Citation: Baiquan Liu, Huayu Gao, Sujuan Hu, Chuan Liu. Progress in the Development of Colloidal Quantum Well Light-Emitting Diodes[J]. Acta Physico-Chimica Sinica, ;2022, 38(12): 220405. doi: 10.3866/PKU.WHXB202204052 shu

Progress in the Development of Colloidal Quantum Well Light-Emitting Diodes

  • Corresponding author: Baiquan Liu, liubq33@mail.sysu.edu.cn
  • Received Date: 27 April 2022
    Revised Date: 18 May 2022
    Accepted Date: 19 May 2022
    Available Online: 27 May 2022

    Fund Project: the National Natural Science Foundation of China 62104265the National Natural Science Foundation of China 61922090the Science and Technology Program of Guangdong Province, China 2021A0505110009

  • In recent years, colloidal quantum wells (CQWs), also known as semiconductor nanoplatelets, have become the new kind of promising optoelectronic material because of their excellent optoelectronic properties, such as high color purity, high photoluminescence quantum efficiency, and adjustable color emissions. As a significant application of CQWs, light-emitting diodes based on CQWs (or CQW-LEDs) possess a number of advantages, such as an extremely narrow spectrum, excellent color purity, high efficiency, solution-processed fabrication, and good compatibility with flexible electronics. CQW-LEDs demonstrate an important application prospect in the fields of next-generation display and solid-state lighting, and therefore, attract significant attention from academic and industrial settings. In this review, some basic concepts of CQW-LEDs are first introduced (e.g., the design of CQW materials, employment of device structures, and understanding of emission mechanisms), which are expected to help with understanding this new type of LEDs. Thereafter, from the perspective of CQW emitting material types, the recent research progress in the development of CQW-LEDs based on core-only CQWs, core/crown CQWs, core/shell CQWs, complex-heterojunction-based CQWs, and impurity-doped CQWs is presented. The properties of various CQWs are also compared. In this section, by combining the recent work from our research group, the design strategies of high-performance CQW-LEDs are discussed in detail, including the analyses of material selection, device structure, working mechanism, and luminescence process. In the next section, the integrated applications of CQW-LEDs are illustrated, such as their use in LiFi-type communication, furthermore, their preparation as flexible optoelectronic materials is also reported. Finally, the present challenges (e.g., low efficiencies, short lifetimes, sub-optimal device engineering, and a narrow emission color region) and future development opportunities (e.g., flexible displays, flexible lighting, and CQW-LEDs with low-cost printing fabrication processes) of CQW-LEDs are discussed. Although the performance of CQW-LEDs still lags behind other kinds of state-of-the-art soft-material-based LEDs (e.g., organic LEDs, colloidal quantum dot LEDs, and perovskite LEDs), it has been gradually enhanced in the last eight years. Upon overcoming the current challenges, the prospect for the mass production of CQW-LEDs will be undoubtedly feasible. Thus, this review is not only an important reference that discusses the evolution of CQW-LEDs, it also provides insightful ideas for the development of materials for other optoelectronic applications (e.g., solar cells, lasers, photodetectors, sensors, X-ray imaging, and light communication).
  • 加载中
    1. [1]

      Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. doi: 10.1063/1.98799  doi: 10.1063/1.98799

    2. [2]

      Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539. doi: 10.1038/347539a0  doi: 10.1038/347539a0

    3. [3]

      Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Nature 1994, 370, 54. doi: 10.1038/370354a0  doi: 10.1038/370354a0

    4. [4]

      Sun, Y.; Jiang, Y.; Sun, X. W.; Zhang, S.; Chen, S. Chem. Rec. 2019, 19, 1729. doi: 10.1002/tcr.201800191  doi: 10.1002/tcr.201800191

    5. [5]

      Wang, C.; Zhang, C.; Li, R. F.; Chen, Q.; Qian, L.; Chen, L. W. Acta Phys. -Chim. Sin. 2022, 38, 2104030.  doi: 10.3866/PKU.WHXB202104030

    6. [6]

      He, P.; Yuan, F. L.; Wang, Z. F.; Tan, Z. A.; Fan, L. Z. Acta Phys. -Chim. Sin. 2018, 34, 1250.  doi: 10.3866/PKU.WHXB201804041

    7. [7]

      Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Nature 2014, 515, 96. doi: 10.1038/nature13829  doi: 10.1038/nature13829

    8. [8]

      Shen, H.; Gao, Q.; Zhang, Y.; Lin, Y.; Lin, Q.; Li, Z.; Chen, L.; Zeng, Z.; Li, X.; Jia, Y.; et al. Nat. Photonics 2019, 13, 192. doi: 10.1038/s41566-019-0364-z  doi: 10.1038/s41566-019-0364-z

    9. [9]

      Wang, T.; Zhang, Y.; Gao, Y.; Zhang, Z.; Chen, Z.; Li, D.; Mei, W.; Li, Y.; Zhou, L.; Pei, C.; et al. Dig. Tech. Pap. 2021, 52, 930. doi: 10.1002/sdtp.14840  doi: 10.1002/sdtp.14840

    10. [10]

      Luo, D.; Wang, L.; Qiu, Y.; Huang, R.; Liu, B. Nanomaterials 2020, 10, 1226. doi: 10.3390/nano10061226  doi: 10.3390/nano10061226

    11. [11]

      Jing, L.; Kershaw, S. V.; Li, Y.; Huang, X.; Li, Y.; Rogach, A. L.; Gao, M. Chem. Rev. 2016, 116, 10623. doi: 10.1021/acs.chemrev.6b00041  doi: 10.1021/acs.chemrev.6b00041

    12. [12]

      Rastogi, P.; Palazon, F.; Prato, M.; Stasio, F. D.; Krahne, R. ACS Appl. Mater. Interfaces 2018, 10, 5665. doi: 10.1021/acsami.7b18780  doi: 10.1021/acsami.7b18780

    13. [13]

      Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Nat. Mater. 2011, 10, 936. doi: 10.1038/nmat3145  doi: 10.1038/nmat3145

    14. [14]

      Grim, J. Q.; Christodoulou, S.; Di Stasio, F.; Krahne, R.; Cingolani, R.; Manna, L.; Moreels, I. Nat. Nanotechnol. 2014, 9, 891. doi: 10.1038/nnano.2014.213  doi: 10.1038/nnano.2014.213

    15. [15]

      Rowland, C. E.; Fedin, I.; Zhang, H.; Gray, S. K.; Govorov, A. O.; Talapin, D. V.; Schaller, R. D. Nat. Mater. 2015, 14, 484. doi: 10.1038/nmat4231  doi: 10.1038/nmat4231

    16. [16]

      Riedinger, A.; Ott, F. D.; Mule, A.; Mazzotti, S.; Knüsel, P. N.; Kress, Stephan J. P.; Prins, F.; Erwin, S. C.; Norris, D. J. Nat. Mater. 2017, 16, 743. doi: 10.1038/nmat4889  doi: 10.1038/nmat4889

    17. [17]

      Mahler, B.; Nadal, B.; Bouet, C.; Patriarche, G.; Dubertret, B. J. Am. Chem. Soc. 2012, 134, 18591. doi: 10.1021/ja307944d  doi: 10.1021/ja307944d

    18. [18]

      Prudnikau, A.; Chuvilin, A.; Artemyev, M. J. Am. Chem. Soc. 2013, 135, 14476. doi: 10.1021/ja401737z  doi: 10.1021/ja401737z

    19. [19]

      Tessier, M. D.; Spinicelli, P.; Dupont, D.; Patriarche, G.; Ithurria, S.; Dubertret, B. Nano Lett. 2014, 14, 207. doi: 10.1021/nl403746p  doi: 10.1021/nl403746p

