020, 30, 1910123. doi: 10.1002/adfm.201910123
doi: 10.1002/adfm.201910123
Huggins, R. A. Ionics 2002, 8, 300. doi: 10.1007/bf02376083
doi: 10.1007/bf02376083
Huang, K. Q.; Feng, M.; Goodenough, J. B. J. Am. Ceram. Soc. 1998, 81, 357. doi: 10.1111/j.1151-2916.1998.tb02341.x
doi: 10.1111/j.1151-2916.1998.tb02341.x
Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer 1987, 28, 2324. doi: 10.1016/0032-3861(87)90394-6
doi: 10.1016/0032-3861(87)90394-6
Chen, S. L.; Feng, F.; Yin, Y. M.; Lizo, X. Z.; Ma, Z. F. Energy Storage Mater. 2019, 22, 57. doi: 10.1016/j.ensm.2018.12.023
doi: 10.1016/j.ensm.2018.12.023
Chai, J.; Liu, Z.; Ma, J.; Wang, J.; Liu, X.; Liu, H.; Zhang, J.; Cui, G.; Chen, L. Adv. Sci. 2017, 4. 1600377. doi: 10.1002/advs.201600377
doi: 10.1002/advs.201600377
Chen, S. L.; Feng, F.; Che, H. Y.; Yin, Y. M.; Ma, Z. F. Chem. Eng. J. 2021, 406, 126736. doi: 10.1016/j.cej.2020.126736
doi: 10.1016/j.cej.2020.126736
Ma, C.; Feng, Y. M.; Xing, F. Z.; Zhou, L.; Yanq, Y.; Xia, Q. B.; Zhou, L. J.; Zhang, L. J.; Chen, L. B.; Ivey, D. G.; et al. J. Mater. Chem. A 2019, 7, 19970. doi: 10.1039/c9ta07551h
doi: 10.1039/c9ta07551h
Li, Y.; Zhang, L.; Sun, Z.; Gao, G.; Lu, S.; Zhu, M.; Zhang, Y.; Jia, Z.; Xiao, C.; Bu, H.; et al. J. Mater. Chem. A 2020, 8, 9579. doi: 10.1039/D0TA03677C
doi: 10.1039/D0TA03677C
Zeng, X. X.; Yin, Y. X.; Li, N. W.; Du, W. C.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2016, 138, 15825. doi: 10.1021/jacs.6b10088
doi: 10.1021/jacs.6b10088
Alvarado, J.; Schroeder, M. A.; Zhang, M. H.; Borodin, O.; Gobrogge, E.; Olguin, M.; Ding, M. S.; Gobet, M.; Greenbaum, S.; Meng, Y. S.; et al. Mater. Today 2018, 21, 341. doi: 10.1016/j.mattod.2018.02.005
doi: 10.1016/j.mattod.2018.02.005
Choe, H. S.; Giaccai, J.; Alamgir, M.; Abraham, K. M. Electrochim. Acta 1995, 40, 2289. doi: 10.1016/0013-4686(95)00180-m
doi: 10.1016/0013-4686(95)00180-m
Lee, A. S.; Lee, J. H.; Hong, S. M.; Lee, J. -C.; Hwang, S. S.; Koo, C. M. Electrochim. Acta 2016, 215, 36. doi: 10.1016/j.electacta.2016.08.084
doi: 10.1016/j.electacta.2016.08.084
Oh, K. S.; Kim, J. H.; Kim, S. H.; Oh, D.; Han, S. P.; Jung, K.; Wang, Z. Y.; Shi, L. Y.; Su, Y. X.; Yim, T.; et al. Adv. Energy Mater. 2021, 11, 2101813. doi: 10.1002/aenm.202101813
doi: 10.1002/aenm.202101813
Qian Wang , Ting Gao , Xiwen Lu , Hangchao Wang , Minggui Xu , Longtao Ren , Zheng Chang , Wen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
Liang Ming , Dan Liu , Qiyue Luo , Chaochao Wei , Chen Liu , Ziling Jiang , Zhongkai Wu , Lin Li , Long Zhang , Shijie Cheng , Chuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
Xuejie Gao , Xinyang Chen , Ming Jiang , Hanyan Wu , Wenfeng Ren , Xiaofei Yang , Runcang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
Ziling Jiang , Shaoqing Chen , Chaochao Wei , Ziqi Zhang , Zhongkai Wu , Qiyue Luo , Liang Ming , Long Zhang , Chuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347
Benjian Xin , Rui Wang , Lili Liu , Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116
Kezhen Qi , Shu-yuan Liu , Ruchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460
Yang Deng , Yitao Ouyang , Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717