Citation: Xueling Lang, Shutao Lei, Bolong Li, Xiaohong Li, Bing Ma, Chen Zhao. Approaches for the Synthesis of High-Melting Waxes: A Review[J]. Acta Physico-Chimica Sinica, ;2022, 38(10): 220404. doi: 10.3866/PKU.WHXB202204045 shu

Approaches for the Synthesis of High-Melting Waxes: A Review

  • Corresponding author: Bing Ma, bma@chem.ecnu.edu.cn Chen Zhao, czhao@chem.ecnu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 25 April 2022
    Revised Date: 14 May 2022
    Accepted Date: 16 May 2022
    Available Online: 19 May 2022

    Fund Project: the National Key R & D Program of China 2016YFB0701100

  • High-melting hydrocarbon waxes (melting point: > 80 ℃), consisting of saturated alkanes with carbon numbers greater than 40, exhibit unique features including high melting points, high stability, low penetration, high viscosity, as well as good wear resistance and hardness. These features make high-melting waxes suitable for use in foods, cosmetics, materials processing, electronic machinery, national defense, aviation, medical fields, etc. Considering the fast growth of technology and the electronics industry, the world's economy relies on the production and utilization of high-quality high-melting waxes. However, most waxes in the world's current markets are prepared from mineral oils, and such commercial waxes have melting points in the range of 50–70 ℃. Considering the rapid consumption of high-melting waxes and specialty waxes, their supply insufficiency is anticipated to exceed 700000 t. High-melting waxes are divided into polyethylene (PE) wax and Fischer-Tropsch synthesis (FTS) wax, based on synthesis methodology. PE wax can be obtained via the polymerization of ethylene and can also be prepared via the thermal or catalytic cracking of plastics. PE cracking to form waxes, with the advantage of low cost, can effectively solve the problem of "white pollution" and make use of existing catalytic cracking units. However, this process results in high energy consumption to achieve waste polymer depolymerization and exhibits some drawbacks, such as a wide carbon number distribution and high impurity content in the obtained PE waxes. However, there are some new methods for synthesizing PE waxes, such as cross alkane metathesis. The FTS, which uses carbon monoxide and hydrogen as raw materials, realizes the synthesis of waxes through carbon chain growth. Although the high-melting FTS waxes display excellent performance and the technology is gradually maturing, FTS waxes with different melting points are produced by rectification of products with various carbon chain lengths. Nonetheless, PE and FTS waxes are widely used in various industries because of their excellent properties. However, their synthesis is based on petroleum and coal-derived chemical products. Biomass-derived waxes have a narrow melting range due to their precise carbon chain growth process. Based on different application demands, small biomass platform molecules can be functionalized to fabricate biomass-derived waxes with special functions. More importantly, the biomass-based synthesis route is sustainable and in-line with the global values for mitigating carbon dioxide emissions and achieving carbon neutrality. This review discusses the recent advances in the synthesis techniques for high-melting waxes, including PE waxes, FTS waxes, and biomass-derived waxes. Furthermore, the catalysts and reaction mechanisms involved in the synthesis of high-melting waxes are discussed in detail. Finally, the perspectives and trends of high-melting waxes are reviewed to promote the emergence of new processes and technical routes.
  • 加载中
    1. [1]

      Yue, S. Chem. Ind. 2012, 30 (10), 11.
       

    2. [2]

      Jing, G. Refin. Chem. Ind. 2021, 32 (2), 6.  doi: 10.16049/j.cnki.lyyhg.2021.02.002

    3. [3]

      Anene, A. F.; Fredriksen, S. B.; Sætre, K. A.; Tokheim, L. -A. Sustainability 2018, 10 (11), 3979. doi: 10.3390/su10113979  doi: 10.3390/su10113979

    4. [4]

      Yang, J.; Shan, J. B.; Zhao, Y. H.; Guo, X. F. Elastomerics 2015, 25 (3), 81.  doi: 10.16665/j.cnki.issn1005-3174.2015.03.019

    5. [5]