    20. [20]

      Shornikova, E. V.; Golovatenko, A. A.; Yakovlev, D. R.; Rodina, A. V.; Biadala, L.; Qiang, G.; Kuntzmann, A.; Nasilowski, M.; Dubertret, B.; Polovitsyn, A.; et al. Nat. Nanotechnol. 2020, 15, 277. doi: 10.1038/s41565-019-0631-7  doi: 10.1038/s41565-019-0631-7

    21. [21]

      Xiao, P.; Huang, J.; Yan, D.; Luo, D.; Yuan, J.; Liu, B.; Liang, D. Materials 2018, 11, 1376. doi: 10.3390/ma11081376  doi: 10.3390/ma11081376

    22. [22]

      Tessier, M. D.; Javaux, C.; Maksimovic, I.; Loriette, V.; Dubertret, B. ACS Nano 2012, 6, 6751. doi: 10.1021/nn3014855  doi: 10.1021/nn3014855

    23. [23]

      Yu, J.; Dang, C. Cell Rep. Phys. Sci. 2021, 2, 100308. doi: 10.1016/j.xcrp.2020.100308  doi: 10.1016/j.xcrp.2020.100308

    24. [24]

      Ithurria, S.; Dubertret, B. J. Am. Chem. Soc. 2008, 130, 16504. doi: 10.1021/ja807724e  doi: 10.1021/ja807724e

    25. [25]

      Yu, J.; Sharma, M.; Wang, Y.; Delikanli, S.; Baruj, H. D.; Sharma, A.; Demir, H. V.; Dang, C. Adv. Opt. Mater. 2022, 10, 2101756. doi: 10.1002/adom.202101756  doi: 10.1002/adom.202101756

    26. [26]

      Kelestemur, Y.; Guzelturk, B.; Erdem, O.; Olutas, M.; Gungor, K.; Demir, H. V. Adv. Funct. Mater. 2016, 26, 3570. doi: 10.1002/adfm.201600588  doi: 10.1002/adfm.201600588

    27. [27]

      Kunneman, L. T.; Schins, J. M.; Pedetti, S.; Heuclin, H.; Grozema, F. C.; Houtepen, A. J.; Dubertret, B.; Siebbeles, L. D. A. Nano Lett. 2014, 14, 7039. doi: 10.1021/nl503406a  doi: 10.1021/nl503406a

    28. [28]

      She, C.; Fedin, I.; Dolzhnikov, D. S.; Dahlberg, P. D.; Engel, G. S.; Schaller, R. D.; Talapin, D. V. ACS Nano 2015, 9, 9475. doi: 10.1021/acsnano.5b02509  doi: 10.1021/acsnano.5b02509

    29. [29]

      Rabouw, F. T.; van der Bok, J. C.; Spinicelli, P.; Mahler, B.; Nasilowski, M.; Pedetti, S.; Dubertret, B.; Vanmaekelbergh, D. Nano Lett. 2016, 16, 2047. doi: 10.1021/acs.nanolett.6b00053  doi: 10.1021/acs.nanolett.6b00053

    30. [30]

      Yu, J.; Sharma, M.; Delikanli, S.; Birowosuto, M. D.; Demir, H. V.; Dang, C. J. Phys. Chem. Lett. 2019, 10, 5193. doi: 10.1021/acs.jpclett.9b01939  doi: 10.1021/acs.jpclett.9b01939

    31. [31]

      Joo, J.; Son, J. S.; Kwon, S. G.; Yu, J. H.; Hyeon, T. J. Am. Chem. Soc. 2006, 128, 5632. doi: 10.1021/ja0601686  doi: 10.1021/ja0601686

    32. [32]

      Yu, J.; Sharma, M.; Sharma, A.; Delikanli, S.; Volkan Demir, H.; Dang, C. Light Sci. Appl. 2020, 9, 27. doi: 10.1038/s41377-020-0262-7  doi: 10.1038/s41377-020-0262-7

    33. [33]

      Yu, J.; Hou, S.; Sharma, M.; Tobing, L. Y. M.; Song, Z.; Delikanli, S.; Hettiarachchi, C.; Zhang, D.; Fan, W.; Birowosuto, M. D.; et al. Matter 2020, 2, 1550. doi: 10.1016/j.matt.2020.03.013  doi: 10.1016/j.matt.2020.03.013

    34. [34]

      Yu, J.; Sharma, M.; Li, M.; Delikanli, S.; Sharma, A.; Taimoor, M.; Altintas, Y.; McBride, J. R.; Kusserow, T.; Sum, T. -C.; et al. Laser Photonics Rev. 2021, 15, 2100034. doi: 10.1002/lpor.202100034  doi: 10.1002/lpor.202100034

    35. [35]

      Jana, S.; Martins, R.; Fortunato, E. Nano Lett. 2022, 22, 2780. doi: 10.1021/acs.nanolett.1c04822  doi: 10.1021/acs.nanolett.1c04822

    36. [36]

      Lee, W. S.; Kang, Y. -G.; Sharma, M.; Lee, Y. M.; Jeon, S.; Sharma, A.; Demir, H. V.; Han, M. J.; Koh, W. -K.; Oh, S. J. Adv. Electron. Mater. 2022, 8, 2100739. doi: 10.1002/aelm.202100739  doi: 10.1002/aelm.202100739

    37. [37]

      Smirnov, A. M.; Golinskaya, A. D.; Mantsevich, V. N.; Kozlova, M. V.; Ezhova, K. V.; Saidzhonov, B. M.; Vasiliev, R. B.; Dneprovskii, V. S. Results Phys. 2022, 32, 105120. doi: 10.1016/j.rinp.2021.105120  doi: 10.1016/j.rinp.2021.105120

    38. [38]

      Salzmann, B. B. V.; Wit, J. d.; Li, C.; Arenas-Esteban, D.; Bals, S.; Meijerink, A.; Vanmaekelbergh, D. J. Phys. Chem. C 2022, 126, 1513. doi: 10.1021/acs.jpcc.1c09412  doi: 10.1021/acs.jpcc.1c09412

    39. [39]

      Chen, G.; Halim, H.; Yan, H.; Zhou, Y.; Zhu, D.; Parak, W. J.; Riedinger, A.; Feliu, N. J. Phys. Chem. C 2022, 126, 5658. doi: 10.1021/acs.jpcc.2c01001  doi: 10.1021/acs.jpcc.2c01001

    40. [40]

      Yu, J.; Han, Y.; Wang, L.; Xu, F.; Zhang, H.; Yu, Y.; Wu, Q.; Hu, J. J. Phys. Chem. Lett. 2021, 12, 5178. doi: 10.1021/acs.jpclett.1c01172  doi: 10.1021/acs.jpclett.1c01172

    41. [41]

      Yang, Z.; Qian, Y.; Zhang, H. Mater. Res. Appl. 2021, 15, 41.

    42. [42]

      Liang, J.; Tan, W.; Min, Y. Mater. Res. Appl. 2021, 15, 250.

