Citation: Jianan Teng, Guangyue Xu, Yao Fu. Aerobic Oxidation of 5-Hydroxymethylfurfural to Dimethyl Furan-2, 5-dicarboxylate over CoMn@NC Catalysts Using Atmospheric Oxygen[J]. Acta Physico-Chimica Sinica, ;2022, 38(10): 220403. doi: 10.3866/PKU.WHXB202204031 shu

Aerobic Oxidation of 5-Hydroxymethylfurfural to Dimethyl Furan-2, 5-dicarboxylate over CoMn@NC Catalysts Using Atmospheric Oxygen

  • Corresponding author: Yao Fu, fuyao@ustc.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 18 April 2022
    Revised Date: 5 May 2022
    Accepted Date: 6 May 2022
    Available Online: 16 May 2022

    Fund Project: the National Key R & D Program of China 2018YFB1501604the Strategic Priority Research Program of the CAS XDA21060101the National Natural Science Foundation of China 21875239the National Natural Science Foundation of China 51821006the National Natural Science Foundation of China 51961135104the National Natural Science Foundation of China 21905266the Fundamental Research Funds for the Central Universities WK3530000013

  • Dimethyl furan-2, 5-dicarboxylate (DMFDCA) is a valuable biomass-derived chemical that is an ideal alternative to fossil-derived terephthalic acid as a monomer for polymers. The one-step oxidation of 5-hydroxymethylfurfural (HMF) to DMFDCA is of practical significance. It not only shortens the reaction pathway but also avoids the separation process of intermediates; thus, reducing cost. In this work, non-noble bimetallic catalysts supported on N-doped porous carbon (CoMn@NC) were synthesized via a one-step co-pyrolysis procedure using different pyrolysis temperatures and proportions of metal precursors and additives. We employed the prepared CoMn@NC catalysts in the aerobic oxidation of HMF under mild reaction conditions to obtain DMFDCA. High-yield DMFDCA was obtained by screening the prepared catalysts and optimizing the reaction conditions, including the strength and amount of the base, as well as the reaction temperature. The optimized yield of DMFDCA was 85% over the Co3Mn2@NC-800 catalyst after 12 h at 50 ℃ using ambient-pressure oxygen. The physicochemical properties of the catalysts were determined using a variety of characterization techniques, the factors affecting the performance of each catalyst were investigated, and the relationship between the physicochemical properties and performance of the prepared catalysts was elucidated. A porous structure with a high surface area had a positive effect on mass transfer efficiency. Cobalt nanoparticles (NPs) and atomically dispersed Mn were coordinated to N-doped carbon to form M―Nx (where M = Co or Mn). Based on the Mott-Schottky effect, there was significant electron transfer between each metal and the N-doped carbon, additionally, the metal NPs supplied electrons to the carbon atoms. The electron-deficient metal site in the pyridinic N-rich carbon was beneficial for the activation of HMF and oxygen. The activation of oxygen produced reactive oxygen species (such as superoxide radical anions) to ensure high selectivity to DMFDCA through dehydrogenative oxidation of the hemiacetal intermediate and hydroxymethyl group of 5-hydroxymethyl-2-methyl-furoate. The existence of disordered and defective carbons increased the number of active sites. Subsequently, we performed a series of control experiments. Based on our current experimental results and previous studies, we propose a simple mechanism for the aerobic oxidation of HMF to DMFDCA. The catalyst was stable, its performance decreased slightly after two cycles, and it was tolerant to SCN ions and resistant against N or S poisoning. Furthermore, the use of this catalytic system can be expanded to various substituted aromatic alcohols, such as benzyl alcohols with different substituents, furfuryl alcohol, and heterocyclic alcohols. Simultaneously, the product type was further extended from methyl esters to ethyl esters with a high yield when the substrate reacted with ethanol. In conclusion, this catalytic system can be applied in the production of carboxylic esters for polymers.
  • 加载中
    1. [1]

      Burgess, S. K.; Leisen, J. E.; Kraftschik, B. E.; Mubarak, C. R.; Kriegel, R. M.; Koros, W. J. Macromolecules 2014, 47, 1383. doi: 10.1021/ma5000199  doi: 10.1021/ma5000199

    2. [2]

      Zhu, J. H.; Cai, J. L.; Xie, W. C.; Chen, P. H.; Gazzano, M.; Scandola, M.; Gross, R. A. Macromolecules 2013, 46, 796. doi: 10.1021/ma3023298  doi: 10.1021/ma3023298