      Orozco, S.; Artetxe, M.; Lopez, G.; Suarez, M.; Bilbao, J.; Olazar, M. ChemSusChem 2021, 14 (19), 4291. doi: 10.1002/cssc.202100889  doi: 10.1002/cssc.202100889

    6. [6]

      Levine, S. E.; Broadbelt, L. J. Polym. Degrad. Stab. 2009, 94 (5), 810. doi: j.polymdegradstab.2009.01.031  doi: 10.1016/j.polymdegradstab.2009.01.031

    7. [7]

      Serrano, D. P.; Aguado, J.; Escola, J. M. ACS Catal. 2012, 2 (9), 1924. doi: 10.1021/cs3003403  doi: 10.1021/cs3003403

    8. [8]

      Ueno, T.; Nakashima, E.; Takeda, K. Polym. Degrad. Stab. 2010, 95 (9), 1862. doi: j.polymdegradstab.2010.04.020  doi: 10.1016/j.polymdegradstab.2010.04.020

    9. [9]

      Arabiourrutia, M.; Lopez, G.; Artetxe, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Renew. Sustain. Energy Rev. 2020, 129, 109932. doi: 10.1016/j.rser.2020.109932  doi: 10.1016/j.rser.2020.109932

    10. [10]

      Mark, L. O.; Cendejas, M. C.; Hermans, I. ChemSusChem 2020, 13 (22), 5808. doi: 10.1002/cssc.202001905  doi: 10.1002/cssc.202001905

    11. [11]

      Grause, G.; Matsumoto, S.; Kameda, T.; Yoshioka, T. Ind. Eng. Chem. Res. 2011, 50 (9), 5459. doi: 10.1021/ie102412h  doi: 10.1021/ie102412h

    12. [12]

      Berrueco, C.; Mastral, F. J.; Esperanza, E.; Ceamanos, J. Energy Fuels 2002, 16 (5), 1148. doi: 10.1021/ef020008p  doi: 10.1021/ef020008p

    13. [13]

      Attique, S.; Batool, M.; Jalees, M. I.; Shehzad, K.; Farooq, U.; Khan, Z.; Ashraf, F.; Shah, A. T. Turk. J. Chem. 2018, 42 (3), 684. doi: 10.3906/kim-1612-21  doi: 10.3906/kim-1612-21

    14. [14]

      Reiprich, B.; Tarach, K. A.; Pyra, K.; Grzybek, G.; Góra-Marek, K. ACS Appl. Mater. Interfaces 2022, 14 (5), 6667. doi: 10.1021/acsami.1c21471  doi: 10.1021/acsami.1c21471

    15. [15]

      Zhao, C. S. Research of Manufacturing Macromolecule Wax and Styrenefrom Cracking Waste Plastics. M. S. Dissertation, East China University of Science and Technology, Shanghai, 2014.

    16. [16]

      Elordi, G.; Olazar, M.; Lopez, G.; Amutio, M.; Artetxe, M.; Aguado, R.; Bilbao, J. J. Anal. Appl. Pyrolysis 2009, 85 (1), 345. doi: 10.1016/j.jaap.2008.10.015  doi: 10.1016/j.jaap.2008.10.015

    17. [17]

      Borsella, E.; Aguado, R.; De Stefanis, A.; Olazar, M. J. Anal. Appl. Pyrolysis 2018, 130, 320. doi: 10.1016/j.jaap.2017.12.015  doi: 10.1016/j.jaap.2017.12.015

    18. [18]

      van Grieken, R.; Serrano, D. P.; Aguado, J.; Garcı́a, R.; Rojo, C. J. Anal. Appl. Pyrolysis 2001, 58–59, 127. doi: 10.1016/S0165-2370(00)00145-5  doi: 10.1016/S0165-2370(00)00145-5

    19. [19]

      Jia, X.; Qin, C.; Friedberger, T.; Guan, Z.; Huang, Z. Sci. Adv. 2016, 2 (6), e1501591. doi: 10.1126/sciadv.1501591  doi: 10.1126/sciadv.1501591

    20. [20]

      Yuan, Q.; Wang, L. L.; Feng, R. J.; Zhao, C. F.; Cao, W. Chem. Eng. 2015, 29 (5), 1.  doi: 10.16247/j.cnki.23-1171/tq.20150501

    21. [21]

      Wang, J. L.; Wang, L. L.; Zhou, P. Mod. Plast. Process. Appl. 2010, 22 (2), 32.
       