    43. [43]

      Wei, Y.; Cheng, Z.; Lin, J. Chem. Soc. Rev. 2019, 48, 310. doi: 10.1039/C8CS00740C  doi: 10.1039/C8CS00740C

    44. [44]

      Zou, G. R. X.; Chen, Z. M.; Li, Z. C.; Yip, H. -L. Acta Phys. -Chim. Sin. 2021, 37, 2009002.  doi: 10.3866/PKU.WHXB202009002

    45. [45]

      Zhang, X.; Han, D. B.; Chen, X. M.; Chen, Y.; Chang, S.; Zhong, H. Z. Acta Phys. -Chim. Sin. 2021, 37, 2008055.  doi: 10.3866/PKU.WHXB202008055

    46. [46]

      Li, Y. M.; Wang, Y.; Chen, H. D.; Wang, Y. J.; Liu, Y. Y.; Pei, W. H. Acta Phys. -Chim. Sin. 2020, 36, 1912054.  doi: 10.3866/PKU.WHXB201912054

    47. [47]

      Chen, Z. L.; Gao, P.; Liu, Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004.  doi: 10.3866/PKU.WHXB201907004

    48. [48]

      Xue, K.; Yan, M. N.; Pan, F.; Tian, M. Y.; Pan, X. D.; Zhang, H. M. Acta Phys. -Chim. Sin. 2019, 35, 896.  doi: 10.3866/PKU.WHXB201810064

    49. [49]

      Dong, D.; Min, Z. Y.; Liu, J.; He, G. F. Acta Phys. -Chim. Sin. 2018, 34, 1286.  doi: 10.3866/PKU.WHXB201803222

    50. [50]

      He, P.; Yuan, F. L.; Wang, Z. F.; Tan, Z. A.; Fan, L. Z. Acta Phys. -Chim. Sin. 2018, 34, 1250.  doi: 10.3866/PKU.WHXB20100328

    51. [51]

      Tan, K. -M.; Yan, M. -N.; Wang, Y. -N.; Xie, L. -H.; Qian, Y.; Zhang, H. -M.; Huang, W. Acta Phys. -Chim. Sin. 2017, 33, 1057.  doi: 10.3866/PKU.WHXB201702161

    52. [52]

      Liu, B.; Sharma, M.; Yu, J.; Shendre, S.; Hettiarachchi, C.; Sharma, A.; Yeltik, A.; Wang, L.; Sun, H.; Dang, C.; et al. Small 2019, 15, 1901983. doi: 10.1002/smll.201901983  doi: 10.1002/smll.201901983

    53. [53]

      Liu, B.; Altintas, Y.; Wang, L.; Shendre, S.; Sharma, M.; Sun, H.; Mutlugun, E.; Demir, H. V. Adv. Mater. 2020, 32, 1905824. doi: 10.1002/adma.201905824  doi: 10.1002/adma.201905824

    54. [54]

      Liu, B.; Sharma, M.; Yu, J.; Wang, L.; Shendre, S.; Sharma, A.; Izmir, M.; Delikanli, S.; Altintas, Y.; Dang, C.; et al. Cell Rep. Phys. Sci. 2022, 3, 100860. doi: 10.1016/j.xcrp.2022.100860  doi: 10.1016/j.xcrp.2022.100860

    55. [55]

      Ekimov, A.; Onushchenko, A. JETP Lett. 1981, 34, 345. doi: 10.1016/S0038-1098(85)80025-9  doi: 10.1016/S0038-1098(85)80025-9

    56. [56]

      Brus, L. E. J. Chem. Phys. 1983, 79, 5566. doi: 10.1063/1.445676  doi: 10.1063/1.445676

    57. [57]

      Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. doi: 10.1021/ja00072a025  doi: 10.1021/ja00072a025

    58. [58]

      Jiang, C.; Zhong, Z.; Liu, B.; He, Z.; Zou, J.; Wang, L.; Wang, J.; Peng, J.; Cao, Y. ACS Appl. Mater. Interfaces 2016, 8, 26162. doi: 10.1021/acsami.6b08679  doi: 10.1021/acsami.6b08679

    59. [59]

      Jiang, C.; Liu, H.; Liu, B.; Zhong, Z.; Zou, J.; Wang, J.; Wang, L.; Peng, J.; Cao, Y. Org. Electron. 2016, 31, 82. doi: 10.1016/j.orgel.2016.01.009  doi: 10.1016/j.orgel.2016.01.009

    60. [60]

      Gao, Y.; Li, M.; Delikanli, S.; Zheng, H.; Liu, B.; Dang, C.; Sum, T. C.; Demir, H. V. Nanoscale 2018, 10, 9466. doi: 10.1039/C8NR01838C  doi: 10.1039/C8NR01838C

    61. [61]

      Yu, J.; Shendre, S.; Koh, W. -k.; Liu, B.; Li, M.; Hou, S.; Hettiarachchi, C.; Delikanli, S.; Hernández-Martínez, P.; Birowosuto Muhammad, D.; et al. Sci. Adv. 2019, 5, 3140. doi: 10.1126/sciadv.aav3140  doi: 10.1126/sciadv.aav3140

    62. [62]

      Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Nat. Photonics 2013, 7, 13. doi: 10.1038/nphoton.2012.328  doi: 10.1038/nphoton.2012.328

    63. [63]

      Tessier, M. D.; Mahler, B.; Nadal, B.; Heuclin, H.; Pedetti, S.; Dubertret, B. Nano Lett. 2013, 13, 3321. doi: 10.1021/nl401538n  doi: 10.1021/nl401538n

    64. [64]

      She, C.; Fedin, I.; Dolzhnikov, D. S.; Demortière, A.; Schaller, R. D.; Pelton, M.; Talapin, D. V. Nano Lett. 2014, 14, 2772. doi: 10.1021/nl500775p  doi: 10.1021/nl500775p

    65. [65]

      Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Yeltik, A.; Delikanli, S.; Demir, H. V. ACS Nano 2015, 9, 5041. doi: 10.1021/acsnano.5b01927  doi: 10.1021/acsnano.5b01927

    66. [66]

      Pientka, J.; Bhattacharya, A.; Zhang, P.; Delikanli, S.; Isik, F.; Demir, H. V.; Zhang, X.; Petrou, A. Magnetic field dependence of the recombination times in CdSe/CdMnS core/shell nanaoplatelets. In Tuning Magnetism and Transport in Nano-Composites and Heterostructures, Proceedings of APS March Meeting 2022, Chicago, America, March 14-18, 2022.

    67. [67]

      Kurtina, D. A.; Garshev, A. V.; Vasil'eva, I. S.; Shubin, V. V.; Gaskov, A. M.; Vasiliev, R. B. Chem. Mater. 2019, 31, 9652. doi: 10.1021/acs.chemmater.9b02927  doi: 10.1021/acs.chemmater.9b02927

    68. [68]

      Li, Q.; Xu, Z.; McBride, J. R.; Lian, T. ACS Nano 2017, 11, 2545. doi: 10.1021/acsnano.6b08674  doi: 10.1021/acsnano.6b08674

    69. [69]

      Saidzhonov, B. M.; Zaytsev, V. B.; Eliseev, A. A.; Grishko, A. Y.; Vasiliev, R. B. ACS Photonics 2020, 7, 3188. doi: 10.1021/acsphotonics.0c01246  doi: 10.1021/acsphotonics.0c01246

    70. [70]

      Fan, F.; Kanjanaboos, P.; Saravanapavanantham, M.; Beauregard, E.; Ingram, G.; Yassitepe, E.; Adachi, M. M.; Voznyy, O.; Johnston, A. K.; Walters, G.; et al. Nano Lett. 2015, 15, 4611. doi: 10.1021/acs.nanolett.5b01233  doi: 10.1021/acs.nanolett.5b01233

    71. [71]

      Deng, Z.; Cao, L.; Tang, F.; Zou, B. J. Phys. Chem. B 2005, 109, 16671. doi: 10.1021/jp052484x  doi: 10.1021/jp052484x

    72. [72]

      Qu, L.; Peng, X. J. Am. Chem. Soc. 2002, 124, 2049. doi: 10.1021/ja017002j  doi: 10.1021/ja017002j

    73. [73]

      Zhang, F.; Wang, S.; Wang, L.; Lin, Q.; Shen, H.; Cao, W.; Yang, C.; Wang, H.; Yu, L.; Du, Z.; et al. Nanoscale 2016, 8, 12182. doi: 10.1039/C6NR02922A  doi: 10.1039/C6NR02922A

