Aerobic Oxidation of 5-Hydroxymethylfurfural to Dimethyl Furan-2, 5-dicarboxylate over CoMn@NC Catalysts Using Atmospheric Oxygen
- Corresponding author: Yao Fu, fuyao@ustc.edu.cn †These authors contributed equally to this work.
Citation: Jianan Teng, Guangyue Xu, Yao Fu. Aerobic Oxidation of 5-Hydroxymethylfurfural to Dimethyl Furan-2, 5-dicarboxylate over CoMn@NC Catalysts Using Atmospheric Oxygen[J]. Acta Physico-Chimica Sinica, ;2022, 38(10): 220403. doi: 10.3866/PKU.WHXB202204031
Burgess, S. K.; Leisen, J. E.; Kraftschik, B. E.; Mubarak, C. R.; Kriegel, R. M.; Koros, W. J. Macromolecules 2014, 47, 1383. doi: 10.1021/ma5000199
doi: 10.1021/ma5000199
Zhu, J. H.; Cai, J. L.; Xie, W. C.; Chen, P. H.; Gazzano, M.; Scandola, M.; Gross, R. A. Macromolecules 2013, 46, 796. doi: 10.1021/ma3023298
doi: 10.1021/ma3023298
Weinberger, S.; Haernvall, K.; Scaini, D.; Ghazaryan, G.; Zumstein, M. T.; Sander, M.; Pellis, A.; Guebitz, G. M. Green Chem. 2017, 19, 5381. doi: 10.1039/C7GC02905E
doi: 10.1039/C7GC02905E
Pal, P.; Saravanamurugan, S. ChemSusChem 2019, 12, 145. doi: 10.1002/cssc.201801744
doi: 10.1002/cssc.201801744
Zhao, D. Y.; Su, T.; Wang, Y. T.; Varma, R. S.; Len, C. Mol. Catal. 2020, 495, 111133. doi: 10.1016/j.mcat.2020.111133
doi: 10.1016/j.mcat.2020.111133
Hou, Q. D.; Qi, X. H.; Zhen, M. N.; Qian, H. L.; Nie, Y. F.; Bai, C. Y. L.; Zhang, S. Q.; Bai, X. Y.; Ju, M. T. Green Chem. 2021, 23, 119. doi: 10.1039/D0GC02770G
doi: 10.1039/D0GC02770G
Yang, Y.; He, B. W.; Ma, H. L.; Yang, S.; Ren, Z. H.; Qin, T.; Lu, F. G.; Ren, L. W.; Zhang, Y. X.; Wang, T. F.; et al. Acta Phys. -Chim. Sin. 2022, 38, 2201050.
doi: 10.3866/PKU.WHXB202201050
Huang, X. Y.; Akdim, O.; Douthwaite, M.; Wang, K.; Zhao, L.; Lewis, R. J.; Pattisson, S.; Daniel, I. T.; Miedziak, P. J.; Shaw, G.; et al. Nature 2022, 603, 271. doi: 10.1038/s41586-022-04397-7
doi: 10.1038/s41586-022-04397-7
Deng, J.; Song, H. J.; Cui, M. S.; Du, Y. P.; Fu, Y. ChemSusChem 2014, 7, 3334. doi: 10.1002/cssc.201402843
doi: 10.1002/cssc.201402843
Li, F.; Li, X. L.; Li, C.; Shi, J.; Fu, Y. Green Chem. 2018, 20, 3050. doi: 10.1039/C8GC01393D
doi: 10.1039/C8GC01393D
Jiang, Y.; Maniar, D.; Woortman, A. J. J.; Loos, K. RSC Adv. 2016, 6, 67941. doi: 10.1039/C6RA14585J
doi: 10.1039/C6RA14585J
Kozlov, K. S.; Romashov, L. V.; Ananikov, V. P. Green Chem. 2019, 21, 3464. doi: 10.1039/C9GC00840C