    22. [22]

      Yao, Y.; Chau, E.; Azimi, G. Waste Manage. 2019, 97, 131. doi: 10.1016/j.wasman.2019.08.003  doi: 10.1016/j.wasman.2019.08.003

    23. [23]

      Tomoshige, T. Modified Polyethylene Wax. DE2241057A1, 1973.

    24. [24]

      Finlayson, M. F.; Garrison, C. C.; Guerra, R. E.; Guest, M. J.; Kolthammer, B. W. S.; Parikh, D. R.; Ueligger, S. M. Manufacture of Nonpourable, Homogeneous, Ultra-Low-Molecular-Weight Ethylene Polymers. WO9726287A1, 1997.

    25. [25]

      Gao, C. Y.; Zheng, D. X. Method for Preparing Polyethylene Wax Using Metallocene Catalyst. CN Patent 201280041261.7. 2014.

    26. [26]

      Tang, Z. L. Polyethylene Wax and Preparation Method. CN Patent 201310475487.4. 2014.

    27. [27]

      Moreira, S. C.; Marques, M. d. F. V. Eur. Polym. J. 2001, 37 (10), 2123. doi: 10.1016/S0014-3057(01)00072-6  doi: 10.1016/S0014-3057(01)00072-6

    28. [28]

      Lamb, J. V.; Buffet, J. -C.; Turner, Z. R.; Khamnaen, T.; O'Hare, D. Macromolecules 2020, 53 (14), 5847. doi: 10.1021/acs.macromol.0c00990  doi: 10.1021/acs.macromol.0c00990

    29. [29]

      Gao, J.; Zhang, L.; Alam, F.; Chen, Y.; Jiang, T. ChemistrySelect 2018, 3 (23), 6468. doi: 10.1002/slct.201800952  doi: 10.1002/slct.201800952

    30. [30]

      Umare, P. S.; Rao, K.; Tembe, G. L.; Dhoble, D. A.; Trivedi, B. J. Appl. Polym. Sci. 2007, 104 (3), 1531. doi: 10.1002/app.25525  doi: 10.1002/app.25525

    31. [31]

      Bollmann, A.; Blann, K.; Dixon, J. T.; Hess, F. M.; Killian, E.; Maumela, H.; McGuinness, D. S.; Morgan, D. H.; Neveling, A.; Otto, S.; et al. J. Am. Chem. Soc. 2004, 126 (45), 14712. doi: 10.1021/ja045602n  doi: 10.1021/ja045602n

    32. [32]

      Huang, C.; Zhang, Y.; Solan, G. A.; Ma, Y.; Hu, X.; Sun, Y.; Sun, W. -H. Eur. J. Inorg. Chem. 2017, 2017 (36), 4158. doi: 10.1002/ejic.201700837  doi: 10.1002/ejic.201700837

    33. [33]

      Zhang, R.; Huang, Y.; Solan, G. A.; Zhang, W.; Hu, X.; Hao, X.; Sun, W. -H. Dalton Trans. 2019, 48 (23), 8175. doi: 10.1039/C9DT01345H  doi: 10.1039/C9DT01345H

    34. [34]

      Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. 1995, 117 (23), 6414. doi: 10.1021/ja00128a054  doi: 10.1021/ja00128a054

    35. [35]

      Yu, J.; Zeng, Y.; Huang, W.; Hao, X.; Sun, W. -H. Dalton Trans. 2011, 40 (33), 8436. doi: 10.1039/C1DT10541H  doi: 10.1039/C1DT10541H

    36. [36]

      Fischer, F.; Tropsch, H. Chem. Ber. 1926, 59, 830.  doi: 10.1002/cber.19260590442

    37. [37]

      Fischer, F.; Tropsch, H. Brennstoff-Chem 1926, 7, 97.