    74. [74]

      Kelestemur, Y.; Guzelturk, B.; Erdem, O.; Olutas, M.; Erdem, T.; Usanmaz, C. F.; Gungor, K.; Demir, H. V. J. Phys. Chem. C 2017, 121, 4650. doi: 10.1021/acs.jpcc.6b11809  doi: 10.1021/acs.jpcc.6b11809

    75. [75]

      Polovitsyn, A.; Dang, Z.; Movilla, J. L.; Martín-García, B.; Khan, A. H.; Bertrand, G. H. V.; Brescia, R.; Moreels, I. Chem. Mater. 2017, 29, 5671. doi: 10.1021/acs.chemmater.7b01513  doi: 10.1021/acs.chemmater.7b01513

    76. [76]

      Lebedev, A. I.; Saidzhonov, B. M.; Drozdov, K. A.; Khomich, A. A.; Vasiliev, R. B. J. Phys. Chem. C 2021, 125, 6758. doi: 10.1021/acs.jpcc.0c10529  doi: 10.1021/acs.jpcc.0c10529

    77. [77]

      Mitrofanov, A.; Prudnikau, A.; Di Stasio, F.; Weiß, N.; Hübner, R.; Dominic, A. M.; Borchert, K. B. L.; Lesnyak, V.; Eychmüller, A. Chem. Mater. 2021, 33, 7693. doi: 10.1021/acs.chemmater.1c01682  doi: 10.1021/acs.chemmater.1c01682

    78. [78]

      Rossinelli, A. A.; Riedinger, A.; Marqués-Gallego, P.; Knüsel, P. N.; Antolinez, F. V.; Norris, D. J. Chem. Commun. 2017, 53, 9938. doi: 10.1039/C7CC04503D  doi: 10.1039/C7CC04503D

    79. [79]

      Altintas, Y.; Quliyeva, U.; Gungor, K.; Erdem, O.; Kelestemur, Y.; Mutlugun, E.; Kovalenko, M. V.; Demir, H. V. Small 2019, 15, 1804854. doi: 10.1002/smll.201804854  doi: 10.1002/smll.201804854

    80. [80]

      Shendre, S.; Delikanli, S.; Li, M.; Dede, D.; Pan, Z.; Ha, S. T.; Fu, Y. H.; Hernández-Martínez, P. L.; Yu, J.; Erdem, O.; et al. Nanoscale 2019, 11, 301. doi: 10.1039/C8NR07879C  doi: 10.1039/C8NR07879C

    81. [81]

      Kim, W. D.; Kim, D.; Yoon, D. -E.; Lee, H.; Lim, J.; Bae, W. K.; Lee, D. C. Chem. Mater. 2019, 31, 3066. doi: 10.1021/acs.chemmater.8b05366  doi: 10.1021/acs.chemmater.8b05366

    82. [82]

      Dede, D.; Taghipour, N.; Quliyeva, U.; Sak, M.; Kelestemur, Y.; Gungor, K.; Demir, H. V. Chem. Mater. 2019, 31, 1818. doi: 10.1021/acs.chemmater.9b00136  doi: 10.1021/acs.chemmater.9b00136

    83. [83]

      Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Phys. Rev. Lett. 1994, 72, 416. doi: 10.1103/PhysRevLett.72.416  doi: 10.1103/PhysRevLett.72.416

    84. [84]

      Sharma, M.; Olutas, M.; Yeltik, A.; Kelestemur, Y.; Sharma, A.; Delikanli, S.; Guzelturk, B.; Gungor, K.; McBride, J. R.; Demir, H. V. Chem. Mater. 2018, 30, 3265. doi: 10.1021/acs.chemmater.8b00196  doi: 10.1021/acs.chemmater.8b00196

    85. [85]

      Dufour, M.; Izquierdo, E.; Livache, C.; Martinez, B.; Silly, M. G.; Pons, T.; Lhuillier, E.; Delerue, C.; Ithurria, S. ACS Appl. Mater. Interfaces 2019, 11, 10128. doi: 10.1021/acsami.8b18650  doi: 10.1021/acsami.8b18650

    86. [86]

      Khan, A. H.; Pinchetti, V.; Tanghe, I.; Dang, Z.; Martín-García, B.; Hens, Z.; Van Thourhout, D.; Geiregat, P.; Brovelli, S.; Moreels, I. Chem. Mater. 2019, 31, 1450. doi: 10.1021/acs.chemmater.8b05334  doi: 10.1021/acs.chemmater.8b05334

    87. [87]

      Delikanli, S.; Akgul, M. Z.; Murphy, J. R.; Barman, B.; Tsai, Y.; Scrace, T.; Zhang, P.; Bozok, B.; Hernández-Martínez, P. L.; Christodoulides, J.; et al. ACS Nano 2015, 9, 12473. doi: 10.1021/acsnano.5b05903  doi: 10.1021/acsnano.5b05903

    88. [88]

      Sharma, M.; Gungor, K.; Yeltik, A.; Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Erdem, T.; Delikanli, S.; McBride, J. R.; Demir, H. V. Adv. Mater. 2017, 29, 1700821. doi: 10.1002/adma.201700821  doi: 10.1002/adma.201700821

    89. [89]

      Li, J.; Xu, L.; Wang, T.; Song, J.; Chen, J.; Xue, J.; Dong, Y.; Cai, B.; Shan, Q.; Han, B.; et al. Adv. Mater. 2017, 29, 1603885. doi: 10.1002/adma.201603885  doi: 10.1002/adma.201603885

    90. [90]

      Liu, B.; Wang, L.; Gu, H.; Sun, H.; Demir, H. V. Adv. Opt. Mater 2018, 6, 1800220. doi: 10.1002/adom.201800220  doi: 10.1002/adom.201800220

    91. [91]

      Wang, L.; Liu, B.; Zhao, X.; Demir, H. V.; Gu, H.; Sun, H. ACS Appl. Mater. Interfaces 2018, 10, 19828. doi: 10.1021/acsami.8b06105  doi: 10.1021/acsami.8b06105

    92. [92]

      Xiao, P.; Yu, Y.; Cheng, J.; Chen, Y.; Yuan, S.; Chen, J.; Yuan, J.; Liu, B. Nanomaterials 2021, 11, 103. doi: 10.3390/nano11010103  doi: 10.3390/nano11010103

    93. [93]

      Luo, D.; Chen, Q.; Qiu, Y.; Zhang, M.; Liu, B. Nanomaterials 2019, 9, 1007. doi: 10.3390/nano9071007  doi: 10.3390/nano9071007

    94. [94]

      Liu, B.; Li, X. -L.; Tao, H.; Zou, J.; Xu, M.; Wang, L.; Peng, J.; Cao, Y. J. Mater. Chem. C 2017, 5, 7668. doi: 10.1039/C7TC01477E  doi: 10.1039/C7TC01477E

    95. [95]

      Liu, B.; Wang, L.; Zou, J.; Tao, H.; Su, Y.; Gao, D.; Xu, M.; Lan, L.; Peng, J. Synth. Met. 2013, 184, 5. doi: 10.1016/j.synthmet.2013.09.023  doi: 10.1016/j.synthmet.2013.09.023

    96. [96]

      Liu, B. -Q.; Lan, L. -F.; Zou, J. -H.; Peng, J. -B. Acta Phys. Sin. 2013, 62, 087302.  doi: 10.7498/aps.62.087302

    97. [97]

      Zhang, D.; Cai, M.; Zhang, Y.; Zhang, D.; Duan, L. Materials Horizons 2016, 3, 145. doi: 10.1039/C5MH00258C  doi: 10.1039/C5MH00258C