    3. [3]

      Weinberger, S.; Haernvall, K.; Scaini, D.; Ghazaryan, G.; Zumstein, M. T.; Sander, M.; Pellis, A.; Guebitz, G. M. Green Chem. 2017, 19, 5381. doi: 10.1039/C7GC02905E  doi: 10.1039/C7GC02905E

    4. [4]

      Pal, P.; Saravanamurugan, S. ChemSusChem 2019, 12, 145. doi: 10.1002/cssc.201801744  doi: 10.1002/cssc.201801744

    5. [5]

      Zhao, D. Y.; Su, T.; Wang, Y. T.; Varma, R. S.; Len, C. Mol. Catal. 2020, 495, 111133. doi: 10.1016/j.mcat.2020.111133  doi: 10.1016/j.mcat.2020.111133

    6. [6]

      Hou, Q. D.; Qi, X. H.; Zhen, M. N.; Qian, H. L.; Nie, Y. F.; Bai, C. Y. L.; Zhang, S. Q.; Bai, X. Y.; Ju, M. T. Green Chem. 2021, 23, 119. doi: 10.1039/D0GC02770G  doi: 10.1039/D0GC02770G

    7. [7]

      Yang, Y.; He, B. W.; Ma, H. L.; Yang, S.; Ren, Z. H.; Qin, T.; Lu, F. G.; Ren, L. W.; Zhang, Y. X.; Wang, T. F.; et al. Acta Phys. -Chim. Sin. 2022, 38, 2201050.  doi: 10.3866/PKU.WHXB202201050

    8. [8]

      Huang, X. Y.; Akdim, O.; Douthwaite, M.; Wang, K.; Zhao, L.; Lewis, R. J.; Pattisson, S.; Daniel, I. T.; Miedziak, P. J.; Shaw, G.; et al. Nature 2022, 603, 271. doi: 10.1038/s41586-022-04397-7  doi: 10.1038/s41586-022-04397-7

    9. [9]

      Deng, J.; Song, H. J.; Cui, M. S.; Du, Y. P.; Fu, Y. ChemSusChem 2014, 7, 3334. doi: 10.1002/cssc.201402843  doi: 10.1002/cssc.201402843

    10. [10]

      Li, F.; Li, X. L.; Li, C.; Shi, J.; Fu, Y. Green Chem. 2018, 20, 3050. doi: 10.1039/C8GC01393D  doi: 10.1039/C8GC01393D

    11. [11]

      Jiang, Y.; Maniar, D.; Woortman, A. J. J.; Loos, K. RSC Adv. 2016, 6, 67941. doi: 10.1039/C6RA14585J  doi: 10.1039/C6RA14585J

    12. [12]

      Kozlov, K. S.; Romashov, L. V.; Ananikov, V. P. Green Chem. 2019, 21, 3464. doi: 10.1039/C9GC00840C  doi: 10.1039/C9GC00840C

    13. [13]

      Gupta, S. S. R.; Vinu, A.; Kantam, M. L. J. Catal. 2020, 389, 259. doi: 10.1016/j.jcat.2020.05.032  doi: 10.1016/j.jcat.2020.05.032

    14. [14]

      Besson, M.; Gallezot, P.; Pinel, C. Chem. Rev. 2014, 114, 1827. doi: 10.1021/cr4002269  doi: 10.1021/cr4002269

    15. [15]

      Shen, Y. H.; Zhang, S. H.; Li, H. J.; Ren, Y.; Liu, H. C. Chem. Eur. J. 2010, 16, 7368. doi: 10.1002/chem.201000740  doi: 10.1002/chem.201000740

    16. [16]

      Taarning, E.; Nielsen, I. S.; Egeblad, K.; Madsen, R.; Christensen, C. H. ChemSusChem 2008, 1, 75. doi: 10.1002/cssc.200700033  doi: 10.1002/cssc.200700033

    17. [17]

      Kim, M.; Su, Y. Q.; Aoshima, T.; Fukuoka, A.; Hensen, E. J. M.; Nakajima, K. ACS Catal. 2019, 9, 4277. doi: 10.1021/acscatal.9b00450  doi: 10.1021/acscatal.9b00450

    18. [18]

      Casanova, O.; Iborra, S.; Corma, A. J. Catal. 2009, 265, 109. doi: 10.1016/j.jcat.2009.04.019  doi: 10.1016/j.jcat.2009.04.019

    19. [19]