    38. [38]

      Qi, Z.; Chen, L.; Zhang, S.; Su, J.; Somorjai, G. A. Appl. Catal. A 2020, 602, 117701. doi: 10.1016/j.apcata.2020.117701  doi: 10.1016/j.apcata.2020.117701

    39. [39]

      Tian, Z.; Wang, C.; Si, Z.; Wang, Y.; Chen, L.; Liu, Q.; Zhang, Q.; Xu, Y.; Ma, L. ChemistrySelect 2018, 3 (44), 12415. doi: 10.1002/slct.201801515  doi: 10.1002/slct.201801515

    40. [40]

      Enger, B. C.; Holmen, A. Catal. Rev. 2012, 54 (4), 437. doi: 10.1080/01614940.2012.670088  doi: 10.1080/01614940.2012.670088

    41. [41]

      Chen, J. G.; Xiang, H. W.; Dong, Q. N.; Wang, X. Z.; Sun, Y. H. Acta Phys. -Chim. Sin. 2001, 17 (2), 161.  doi: 10.3866/PKU.WHXB20010214

    42. [42]

      Hwang, J.; Kwak, G.; Lee, Y. -J.; Kim, Y. T.; Jeong, I.; Kim, S.; Jun, K. -W.; Ha, K. -S.; Lee, J. J. Mater. Chem. A 2015, 3 (47), 23725. doi: 10.1039/C5TA06184A  doi: 10.1039/C5TA06184A

    43. [43]

      Lyu, S.; Cheng, Q.; Liu, Y.; Tian, Y.; Ding, T.; Jiang, Z.; Zhang, J.; Gao, F.; Dong, L.; Bao, J.; et al. Appl. Catal. B 2020, 278, 119261. doi: 10.1016/j.apcatb.2020.119261  doi: 10.1016/j.apcatb.2020.119261

    44. [44]

      Zhang, C. -H.; Yang, Y.; Tao, Z. -C.; Li, T. -Z.; Wan, H. -J.; Xiang, H. -W.; Li, Y. -W. Acta Phys. -Chim. Sin. 2006, 22 (11), 1310.  doi: 10.1016/s1872-1508(06)60064-8

    45. [45]

      Liu, Z. -H.; Yu, C. -C.; Yang, P.; Li, R. -J.; Zhou, H. -J.; Xu, C. -M. Acta Phys. -Chim. Sin. 2015, 31 (Suppl), 90.  doi: 10.3866/PKU.WHXB2014Ac02

    46. [46]

      Ma, W. P.; Zhao, Y. L.; Li, Y. W.; Xv, Y. Y.; Zhou J. L. Nat. Gas Chem. Indus. 1998, No. 3, 3.
       

    47. [47]

      Eilers, J.; Posthuma, S. A.; Sie, S. T. Catal. Lett. 1990, 7 (1), 253. doi: 10.1007/BF00764507  doi: 10.1007/BF00764507

    48. [48]

      Lv, T.; Weng, W.; Zhou, J.; Gu, D.; Xiao, W. J. Energy Chem. 2020, 47, 118. doi: 10.1016/j.jechem.2019.12.003  doi: 10.1016/j.jechem.2019.12.003

    49. [49]

      Martínez del Monte, D.; Vizcaíno, A. J.; Dufour, J.; Martos, C. Fuel Process. Technol. 2019, 194, 106102. doi: 10.1016/j.fuproc.2019.05.025  doi: 10.1016/j.fuproc.2019.05.025

    50. [50]

      Yang, Y.; Xiang, H. -W.; Xu, Y. -Y.; Bai, L.; Li, Y. -W. Appl. Catal., A 2004, 266 (2), 181. doi: 10.1016/j.apcata.2004.02.018  doi: 10.1016/j.apcata.2004.02.018

    51. [51]

      Shah, Y. T.; Perrotta, A. J. Product R & D 1976, 15 (2), 123. doi: 10.1021/i360058a005  doi: 10.1021/i360058a005

    52. [52]

      Guo, S.; Wang, Q.; Wang, M.; Ma, Z.; Wang, J.; Hou, B.; Chen, C.; Xia, M.; Jia, L.; Li, D. Fuel 2019, 256, 115911. doi: 10.1016/j.fuel.2019.115911  doi: 10.1016/j.fuel.2019.115911