    98. [98]

      Luo, D.; Xiao, P.; Liu, B. Chem Rec 2019, 19, 1596. doi: 10.1002/tcr.201800147  doi: 10.1002/tcr.201800147

    99. [99]

      Zhang, L.; Li, X. -L.; Luo, D.; Xiao, P.; Xiao, W.; Song, Y.; Ang, Q.; Liu, B. Materials 2017, 10, 1378. doi: 10.3390/ma10121378  doi: 10.3390/ma10121378

    100. [100]

      Luo, D.; Yang, Y.; Huang, L.; Liu, B.; Zhao, Y. Dyes Pig. 2017, 147, 83. doi: 10.1016/j.dyepig.2017.07.072  doi: 10.1016/j.dyepig.2017.07.072

    101. [101]

      Xiang, C.; Koo, W.; So, F.; Sasabe, H.; Kido, J. Light Sci. Appl. 2013, 2, e74. doi: 10.1038/lsa.2013.30  doi: 10.1038/lsa.2013.30

    102. [102]

      Xiao, P.; Dong, T.; Xie, J.; Luo, D.; Yuan, J.; Liu, B. Appl. Sci. 2018, 8, 299. doi: 10.3390/app8020299  doi: 10.3390/app8020299

    103. [103]

      Liu, B. -Q.; Gao, D. -Y.; Wang, J. -B.; Wang, X.; Lei, W.; Zou, J. -H.; Ning, H. -L.; Peng, J. -B. Acta Phys. -Chim. Sin. 2015, 31, 1823.  doi: 10.3866/PKU.WHXB201506192

    104. [104]

      Antanovich, A. V.; Prudnikau, A. V.; Melnikau, D.; Rakovich, Y. P.; Chuvilin, A.; Woggon, U.; Achtstein, A. W.; Artemyev, M. V. Nanoscale 2015, 7, 8084. doi: 10.1039/c4nr07134d  doi: 10.1039/c4nr07134d

    105. [105]

      Yambem, S. D.; Ullah, M.; Tandy, K.; Burn, P. L.; Namdas, E. B. Laser Photonics Rev. 2014, 8, 165. doi: 10.1002/lpor.201300148  doi: 10.1002/lpor.201300148

    106. [106]

      Chen, B.; Liu, B.; Zeng, J.; Nie, H.; Xiong, Y.; Zou, J.; Ning, H.; Wang, Z.; Zhao, Z.; Tang, B. Z. Adv. Funct. Mater. 2018, 28, 1803369. doi: 10.1002/adfm.201803369  doi: 10.1002/adfm.201803369

    107. [107]

      Chen, Y. -H.; Ma, D. -G.; Sun, H. -D.; Chen, J. -S.; Guo, Q. -X.; Wang, Q.; Zhao, Y. -B. Light Sci. Appl. 2016, 5, e16042. doi: 10.1038/lsa.2016.42  doi: 10.1038/lsa.2016.42

    108. [108]

      Liu, B.; Xu, Z.; Zou, J.; Tao, H.; Xu, M.; Gao, D.; Lan, L.; Wang, L.; Ning, H.; Peng, J. J Ind Eng Chem 2015, 27, 240. doi: 10.1016/j.jiec.2014.12.040  doi: 10.1016/j.jiec.2014.12.040

    109. [109]

      Sasabe, H.; Kido, J. J. Mater. Chem. C 2013, 1, 1699. doi: 10.1039/C2TC00584K  doi: 10.1039/C2TC00584K

    110. [110]

      Sun, N.; Zhao, Y.; Zhao, F.; Chen, Y.; Yang, D.; Chen, J.; Ma, D. Appl. Phys. Lett. 2014, 105, 013303. doi: 10.1063/1.4890217  doi: 10.1063/1.4890217

    111. [111]

      Luo, D. X.; Chen, Q. Z.; Gao, Y. A.; Zhang, M. L.; Liu, B. Q. ACS Energy Lett. 2018, 3, 1531. doi: 10.1021/acsenergylett.8b00711  doi: 10.1021/acsenergylett.8b00711

    112. [112]

      Du, X.; Tao, S.; Huang, Y.; Yang, X.; Ding, X.; Zhang, X. Appl. Phys. Lett. 2015, 107, 183304. doi: 10.1063/1.4935457  doi: 10.1063/1.4935457

    113. [113]

      Liu, B.; Wang, L.; Xu, M.; Tao, H.; Zou, J.; Gao, D.; Lan, L.; Ning, H.; Peng, J.; Cao, Y. Sci. Rep. 2014, 4, 7198. doi: 10.1038/srep07198  doi: 10.1038/srep07198

    114. [114]

      Liu, B.; Wang, L.; Gao, D.; Xu, M.; Zhu, X.; Zou, J.; Lan, L.; Ning, H.; Peng, J.; Cao, Y. Materials Horizons 2015, 2, 536. doi: 10.1039/C5MH00051C  doi: 10.1039/C5MH00051C

    115. [115]

      Liu, B.; Luo, D.; Zou, J.; Gao, D.; Ning, H.; Wang, L.; Peng, J.; Cao, Y. J. Mater. Chem. C 2015, 3, 6359. doi: 10.1039/C5TC00970G  doi: 10.1039/C5TC00970G

    116. [116]

      Ying, L.; Ho, C. -L.; Wu, H.; Cao, Y.; Wong, W. -Y. Adv. Mater. 2014, 26, 2459. doi: 10.1002/adma.201304784  doi: 10.1002/adma.201304784

    117. [117]

      Luo, D.; Li, X. -L.; Zhao, Y.; Gao, Y.; Liu, B. ACS Photonics 2017, 4, 1566. doi: 10.1021/acsphotonics.7b00364  doi: 10.1021/acsphotonics.7b00364

    118. [118]

      Liu, B.; Xu, M.; Tao, H.; Ying, L.; Zou, J.; Wu, H.; Peng, J. J. Lumin. 2013, 142, 35. doi: 10.1016/j.jlumin.2013.03.032  doi: 10.1016/j.jlumin.2013.03.032

    119. [119]

      Liu, B.; Xu, M.; Wang, L.; Tao, H.; Su, Y.; Gao, D.; Zou, J.; Lan, L.; Peng, J. ECS J Solid State Sci Technol 2013, 2, R258. doi: 10.1149/2.034311jss  doi: 10.1149/2.034311jss

    120. [120]

      Guo, J.; Li, X. -L.; Nie, H.; Luo, W.; Gan, S.; Hu, S.; Hu, R.; Qin, A.; Zhao, Z.; Su, S. -J.; et al. Adv. Funct. Mater. 2017, 27, 1606458. doi: 10.1002/adfm.201606458  doi: 10.1002/adfm.201606458

    121. [121]

      Liu, B.; Zou, J.; Zhou, Z.; Wang, L.; Xu, M.; Tao, H.; Gao, D.; Lan, L.; Ning, H.; Peng, J. J. Ind. Eng. Chem. 2015, 30, 85. doi: 10.1016/j.jiec.2015.05.006  doi: 10.1016/j.jiec.2015.05.006

    122. [122]

      Shi, Z.; Li, Y.; Zhang, Y.; Chen, Y.; Li, X.; Wu, D.; Xu, T.; Shan, C.; Du, G. Nano Lett. 2017, 17, 313. doi: 10.1021/acs.nanolett.6b04116  doi: 10.1021/acs.nanolett.6b04116

    123. [123]

      Ji, W.; Shen, H.; Zhang, H.; Kang, Z.; Zhang, H. Nanoscale 2018, 10, 11103. doi: 10.1039/C8NR01460D  doi: 10.1039/C8NR01460D

    124. [124]

      Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. Nature 2009, 459, 234. doi: 10.1038/nature08003  doi: 10.1038/nature08003

    125. [125]

      Schwartz, G.; Pfeiffer, M.; Reineke, S.; Walzer, K.; Leo, K. Adv. Mater. 2007, 19, 3672. doi: 10.1002/adma.200700641  doi: 10.1002/adma.200700641

    126. [126]

      Liu, B.; Xu, M.; Wang, L.; Tao, H.; Su, Y.; Gao, D.; Lan, L.; Zou, J.; Peng, J. Nanomicro Lett. 2014, 6, 335. doi: 10.1007/s40820-014-0006-4  doi: 10.1007/s40820-014-0006-4

    127. [127]

      Liu, B.; Luo, D.; Gao, D.; Wang, X.; Xu, M.; Zou, J.; Ning, H.; Wang, L.; Peng, J.; Cao, Y. Org. Electron. 2015, 27, 29. doi: 10.1016/j.orgel.2015.08.030  doi: 10.1016/j.orgel.2015.08.030

    128. [128]

      Liu, B. -Q.; Wang, L.; Gao, D. -Y.; Zou, J. -H.; Ning, H. -L.; Peng, J. -B.; Cao, Y. Light Sci. Appl. 2016, 5, e16137. doi: 10.1038/lsa.2016.137  doi: 10.1038/lsa.2016.137

    129. [129]

      Lin, T. -A.; Chatterjee, T.; Tsai, W. -L.; Lee, W. -K.; Wu, M. -J.; Jiao, M.; Pan, K. -C.; Yi, C. -L.; Chung, C. -L.; Wong, K. -T.; et al. Adv. Mater. 2016, 28, 6976. doi: 10.1002/adma.201601675  doi: 10.1002/adma.201601675

    130. [130]

      Wang, K. -H.; Zhu, B. -S.; Yao, J. -S.; Yao, H. -B. Sci China Chem 2018, 61, 1047. doi: 10.1007/s11426-018-9325-7  doi: 10.1007/s11426-018-9325-7

    131. [131]

      Ye, J.; Zheng, C. -J.; Ou, X. -M.; Zhang, X. -H.; Fung, M. -K.; Lee, C. -S. Adv. Mater. 2012, 24, 3410. doi: 10.1002/adma.201201124  doi: 10.1002/adma.201201124

    132. [132]

      Liu, B. -Q.; Tao, H.; Su, Y. -J.; Gao, D. -Y.; Lan, L. -F.; Zou, J. -H.; Peng, J. -B. Chin. Phys. B 2013, 22, 077303. doi: 10.1088/1674-1056/22/7/077303  doi: 10.1088/1674-1056/22/7/077303

    133. [133]

      Liu, B.; Tao, H.; Wang, L.; Gao, D.; Liu, W.; Zou, J.; Xu, M.; Ning, H.; Peng, J.; Cao, Y. Nano Energy 2016, 26, 26. doi: 10.1016/j.nanoen.2016.04.054  doi: 10.1016/j.nanoen.2016.04.054

    134. [134]

      Liu, B.; Nie, H.; Zhou, X.; Hu, S.; Luo, D.; Gao, D.; Zou, J.; Xu, M.; Wang, L.; Zhao, Z.; et al. Adv. Funct. Mater. 2016, 26, 776. doi: 10.1002/adfm.201503368  doi: 10.1002/adfm.201503368

    135. [135]

      Chen, Y.; Chen, J.; Ma, D.; Yan, D.; Wang, L.; Zhu, F. Appl. Phys. Lett. 2011, 98, 243309. doi: 10.1063/1.3599557  doi: 10.1063/1.3599557

    136. [136]

      Wang, Y.; Teng, Y.; Lu, P.; Shen, X.; Jia, P.; Lu, M.; Shi, Z.; Dong, B.; Yu, W. W.; Zhang, Y. Adv. Funct. Mater. 2020, 30, 1910140. doi: 10.1002/adfm.201910140  doi: 10.1002/adfm.201910140

    137. [137]

      Ji, W.; Liu, S.; Zhang, H.; Wang, R.; Xie, W.; Zhang, H. ACS Photonics 2017, 4, 1271. doi: 10.1021/acsphotonics.7b00216  doi: 10.1021/acsphotonics.7b00216

    138. [138]

      Liu, B.; Wang, L.; Xu, M.; Tao, H.; Xia, X.; Zou, J.; Su, Y.; Gao, D.; Lan, L.; Peng, J. J. Mater. Chem. C 2014, 2, 5870. doi: 10.1039/C4TC00413B  doi: 10.1039/C4TC00413B

    139. [139]

      Liu, B.; Xu, M.; Wang, L.; Yan, X.; Tao, H.; Su, Y.; Gao, D.; Lan, L.; Zou, J.; Peng, J. Org. Electron. 2014, 15, 926. doi: 10.1016/j.orgel.2014.02.005  doi: 10.1016/j.orgel.2014.02.005

    140. [140]

      Altintas, Y.; Gungor, K.; Gao, Y.; Sak, M.; Quliyeva, U.; Bappi, G.; Mutlugun, E.; Sargent, E. H.; Demir, H. V. ACS Nano 2019, 13, 10662. doi: 10.1021/acsnano.9b04967  doi: 10.1021/acsnano.9b04967

    141. [141]

      Vitukhnovsky, A. G.; Lebedev, V. S.; Selyukov, A. S.; Vashchenko, A. A.; Vasiliev, R. B.; Sokolikova, M. S. Chem. Phys. Lett. 2015, 619, 185. doi: 10.1016/j.cplett.2014.12.002  doi: 10.1016/j.cplett.2014.12.002

    142. [142]

      Kim, S.; Fisher, B.; Eisler, H. -J.; Bawendi, M. J. Am. Chem. Soc. 2003, 125, 11466. doi: 10.1021/ja0361749  doi: 10.1021/ja0361749

    143. [143]

      Liu, B.; Delikanli, S.; Gao, Y.; Dede, D.; Gungor, K.; Demir, H. V. Nano Energy 2018, 47, 115. doi: 10.1016/j.nanoen.2018.02.004  doi: 10.1016/j.nanoen.2018.02.004

    144. [144]

      İzmir, M.; Sharma, A.; Shendre, S.; Durmusoglu, E. G.; Sharma, V. K.; Shabani, F.; Baruj, H. D.; Delikanli, S.; Sharma, M.; Demir, H. V. ACS Appl. Nano Mater. 2022, 5, 1367. doi: 10.1021/acsanm.1c03939  doi: 10.1021/acsanm.1c03939

    145. [145]

      Wen, Z.; Zhang, C.; Zhou, Z.; Xu, B.; Wang, K.; Teo, K. L.; Sun, X. W. IEEE J. Quantum Electron. 2020, 56, 1. doi: 10.1109/JQE.2019.2954333  doi: 10.1109/JQE.2019.2954333

    146. [146]

      Wen, Z.; Liu, P.; Ma, J.; Jia, S.; Xiao, X.; Ding, S.; Tang, H.; Yang, H.; Zhang, C.; Qu, X.; et al. Adv. Electron. Mater. 2021, 7, 2000965. doi: 10.1002/aelm.202000965  doi: 10.1002/aelm.202000965

    147. [147]

      An, R.; Gao, H.; Shi, S.; Chen, G.; Zhang, Y.; Geng, C.; Xu, S. IEEE Trans. Electron Devices 2022, 69, 575. doi: 10.1109/TED.2021.3134929  doi: 10.1109/TED.2021.3134929

    148. [148]

      Cheng, Y.; Wan, H.; Liang, T.; Liu, C.; Wu, M.; Hong, H.; Liu, K.; Shen, H. J. Phys. Chem. Lett. 2021, 12, 5967. doi: 10.1021/acs.jpclett.1c01554  doi: 10.1021/acs.jpclett.1c01554