doi: 10.1039/C9GC00840C
Gupta, S. S. R.; Vinu, A.; Kantam, M. L. J. Catal. 2020, 389, 259. doi: 10.1016/j.jcat.2020.05.032
doi: 10.1016/j.jcat.2020.05.032
Besson, M.; Gallezot, P.; Pinel, C. Chem. Rev. 2014, 114, 1827. doi: 10.1021/cr4002269
doi: 10.1021/cr4002269
Shen, Y. H.; Zhang, S. H.; Li, H. J.; Ren, Y.; Liu, H. C. Chem. Eur. J. 2010, 16, 7368. doi: 10.1002/chem.201000740
doi: 10.1002/chem.201000740
Taarning, E.; Nielsen, I. S.; Egeblad, K.; Madsen, R.; Christensen, C. H. ChemSusChem 2008, 1, 75. doi: 10.1002/cssc.200700033
doi: 10.1002/cssc.200700033
Kim, M.; Su, Y. Q.; Aoshima, T.; Fukuoka, A.; Hensen, E. J. M.; Nakajima, K. ACS Catal. 2019, 9, 4277. doi: 10.1021/acscatal.9b00450
doi: 10.1021/acscatal.9b00450
Casanova, O.; Iborra, S.; Corma, A. J. Catal. 2009, 265, 109. doi: 10.1016/j.jcat.2009.04.019
doi: 10.1016/j.jcat.2009.04.019
Cho, A.; Byun, S.; Cho, J. H.; Kim, B. M. ChemSusChem 2019, 12, 2310. doi: 10.1002/cssc.201900454
doi: 10.1002/cssc.201900454
Buonerba, A.; Impemba, S.; Litta, A. D.; Capacchione, C.; Milione, S.; Grassi, A. ChemSusChem 2018, 11, 3139. doi: 10.1002/cssc.201801560
doi: 10.1002/cssc.201801560
Jagadeesh, R. V.; Murugesan, K.; Alshammari, A. S.; Neumann, H.; Pohl, M. M.; Radnik, J.; Beller, M. Science 2017, 358, 326. doi: 10.1126/science.aan6245
doi: 10.1126/science.aan6245
Gao, Z.; Li, C. Y.; Fan, G. L.; Yang, L.; Li, F. Appl. Catal. B 2018, 226, 523. doi: 10.1016/j.apcatb.2018.01.006
doi: 10.1016/j.apcatb.2018.01.006
Varga, T.; Ballai, G.; Vásárhelyi, L.; Haspel, H.; Kukovecz, Á.; Kónya, Z. Appl. Catal. B 2018, 237, 826. doi: 10.1016/j.apcatb.2018.06.054
doi: 10.1016/j.apcatb.2018.06.054
Wei, Q. L.; Yang, X. H.; Zhang, G. X.; Wang, D. N.; Zuin, L.; Banham, D.; Yang, L. J.; Ye, S. Y.; Wang, Y. L.; Mohamedi, M.; et al. Appl. Catal. B 2018, 237, 85. doi: 10.1016/j.apcatb.2018.05.046
doi: 10.1016/j.apcatb.2018.05.046
Jagadeesh, R. V.; Junge, H.; Pohl, M. M.; Radnik, J.; Bruckner, A.; Beller, M. J. Am. Chem. Soc. 2013, 135, 10776. doi: 10.1021/ja403615c
doi: 10.1021/ja403615c
Su, H.; Zhang, K. X.; Zhang, B.; Wang, H. H.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. J. Am. Chem. Soc. 2017, 139, 811. doi: 10.1021/jacs.6b10710
doi: 10.1021/jacs.6b10710
Zhong, W.; Liu, H. L.; Bai, C. H.; Liao, S. J.; Li, Y. W. ACS Catal. 2015, 5, 1850. doi: 10.1021/cs502101c
doi: 10.1021/cs502101c