      Cho, A.; Byun, S.; Cho, J. H.; Kim, B. M. ChemSusChem 2019, 12, 2310. doi: 10.1002/cssc.201900454  doi: 10.1002/cssc.201900454

    20. [20]

      Buonerba, A.; Impemba, S.; Litta, A. D.; Capacchione, C.; Milione, S.; Grassi, A. ChemSusChem 2018, 11, 3139. doi: 10.1002/cssc.201801560  doi: 10.1002/cssc.201801560

    21. [21]

      Jagadeesh, R. V.; Murugesan, K.; Alshammari, A. S.; Neumann, H.; Pohl, M. M.; Radnik, J.; Beller, M. Science 2017, 358, 326. doi: 10.1126/science.aan6245  doi: 10.1126/science.aan6245

    22. [22]

      Gao, Z.; Li, C. Y.; Fan, G. L.; Yang, L.; Li, F. Appl. Catal. B 2018, 226, 523. doi: 10.1016/j.apcatb.2018.01.006  doi: 10.1016/j.apcatb.2018.01.006

    23. [23]

      Varga, T.; Ballai, G.; Vásárhelyi, L.; Haspel, H.; Kukovecz, Á.; Kónya, Z. Appl. Catal. B 2018, 237, 826. doi: 10.1016/j.apcatb.2018.06.054  doi: 10.1016/j.apcatb.2018.06.054

    24. [24]

      Wei, Q. L.; Yang, X. H.; Zhang, G. X.; Wang, D. N.; Zuin, L.; Banham, D.; Yang, L. J.; Ye, S. Y.; Wang, Y. L.; Mohamedi, M.; et al. Appl. Catal. B 2018, 237, 85. doi: 10.1016/j.apcatb.2018.05.046  doi: 10.1016/j.apcatb.2018.05.046

    25. [25]

      Jagadeesh, R. V.; Junge, H.; Pohl, M. M.; Radnik, J.; Bruckner, A.; Beller, M. J. Am. Chem. Soc. 2013, 135, 10776. doi: 10.1021/ja403615c  doi: 10.1021/ja403615c

    26. [26]

      Su, H.; Zhang, K. X.; Zhang, B.; Wang, H. H.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. J. Am. Chem. Soc. 2017, 139, 811. doi: 10.1021/jacs.6b10710  doi: 10.1021/jacs.6b10710

    27. [27]

      Zhong, W.; Liu, H. L.; Bai, C. H.; Liao, S. J.; Li, Y. W. ACS Catal. 2015, 5, 1850. doi: 10.1021/cs502101c  doi: 10.1021/cs502101c

    28. [28]

      Han, J. X.; Gu, F. F.; Li, Y. C. Chem. Asian J. 2016, 11, 2594. doi: 10.1002/asia.201600921  doi: 10.1002/asia.201600921

    29. [29]

      Zhou, Y. X.; Chen, Y. Z.; Cao, L. N.; Lu, J. L.; Jiang, H. L. Chem. Commun. 2015, 51, 8292. doi: 10.1039/C5CC01588J  doi: 10.1039/C5CC01588J

    30. [30]

      Huo, N.; Ma, H.; Wang, X. H.; Wang, T. L.; Wang, G.; Wang, T.; Hou, L. L.; Gao, J.; Xu, J. Chin. J. Catal. 2017, 38, 1148. doi: 10.1016/S1872-2067(17)62841-9  doi: 10.1016/S1872-2067(17)62841-9

    31. [31]

      Yao, Y. J.; Lian, C.; Wu, G. D.; Hu, Y.; Wei, F. Y.; Yu, M. J.; Wang, S. Appl. Catal. B 2017, 219, 563. doi: 10.1016/j.apcatb.2017.07.064  doi: 10.1016/j.apcatb.2017.07.064

    32. [32]

      Wang, C.; Kang, J.; Liang, P.; Zhang, H.; Sun, H.; Tadé, M. O.; Wang, S. B. Environ. Sci. Nano 2017, 4, 170. doi: 10.1039/C6EN00397D  doi: 10.1039/C6EN00397D

    33. [33]

      Xu, H. D.; Jiang, N.; Wang, D.; Wang, L. H.; Song, Y. F.; Chen, Z. Q.; Ma, J.; Zhang, T. Appl. Catal. B 2020, 263, 118350. doi: 10.1016/j.apcatb.2019.118350  doi: 10.1016/j.apcatb.2019.118350

    34. [34]