    149. [149]

      Chen, H.; Pina, J. M.; Hou, Y.; Sargent, E. H. Adv. Energy Mater. 2022, 12, 2100774. doi: 10.1002/aenm.202100774  doi: 10.1002/aenm.202100774

    150. [150]

      Giovanella, U.; Pasini, M.; Lorenzon, M.; Galeotti, F.; Lucchi, C.; Meinardi, F.; Luzzati, S.; Dubertret, B.; Brovelli, S. Nano Lett. 2018, 18, 3441. doi: 10.1021/acs.nanolett.8b00456  doi: 10.1021/acs.nanolett.8b00456

    151. [151]

      Dufour, M.; Qu, J.; Greboval, C.; Méthivier, C.; Lhuillier, E.; Ithurria, S. ACS Nano 2019, 13, 5326. doi: 10.1021/acsnano.8b09794  doi: 10.1021/acsnano.8b09794

    152. [152]

      Kelestemur, Y.; Shynkarenko, Y.; Anni, M.; Yakunin, S.; De Giorgi, M. L.; Kovalenko, M. V. ACS Nano 2019, 13, 13899. doi: 10.1021/acsnano.9b05313  doi: 10.1021/acsnano.9b05313

    153. [153]

      Lagonegro, P.; Martella, C.; Squeo, B. M.; Carulli, F.; Scavia, G.; Lamperti, A.; Galeotti, F.; Dubertret, B.; Pasini, M.; Brovelli, S.; et al. ACS Appl. Electron. Mater. 2020, 2, 1186. doi: 10.1021/acsaelm.0c00097  doi: 10.1021/acsaelm.0c00097

    154. [154]

      Sorrentino, R.; Worsely, R.; Lagonegro, P.; Martella, C.; Alieva, A.; Scavia, G.; Galeotti, F.; Pasini, M.; Dubertret, B.; Brovelli, S.; et al. Dalton Trans. 2021, 50, 9208. doi: 10.1039/D1DT01066B  doi: 10.1039/D1DT01066B

    155. [155]

      Altintas, Y.; Liu, B.; Hernández-Martínez, P. L.; Gheshlaghi, N.; Shabani, F.; Sharma, M.; Wang, L.; Sun, H.; Mutlugun, E.; Demir, H. V. Chem. Mater. 2020, 32, 7874. doi: 10.1021/acs.chemmater.0c02630  doi: 10.1021/acs.chemmater.0c02630

    156. [156]

      Shabani, F.; Dehghanpour Baruj, H.; Yurdakul, I.; Delikanli, S.; Gheshlaghi, N.; Isik, F.; Liu, B.; Altintas, Y.; Canımkurbey, B.; Demir, H. V. Small 2022, 18, 2106115. doi: 10.1002/smll.202106115  doi: 10.1002/smll.202106115

    157. [157]

      Mai, R.; Wu, X.; Jiang, Y.; Meng, Y.; Liu, B.; Hu, X.; Roncali, J.; Zhou, G.; Liu, J. -M.; Kempa, K.; et al. J. Mater. Chem. A 2019, 7, 1539. doi: 10.1039/C8TA09724K  doi: 10.1039/C8TA09724K

    158. [158]

      Luo, D.; Xiao, Y.; Hao, M.; Zhao, Y.; Yang, Y.; Gao, Y.; Liu, B. Appl. Phys. Lett. 2017, 110, 061105. doi: 10.1063/1.4975480  doi: 10.1063/1.4975480

    159. [159]

      Liu, B.; Xu, M.; Tao, H.; Su, Y.; Gao, D.; Zou, J.; Lan, L.; Peng, J. Chin. Sci. Bull. 2014, 59, 3090. doi: 10.1007/s11434-014-0469-1  doi: 10.1007/s11434-014-0469-1

    160. [160]

      Zhou, J.; Zou, J.; Dai, C.; Zhang, Y.; Luo, X.; Liu, B. ECS J. Solid State Sci. Technol. 2018, 7, R99. doi: 10.1149/2.0081806jss  doi: 10.1149/2.0081806jss

    161. [161]

      Zhang, L.; Yu, H.; Xiao, W.; Liu, C.; Chen, J.; Guo, M.; Gao, H.; Liu, B.; Wu, W. Electronics 2022, 11, 960. doi: 10.3390/electronics11060960  doi: 10.3390/electronics11060960

    162. [162]

      Hu, S.; Huang, K.; Zhang, B.; Liu, B.; Liu, C. IEEE Trans. Electron Devices 2022, 69, 248. doi: 10.1109/TED.2021.3129713  doi: 10.1109/TED.2021.3129713

    163. [163]

      Liu, C.; Dai, F.; Liu, B.; Wei, H.; Chen, P.; Hu, Y.; Wu, J.; Liu, C. Adv. Electron. Mater. 2021, 7, 2001134. doi: 10.1002/aelm.202001134  doi: 10.1002/aelm.202001134

    164. [164]

      Xiao, P.; Huang, J.; Dong, T.; Xie, J.; Yuan, J.; Luo, D.; Liu, B. Molecules 2018, 23, 1373. doi: 10.3390/molecules23061373  doi: 10.3390/molecules23061373

    165. [165]

      Qu, J.; Rastogi, P.; Gréboval, C.; Livache, C.; Dufour, M.; Chu, A.; Chee, S. -S.; Ramade, J.; Xu, X. Z.; Ithurria, S.; et al. ACS Appl. Mater. Interfaces 2020, 12, 22058. doi: 10.1021/acsami.0c05264  doi: 10.1021/acsami.0c05264

    166. [166]

      Luo, D.; Chen, Q.; Liu, B.; Qiu, Y. Polymers 2019, 11, 384. doi: 10.3390/polym11020384  doi: 10.3390/polym11020384

    167. [167]

      Zhang, L.; Xiao, W.; Wu, W.; Liu, B. Appl. Sci. 2019, 9, 773. doi: 10.3390/app9040773  doi: 10.3390/app9040773

    168. [168]

      Park, J. -S.; Chae, H.; Chung, H. K.; Lee, S. I. Semicond. Sci. Technol. 2011, 26, 034001. doi: 10.1088/0268-1242/26/3/034001  doi: 10.1088/0268-1242/26/3/034001

    169. [169]

      Liu, B.; Wang, L.; Xu, M.; Tao, H.; Gao, D.; Zou, J.; Lan, L.; Ning, H.; Peng, J.; Cao, Y. J. Mater. Chem. C 2014, 2, 9836. doi: 10.1039/C4TC01582G  doi: 10.1039/C4TC01582G

    170. [170]

      Liu, B.; Zou, J.; Su, Y.; Gao, D.; Lan, L.; Tao, H.; Peng, J. J. Lumin. 2014, 151, 161. doi: 10.1016/j.jlumin.2014.02.022  doi: 10.1016/j.jlumin.2014.02.022

    171. [171]

      Sun, Y.; Giebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R. Nature 2006, 440, 908. doi: 10.1038/nature04645  doi: 10.1038/nature04645

    172. [172]

      Liu, B.; Xu, M.; Wang, L.; Zou, J.; Tao, H.; Su, Y.; Gao, D.; Ning, H.; Lan, L.; Peng, J. Org. Electron. 2014, 15, 2616. doi: 10.1016/j.orgel.2014.07.033  doi: 10.1016/j.orgel.2014.07.033

    173. [173]

      Wang, Z. B.; Helander, M. G.; Qiu, J.; Puzzo, D. P.; Greiner, M. T.; Hudson, Z. M.; Wang, S.; Liu, Z. W.; Lu, Z. H. Nat. Photonics 2011, 5, 753. doi: 10.1038/nphoton.2011.259  doi: 10.1038/nphoton.2011.259