Han, J. X.; Gu, F. F.; Li, Y. C. Chem. Asian J. 2016, 11, 2594. doi: 10.1002/asia.201600921
doi: 10.1002/asia.201600921
Zhou, Y. X.; Chen, Y. Z.; Cao, L. N.; Lu, J. L.; Jiang, H. L. Chem. Commun. 2015, 51, 8292. doi: 10.1039/C5CC01588J
doi: 10.1039/C5CC01588J
Huo, N.; Ma, H.; Wang, X. H.; Wang, T. L.; Wang, G.; Wang, T.; Hou, L. L.; Gao, J.; Xu, J. Chin. J. Catal. 2017, 38, 1148. doi: 10.1016/S1872-2067(17)62841-9
doi: 10.1016/S1872-2067(17)62841-9
Yao, Y. J.; Lian, C.; Wu, G. D.; Hu, Y.; Wei, F. Y.; Yu, M. J.; Wang, S. Appl. Catal. B 2017, 219, 563. doi: 10.1016/j.apcatb.2017.07.064
doi: 10.1016/j.apcatb.2017.07.064
Wang, C.; Kang, J.; Liang, P.; Zhang, H.; Sun, H.; Tadé, M. O.; Wang, S. B. Environ. Sci. Nano 2017, 4, 170. doi: 10.1039/C6EN00397D
doi: 10.1039/C6EN00397D
Xu, H. D.; Jiang, N.; Wang, D.; Wang, L. H.; Song, Y. F.; Chen, Z. Q.; Ma, J.; Zhang, T. Appl. Catal. B 2020, 263, 118350. doi: 10.1016/j.apcatb.2019.118350
doi: 10.1016/j.apcatb.2019.118350
Zhou, H.; Hong, S.; Zhang, H.; Chen, Y. T.; Xu, H. H.; Wang, X. K.; Jiang, Z.; Chen, S. L.; Liu, Y. Appl. Catal. B 2019, 256, 117767. doi: 10.1016/j.apcatb.2019.117767
doi: 10.1016/j.apcatb.2019.117767
Sun, Y. X.; Ma, H.; Jia, X. Q.; Ma, J. P.; Luo, Y.; Gao, J.; Xu, J. ChemCatChem 2016, 8, 2907. doi: 10.1002/cctc.201600484
doi: 10.1002/cctc.201600484
Zhu, Y. Q.; Sun, W. M.; Chen, W. X.; Cao, T.; Xiong, Y.; Luo, J.; Dong, J. C.; Zheng, L. R.; Zhang, J.; Wang, X. L.; et al. Adv. Funct. Mater. 2018, 28, 1802167. doi: 10.1002/adfm.201802167
doi: 10.1002/adfm.201802167
Huang, G. W.; Wang, L. Y.; Luo, H. H.; Shang, S. S.; Chen, B.; Gao, S.; An, Y. Catal. Sci. Technol. 2020, 10, 2769. doi: 10.1039/D0CY00409J
doi: 10.1039/D0CY00409J
Luo, H. H.; Wang, L. Y.; Shang, S. S.; Niu, J. Y.; Gao, S. Commun. Chem. 2019, 2, 17. doi: 10.1038/s42004-019-0116-5
doi: 10.1038/s42004-019-0116-5
Chen, Z. X.; Liu, C. B.; Liu, J.; Li, J.; Xi, S. B.; Chi, X.; Xu, H. S.; Park, I. H.; Peng, X. W.; Li, X.; et al. Adv. Mater. 2020, 32, 1906437. doi: 10.1002/adma.201906437
doi: 10.1002/adma.201906437
Han, Y. H.; Wang, Z. Y.; Xu, R. R.; Zhang, W.; Chen, W. X.; Zheng, L. R.; Zhang, J.; Luo, J.; Wu, K. L.; Zhu, Y. Q.; et al. Angew. Chem. Int. Ed. 2018, 57, 11262. doi: 10.1002/anie.201805467
doi: 10.1002/anie.201805467
Sun, K. K.; Chen, S. J.; Li, Z. L.; Lu, G. P.; Cai, C. Green Chem. 2019, 21, 1602. doi: 10.1039/C8GC03868F
doi: 10.1039/C8GC03868F