      Zhou, H.; Hong, S.; Zhang, H.; Chen, Y. T.; Xu, H. H.; Wang, X. K.; Jiang, Z.; Chen, S. L.; Liu, Y. Appl. Catal. B 2019, 256, 117767. doi: 10.1016/j.apcatb.2019.117767  doi: 10.1016/j.apcatb.2019.117767

    35. [35]

      Sun, Y. X.; Ma, H.; Jia, X. Q.; Ma, J. P.; Luo, Y.; Gao, J.; Xu, J. ChemCatChem 2016, 8, 2907. doi: 10.1002/cctc.201600484  doi: 10.1002/cctc.201600484

    36. [36]

      Zhu, Y. Q.; Sun, W. M.; Chen, W. X.; Cao, T.; Xiong, Y.; Luo, J.; Dong, J. C.; Zheng, L. R.; Zhang, J.; Wang, X. L.; et al. Adv. Funct. Mater. 2018, 28, 1802167. doi: 10.1002/adfm.201802167  doi: 10.1002/adfm.201802167

    37. [37]

      Huang, G. W.; Wang, L. Y.; Luo, H. H.; Shang, S. S.; Chen, B.; Gao, S.; An, Y. Catal. Sci. Technol. 2020, 10, 2769. doi: 10.1039/D0CY00409J  doi: 10.1039/D0CY00409J

    38. [38]

      Luo, H. H.; Wang, L. Y.; Shang, S. S.; Niu, J. Y.; Gao, S. Commun. Chem. 2019, 2, 17. doi: 10.1038/s42004-019-0116-5  doi: 10.1038/s42004-019-0116-5

    39. [39]

      Chen, Z. X.; Liu, C. B.; Liu, J.; Li, J.; Xi, S. B.; Chi, X.; Xu, H. S.; Park, I. H.; Peng, X. W.; Li, X.; et al. Adv. Mater. 2020, 32, 1906437. doi: 10.1002/adma.201906437  doi: 10.1002/adma.201906437

    40. [40]

      Han, Y. H.; Wang, Z. Y.; Xu, R. R.; Zhang, W.; Chen, W. X.; Zheng, L. R.; Zhang, J.; Luo, J.; Wu, K. L.; Zhu, Y. Q.; et al. Angew. Chem. Int. Ed. 2018, 57, 11262. doi: 10.1002/anie.201805467  doi: 10.1002/anie.201805467

    41. [41]

      Sun, K. K.; Chen, S. J.; Li, Z. L.; Lu, G. P.; Cai, C. Green Chem. 2019, 21, 1602. doi: 10.1039/C8GC03868F  doi: 10.1039/C8GC03868F

    42. [42]

      Yang, W. X.; Chen, L. L.; Liu, X. J.; Jia, J. B.; Guo, S. J. Nanoscale 2017, 9, 1738. doi: 10.1039/C6NR08907K  doi: 10.1039/C6NR08907K

    43. [43]

      Liu, H.; Jia, W. L.; Yu, X.; Tang, X.; Zeng, X. H.; Sun, Y.; Lei, T. Z.; Fang, H. Y.; Li, T. Y.; Lin, L. ACS Catal. 2021, 11, 7828. doi: 10.1021/acscatal.0c04503  doi: 10.1021/acscatal.0c04503

    44. [44]

      Huo, L. L.; Liu, B. C.; Zhang, G.; Si, R.; Liu, J.; Zhang, J. J. Mater. Chem. A 2017, 5, 4868. doi: 10.1039/C6TA10261A  doi: 10.1039/C6TA10261A

    45. [45]

      Liang, H. W.; Zhuang, X. D.; Bruller, S.; Feng, X. L.; Mullen, K. Nat. Commun. 2014, 5, 4973. doi: 10.1038/ncomms5973  doi: 10.1038/ncomms5973

    46. [46]

      Wei, W.; Liang, H. W.; Parvez, K.; Zhuang, X. D.; Feng, X. L.; Mullen, K. Angew. Chem. Int. Ed. 2014, 53, 1570. doi: 10.1002/anie.201307319  doi: 10.1002/anie.201307319

    47. [47]

      Yang, F.; Liu, Z. H.; Liu, X. D.; Feng, A. D.; Zhang, B.; Yang, W.; Li, Y. F. Green Chem. 2021, 23, 1026. doi: 10.1039/D0GC03498C  doi: 10.1039/D0GC03498C

    48. [48]