    174. [174]

      Lee, I.; Lee, J. Y. Org. Electron. 2016, 29, 160. doi: 10.1016/j.orgel.2015.12.001  doi: 10.1016/j.orgel.2015.12.001

    175. [175]

      Liu, B.; Xu, M.; Wang, L.; Tao, H.; Su, Y.; Gao, D.; Lan, L.; Zou, J.; Peng, J. Phys Status Solidi Rapid Res Lett 2014, 8, 719. doi: 10.1002/pssr.201409179  doi: 10.1002/pssr.201409179

    176. [176]

      Liu, B.; Nie, H.; Lin, G.; Hu, S.; Gao, D.; Zou, J.; Xu, M.; Wang, L.; Zhao, Z.; Ning, H.; et al. ACS Appl. Mater. Interfaces 2017, 9, 34162. doi: 10.1021/acsami.7b11422  doi: 10.1021/acsami.7b11422

    177. [177]

      Liu, B.; Xu, M.; Wang, L.; Su, Y.; Gao, D.; Tao, H.; Lan, L.; Zou, J.; Peng, J. Appl. Phys. Express 2013, 6, 122101. doi: 10.7567/apex.6.122101  doi: 10.7567/apex.6.122101

    178. [178]

      Ou, Q. -D.; Zhou, L.; Li, Y. -Q.; Shen, S.; Chen, J. -D.; Li, C.; Wang, Q. -K.; Lee, S. -T.; Tang, J. -X. Adv. Funct. Mater. 2014, 24, 7249. doi: 10.1002/adfm.201402026  doi: 10.1002/adfm.201402026

    179. [179]

      Xiao, P.; Huang, J.; Yu, Y.; Yuan, J.; Luo, D.; Liu, B.; Liang, D. Appl. Sci. 2018, 8, 1449. doi: 10.3390/app8091449  doi: 10.3390/app8091449

    180. [180]

      Xu, T.; Fu, J.; Wang, X.; Lu, G.; Liu, B. Front. Chem. 2022, 10, 887900. doi: 10.3389/fchem.2022.887900  doi: 10.3389/fchem.2022.887900

    181. [181]

      Fang, T.; Zhang, F.; Yuan, S.; Zeng, H.; Song, J. InfoMat 2019, 1, 211. doi: 10.1002/inf2.12019  doi: 10.1002/inf2.12019

    182. [182]

      Yang, X.; Zhang, X.; Deng, J.; Chu, Z.; Jiang, Q.; Meng, J.; Wang, P.; Zhang, L.; Yin, Z.; You, J. Nat. Commun. 2018, 9, 570. doi: 10.1038/s41467-018-02978-7  doi: 10.1038/s41467-018-02978-7

    183. [183]

      Xiao, P.; Huang, J.; Yu, Y.; Liu, B. Molecules 2019, 24, 151. doi: 10.3390/molecules24010151  doi: 10.3390/molecules24010151

    184. [184]

      Liu, B.; Wang, L.; Tao, H.; Xu, M.; Zou, J.; Ning, H.; Peng, J.; Cao, Y. Sci. Bull. 2017, 62, 1193. doi: 10.1016/j.scib.2017.08.021  doi: 10.1016/j.scib.2017.08.021

    185. [185]

      Tao, H.; Gao, D. -Y.; Liu, B. -Q.; Wang, L.; Zou, J. -H.; Xu, M.; Peng, J. -B. Acta Phys. Sin. 2017, 66, 017302.  doi: 10.7498/aps.66.017302

    186. [186]

      Lin, K.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; et al. Nature 2018, 562, 245. doi: 10.1038/s41586-018-0575-3  doi: 10.1038/s41586-018-0575-3

    187. [187]

      Cao, Y.; Wang, N.; Tian, H.; Guo, J.; Wei, Y.; Chen, H.; Miao, Y.; Zou, W.; Pan, K.; He, Y.; et al. Nature 2018, 562, 249. doi: 10.1038/s41586-018-0576-2  doi: 10.1038/s41586-018-0576-2

    188. [188]

      Yu, J.; Han, Y.; Zhang, H.; Misochko, O. V.; Nakamura, K. G.; Hu, J. J. Phys. Chem. Lett. 2022, 13, 2584. doi: 10.1021/acs.jpclett.2c00426  doi: 10.1021/acs.jpclett.2c00426

    189. [189]

      Han, Y.; Yu, J.; Zhang, H.; Xu, F.; Peng, K.; Zhou, X.; Qiao, L.; Misochko, O. V.; Nakamura, K. G.; Vanacore, G. M.; et al. J. Phys. Chem. Lett. 2022, 13, 442. doi: 10.1021/acs.jpclett.1c03704  doi: 10.1021/acs.jpclett.1c03704

    190. [190]

      Su, Y.; Yu, J.; Li, Y.; Phua, S. F. Z.; Liu, G.; Lim, W. Q.; Yang, X.; Ganguly, R.; Dang, C.; Yang, C.; et al. Commun. Chem. 2018, 1, 12. doi: 10.1038/s42004-018-0016-0  doi: 10.1038/s42004-018-0016-0

    191. [191]

      Huang, R.; Wu, J.; Zhang, M.; Liu, B.; Zheng, Z.; Luo, D. Mater. Des. 2021, 210, 110040. doi: 10.1016/j.matdes.2021.110040  doi: 10.1016/j.matdes.2021.110040

    192. [192]

      Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. -J.; Ohisa, S.; Kido, J. Nat. Photonics 2018, 12, 681. doi: 10.1038/s41566-018-0260-y  doi: 10.1038/s41566-018-0260-y

    193. [193]

      Li, J.; Shan, X.; Bade, S. G. R.; Geske, T.; Jiang, Q.; Yang, X.; Yu, Z. J. Phys. Chem. Lett. 2016, 7, 4059. doi: 10.1021/acs.jpclett.6b01942  doi: 10.1021/acs.jpclett.6b01942

    194. [194]

      Luo, D.; Chen, Q.; Qiu, Y.; Liu, B.; Zhang, M. Materials 2019, 12, 1713. doi: 10.3390/ma12101713  doi: 10.3390/ma12101713

    195. [195]

      Lin, D.; Wang, Q.; Wang, J.; Hu, J.; Lu, H.; Liu, N.; Chen, Z. Mater. Res. Appl. 2019, 13, 102.  doi: 10.3969/j.issn.1673-9981.2019.02.004

    196. [196]

      Fu, H.; Wang, L.; Ni, H.; Zhang, Q. Mater. Res. Appl. 2016, 10, 238.  doi: 10.3969/j.issn.1673-9981.2016.04.002

    197. [197]

      Miao, Y.; Cheng, L.; Zou, W.; Gu, L.; Zhang, J.; Guo, Q.; Peng, Q.; Xu, M.; He, Y.; Zhang, S.; et al. Light Sci. Appl. 2020, 9, 89. doi: 10.1038/s41377-020-0328-6  doi: 10.1038/s41377-020-0328-6

  • 加载中
    1. [1]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    2. [2]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    3. [3]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    4. [4]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    7. [7]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    8. [8]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    9. [9]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    10. [10]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    11. [11]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    12. [12]

      Cheng Rong Jiang Jiang Xinyu Zheng . Constructivism and Deconstructivism in General Chemistry Teaching: Taking the Teaching of Colloidal Solutions as an Example. University Chemistry, 2024, 39(2): 292-297. doi: 10.3866/PKU.DXHX202308035

    13. [13]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    14. [14]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    15. [15]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    16. [16]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(11)
  • Abstract views(626)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return