Yang, W. X.; Chen, L. L.; Liu, X. J.; Jia, J. B.; Guo, S. J. Nanoscale 2017, 9, 1738. doi: 10.1039/C6NR08907K
doi: 10.1039/C6NR08907K
Liu, H.; Jia, W. L.; Yu, X.; Tang, X.; Zeng, X. H.; Sun, Y.; Lei, T. Z.; Fang, H. Y.; Li, T. Y.; Lin, L. ACS Catal. 2021, 11, 7828. doi: 10.1021/acscatal.0c04503
doi: 10.1021/acscatal.0c04503
Huo, L. L.; Liu, B. C.; Zhang, G.; Si, R.; Liu, J.; Zhang, J. J. Mater. Chem. A 2017, 5, 4868. doi: 10.1039/C6TA10261A
doi: 10.1039/C6TA10261A
Liang, H. W.; Zhuang, X. D.; Bruller, S.; Feng, X. L.; Mullen, K. Nat. Commun. 2014, 5, 4973. doi: 10.1038/ncomms5973
doi: 10.1038/ncomms5973
Wei, W.; Liang, H. W.; Parvez, K.; Zhuang, X. D.; Feng, X. L.; Mullen, K. Angew. Chem. Int. Ed. 2014, 53, 1570. doi: 10.1002/anie.201307319
doi: 10.1002/anie.201307319
Yang, F.; Liu, Z. H.; Liu, X. D.; Feng, A. D.; Zhang, B.; Yang, W.; Li, Y. F. Green Chem. 2021, 23, 1026. doi: 10.1039/D0GC03498C
doi: 10.1039/D0GC03498C
Singh, D.; Soykal, I. I.; Tian, J.; von Deak, D.; King, J.; Miller, J. T.; Ozkan, U. S. J. Catal. 2013, 304, 100. doi: 10.1016/j.jcat.2013.04.008
doi: 10.1016/j.jcat.2013.04.008
Han, Y. H.; Wang, Y. G.; Chen, W. X.; Xu, R. R.; Zheng, L. R.; Zhang, J.; Luo, J.; Shen, R. A.; Zhu, Y. Q.; Cheong, W. C.; et al. J. Am. Chem. Soc. 2017, 139, 17269. doi: 10.1021/jacs.7b10194
doi: 10.1021/jacs.7b10194
Zhou, H.; Xu, H. H.; Liu, Y. Appl. Catal. B 2019, 244, 965. doi: 10.1016/j.apcatb.2018.12.046
doi: 10.1016/j.apcatb.2018.12.046
Wang, B. Y.; Lin, J.; Sun, Q. S.; Xia, C. G.; Sun, W. ACS Catal. 2021, 11, 10964. doi: 10.1021/acscatal.1c02738
doi: 10.1021/acscatal.1c02738
Li, L.; Li, Y. M.; Huang, R.; Cao, X. R.; Wen, Y. H. Chem. Eur. J. 2021, 27, 9686. doi: 10.1002/chem.202101020
doi: 10.1002/chem.202101020
Dong, C.; Qu, Z. P.; Qin, Y.; Fu, Q.; Sun, H. C.; Duan, X. X. ACS Catal. 2019, 9, 6698. doi: 10.1021/acscatal.9b01324
doi: 10.1021/acscatal.9b01324
Kabir, S.; Artyushkova, K.; Kiefer, B.; Atanassov, P. Phys. Chem. Chem. Phys. 2015, 17, 17785. doi: 10.1039/C5CP02230D
doi: 10.1039/C5CP02230D
Artyushkova, K.; Kiefer, B.; Halevi, B.; Knop-Gericke, A.; Schlogl, R.; Atanassov, P. Chem. Commun. 2013, 49, 2539. doi: 10.1039/C3CC40324F
doi: 10.1039/C3CC40324F
Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Nat. Commun. 2017, 8, 944. doi: 10.1038/s41467-017-01035-z
doi: 10.1038/s41467-017-01035-z