      Singh, D.; Soykal, I. I.; Tian, J.; von Deak, D.; King, J.; Miller, J. T.; Ozkan, U. S. J. Catal. 2013, 304, 100. doi: 10.1016/j.jcat.2013.04.008  doi: 10.1016/j.jcat.2013.04.008

    49. [49]

      Han, Y. H.; Wang, Y. G.; Chen, W. X.; Xu, R. R.; Zheng, L. R.; Zhang, J.; Luo, J.; Shen, R. A.; Zhu, Y. Q.; Cheong, W. C.; et al. J. Am. Chem. Soc. 2017, 139, 17269. doi: 10.1021/jacs.7b10194  doi: 10.1021/jacs.7b10194

    50. [50]

      Zhou, H.; Xu, H. H.; Liu, Y. Appl. Catal. B 2019, 244, 965. doi: 10.1016/j.apcatb.2018.12.046  doi: 10.1016/j.apcatb.2018.12.046

    51. [51]

      Wang, B. Y.; Lin, J.; Sun, Q. S.; Xia, C. G.; Sun, W. ACS Catal. 2021, 11, 10964. doi: 10.1021/acscatal.1c02738  doi: 10.1021/acscatal.1c02738

    52. [52]

      Li, L.; Li, Y. M.; Huang, R.; Cao, X. R.; Wen, Y. H. Chem. Eur. J. 2021, 27, 9686. doi: 10.1002/chem.202101020  doi: 10.1002/chem.202101020

    53. [53]

      Dong, C.; Qu, Z. P.; Qin, Y.; Fu, Q.; Sun, H. C.; Duan, X. X. ACS Catal. 2019, 9, 6698. doi: 10.1021/acscatal.9b01324  doi: 10.1021/acscatal.9b01324

    54. [54]

      Kabir, S.; Artyushkova, K.; Kiefer, B.; Atanassov, P. Phys. Chem. Chem. Phys. 2015, 17, 17785. doi: 10.1039/C5CP02230D  doi: 10.1039/C5CP02230D

    55. [55]

      Artyushkova, K.; Kiefer, B.; Halevi, B.; Knop-Gericke, A.; Schlogl, R.; Atanassov, P. Chem. Commun. 2013, 49, 2539. doi: 10.1039/C3CC40324F  doi: 10.1039/C3CC40324F

    56. [56]

      Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Nat. Commun. 2017, 8, 944. doi: 10.1038/s41467-017-01035-z  doi: 10.1038/s41467-017-01035-z

    57. [57]

      Zhu, Z. H.; Hatori, H.; Wang, S. B.; Lu, G. Q. J. Phys. Chem. B 2005, 109, 16744. doi: 10.1021/jp051787o  doi: 10.1021/jp051787o

    58. [58]

      Yu, J.; Luan, Y.; Qi, Y.; Hou, J. Y.; Dong, W. J.; Yang, M.; Wang, G. RSC Adv. 2014, 4, 55028. doi: 10.1039/C4RA06944G  doi: 10.1039/C4RA06944G

    59. [59]

      Gandini, A.; Silvestre, A. J. D.; Neto, C. P.; Sousa, A. F.; Gomes, M. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 295. doi: 10.1002/pola.23130  doi: 10.1002/pola.23130

    60. [60]

      Ma, J. P.; Pang, Y.; Wang, M.; Xu, J.; Ma, H.; Nie, X. J. Mater. Chem. 2012, 22, 3457. doi: 10.1039/C2JM15457A  doi: 10.1039/C2JM15457A

    61. [61]

      Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R.; et al. Nat. Nanotechnol. 2018, 13, 856. doi: 10.1038/s41565-018-0197-9  doi: 10.1038/s41565-018-0197-9

    62. [62]

      Maldonado, S.; Stevenson, K. J. J. Phys. Chem. B. 2004, 108, 11375. doi: 10.1021/jp0496553  doi: 10.1021/jp0496553

    63. [63]

      Ismagilov, Z. R.; Shalagina, A. E.; Podyacheva, O. Y.; Ischenko, A. V.; Kibis, L. S.; Boronin, A. I.; Chesalov, Y. A.; Kochubey, D. I.; Romanenko, A. I.; Anikeeva, O. B.; et al. Carbon 2009, 47, 1922. doi: 10.1016/j.carbon.2009.02.034  doi: 10.1016/j.carbon.2009.02.034

    64. [64]

      Shanmugam, S.; Osaka, T. Chem. Commun. 2011, 47, 4463. doi: 10.1039/C1CC10361J  doi: 10.1039/C1CC10361J