    53. [53]

      Yang, X.; Wang, W.; Wu, L.; Li, X.; Wang, T.; Liao, S. Appl. Catal. A 2016, 526, 45. doi: 10.1016/j.apcata.2016.07.021  doi: 10.1016/j.apcata.2016.07.021

    54. [54]

      Subramanian, V.; Cheng, K.; Lancelot, C.; Heyte, S.; Paul, S.; Moldovan, S.; Ersen, O.; Marinova, M.; Ordomsky, V. V.; Khodakov, A. Y. ACS Catal. 2016, 6 (3), 1785. doi: 10.1021/acscatal.5b01596  doi: 10.1021/acscatal.5b01596

    55. [55]

      Liang, X. M.; Yuan, W.; Luo, C. T. Synth. Mater. Aging Appl. 2017, 46 (4), 92.  doi: 10.16584/j.cnki.issn1671-5381.2017.04.021

    56. [56]

      Knott, D. Oil Gas J. 1997, 95 (25), 16.

    57. [57]

      Bai, E. Z. Chem. Indus. Eng. Prog. 2004, No. 4, 370.  doi: 10.16085/j.issn.1000-6613.2004.04.007

    58. [58]

      Qian, B. Z. Nat. Gas Ind. 2002, No. 4, 88.
       

    59. [59]

      Tang, H. Q. Chem. Eng. 2010, 38 (10), 1.
       

    60. [60]

      Sun, Y. H.; Li, Y. W. Bull. Chin. Acad. Sci. 2002, No. 2, 100.  doi: 10.16418/j.issn.1000-3045.2002.02.004

    61. [61]

      McNutt, J.; He, Q. J. Ind. Eng. Chem. 2016, 36, 1. doi: 10.1016/j.jiec.2016.02.008  doi: 10.1016/j.jiec.2016.02.008

    62. [62]

      Ding, S.; Ge, Q.; Zhu, X. Acta Chim. Sin. 2017, 75 (5), 439.  doi: 10.6023/A17020061

    63. [63]

      Boekaerts, B.; Lorenz, W.; Van Aelst, J.; Sels, B. F. Appl. Catal., B 2022, 305, 121052. doi: 10.1016/j.apcatb.2021.121052  doi: 10.1016/j.apcatb.2021.121052

    64. [64]

      Corma, A.; Renz, M.; Schaverien, C. ChemSusChem 2008, 1 (8-9), 739. doi: 10.1002/cssc.200800103  doi: 10.1002/cssc.200800103

    65. [65]

      Chen, S.; Wu, T.; Fang, Y.; Zhao, C. Renew. Energy 2022, 186, 280. doi: 10.1016/j.renene.2021.12.150  doi: 10.1016/j.renene.2021.12.150

    66. [66]

      Chen, S.; Wu, T.; Zhao, C. ChemSusChem 2020, 13 (20), 5516. doi: 10.1002/cssc.202001551  doi: 10.1002/cssc.202001551

    67. [67]

      Chen, S.; Zhao, C. ACS Sustain. Chem. Eng. 2021, 9 (32), 10818. doi: 10.1021/acssuschemeng.1c02875  doi: 10.1021/acssuschemeng.1c02875

    68. [68]

      Zhao, C.; Lei, S. T.; Zhao, L.; Li, B. L. A Method of Preparing High-Melting-Point Wax from Furfural. CN Patent 111470927A, 2020.

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    3. [3]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    4. [4]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    5. [5]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    6. [6]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    7. [7]

      Feng WuXuemin KongYixuan LiuShuli WangZhong ChenXu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754

    8. [8]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    9. [9]

      Shuaiwen LiZihui ChenFeng YangWanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793

    10. [10]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    11. [11]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    12. [12]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    13. [13]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    14. [14]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    15. [15]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    16. [16]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    17. [17]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    18. [18]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    19. [19]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    20. [20]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

Metrics
  • PDF Downloads(20)
  • Abstract views(752)
  • HTML views(278)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return