    65. [65]

      Zhao, L.; Wang, L.; Yu, P.; Zhao, D. D.; Tian, C. G.; Feng, H.; Ma, J.; Fu, H. G. Chem. Commun. 2015, 51, 12399. doi: 10.1039/C5CC04482K  doi: 10.1039/C5CC04482K

    66. [66]

      Zeng, L. M.; Cui, X. Z.; Chen, L. S.; Ye, T.; Huang, W. M.; Ma, R. G.; Zhang, X. H.; Shi, J. L. Carbon 2017, 114, 347. doi: 10.1016/j.carbon.2016.12.017  doi: 10.1016/j.carbon.2016.12.017

    67. [67]

      Tuinstra, F.; Koenig, J. L. J. Chem. Phys. 1970, 53, 1126. doi: 10.1063/1.1674108  doi: 10.1063/1.1674108

    68. [68]

      Ma, X. J.; Chai, H.; Cao, Y. L.; Xu, J. Y.; Wang, Y. C.; Dong, H.; Jia, D. Z.; Zhou, W. Y. J. Colloid Interface Sci. 2018, 514, 656. doi: 10.1016/j.jcis.2017.12.081  doi: 10.1016/j.jcis.2017.12.081

    69. [69]

      Zhao, Y. M.; Wang, F. F.; Wei, P. J.; Yu, G. Q.; Cui, S. C.; Liu, J. G. ChemistrySelect 2018, 3, 207. doi: 10.1002/slct.201702231  doi: 10.1002/slct.201702231

    70. [70]

      Yang, W. X.; Liu, X. J.; Yue, X. Y.; Jia, J. B.; Guo, S. J. J. Am. Chem. Soc. 2015, 137, 1436. doi: 10.1021/ja5129132  doi: 10.1021/ja5129132

    71. [71]

      Yang, W. X.; Yue, X. Y.; Liu, X. J.; Zhai, J. F.; Jia, J. B. Nanoscale 2015, 7, 11956. doi: 10.1039/C5NR02497H  doi: 10.1039/C5NR02497H

    72. [72]

      Gorbanev, Y. Y.; Klitgaard, S. K.; Woodley, J. M.; Christensen, C. H.; Riisager, A. ChemSusChem 2009, 2, 672. doi: 10.1002/cssc.200900059  doi: 10.1002/cssc.200900059

    73. [73]

      Casanova, O.; Iborra, S.; Corma, A. ChemSusChem 2009, 2, 1138. doi: 10.1002/cssc.200900137  doi: 10.1002/cssc.200900137

    74. [74]

      Davis, S. E.; Houk, L. R.; Tamargo, E. C.; Datye, A. K.; Davis, R. J. Catal. Today 2011, 160, 55. doi: 10.1016/j.cattod.2010.06.004  doi: 10.1016/j.cattod.2010.06.004

    75. [75]

      Luo, H. H.; Wang, L. Y.; Shang, S. S.; Li, G. S.; Lv, Y.; Gao, S.; Dai, W. Angew. Chem. Int. Ed. 2020, 59, 19268. doi: 10.1002/anie.202008261  doi: 10.1002/anie.202008261

    76. [76]

      Donoeva, B.; Masoud, N.; de Jongh, P. E. ACS Catal. 2017, 7, 4581. doi: 10.1021/acscatal.7b00829  doi: 10.1021/acscatal.7b00829

    77. [77]

      Sarina, S.; Bai, S.; Huang, Y. M.; Chen, C.; Jia, J. F.; Jaatinen, E.; Ayoko, G. A.; Bao, Z.; Zhu, H. Y. Green Chem. 2014, 16, 331. doi: 10.1039/C3GC41866A  doi: 10.1039/C3GC41866A

    78. [78]

      Whittaker, A. M.; Dong, V. M. Angew. Chem. Int. Ed. 2015, 54, 1312. doi: 10.1002/anie.20141032  doi: 10.1002/anie.20141032

  • 加载中
    1. [1]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    2. [2]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    3. [3]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    4. [4]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    5. [5]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    6. [6]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    7. [7]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    8. [8]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    9. [9]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    10. [10]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    11. [11]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    12. [12]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    13. [13]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    14. [14]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    15. [15]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    16. [16]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    17. [17]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    18. [18]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    19. [19]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    20. [20]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

Metrics
  • PDF Downloads(10)
  • Abstract views(382)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return