Zhu, Z. H.; Hatori, H.; Wang, S. B.; Lu, G. Q. J. Phys. Chem. B 2005, 109, 16744. doi: 10.1021/jp051787o
doi: 10.1021/jp051787o
Yu, J.; Luan, Y.; Qi, Y.; Hou, J. Y.; Dong, W. J.; Yang, M.; Wang, G. RSC Adv. 2014, 4, 55028. doi: 10.1039/C4RA06944G
doi: 10.1039/C4RA06944G
Gandini, A.; Silvestre, A. J. D.; Neto, C. P.; Sousa, A. F.; Gomes, M. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 295. doi: 10.1002/pola.23130
doi: 10.1002/pola.23130
Ma, J. P.; Pang, Y.; Wang, M.; Xu, J.; Ma, H.; Nie, X. J. Mater. Chem. 2012, 22, 3457. doi: 10.1039/C2JM15457A
doi: 10.1039/C2JM15457A
Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R.; et al. Nat. Nanotechnol. 2018, 13, 856. doi: 10.1038/s41565-018-0197-9
doi: 10.1038/s41565-018-0197-9
Maldonado, S.; Stevenson, K. J. J. Phys. Chem. B. 2004, 108, 11375. doi: 10.1021/jp0496553
doi: 10.1021/jp0496553
Ismagilov, Z. R.; Shalagina, A. E.; Podyacheva, O. Y.; Ischenko, A. V.; Kibis, L. S.; Boronin, A. I.; Chesalov, Y. A.; Kochubey, D. I.; Romanenko, A. I.; Anikeeva, O. B.; et al. Carbon 2009, 47, 1922. doi: 10.1016/j.carbon.2009.02.034
doi: 10.1016/j.carbon.2009.02.034
Shanmugam, S.; Osaka, T. Chem. Commun. 2011, 47, 4463. doi: 10.1039/C1CC10361J
doi: 10.1039/C1CC10361J
Zhao, L.; Wang, L.; Yu, P.; Zhao, D. D.; Tian, C. G.; Feng, H.; Ma, J.; Fu, H. G. Chem. Commun. 2015, 51, 12399. doi: 10.1039/C5CC04482K
doi: 10.1039/C5CC04482K
Zeng, L. M.; Cui, X. Z.; Chen, L. S.; Ye, T.; Huang, W. M.; Ma, R. G.; Zhang, X. H.; Shi, J. L. Carbon 2017, 114, 347. doi: 10.1016/j.carbon.2016.12.017
doi: 10.1016/j.carbon.2016.12.017
Tuinstra, F.; Koenig, J. L. J. Chem. Phys. 1970, 53, 1126. doi: 10.1063/1.1674108
doi: 10.1063/1.1674108
Ma, X. J.; Chai, H.; Cao, Y. L.; Xu, J. Y.; Wang, Y. C.; Dong, H.; Jia, D. Z.; Zhou, W. Y. J. Colloid Interface Sci. 2018, 514, 656. doi: 10.1016/j.jcis.2017.12.081
doi: 10.1016/j.jcis.2017.12.081
Zhao, Y. M.; Wang, F. F.; Wei, P. J.; Yu, G. Q.; Cui, S. C.; Liu, J. G. ChemistrySelect 2018, 3, 207. doi: 10.1002/slct.201702231
doi: 10.1002/slct.201702231
Yang, W. X.; Liu, X. J.; Yue, X. Y.; Jia, J. B.; Guo, S. J. J. Am. Chem. Soc. 2015, 137, 1436. doi: 10.1021/ja5129132
doi: 10.1021/ja5129132
Yang, W. X.; Yue, X. Y.; Liu, X. J.; Zhai, J. F.; Jia, J. B. Nanoscale 2015, 7, 11956. doi: 10.1039/C5NR02497H
doi: 10.1039/C5NR02497H
Gorbanev, Y. Y.; Klitgaard, S. K.; Woodley, J. M.; Christensen, C. H.; Riisager, A. ChemSusChem 2009, 2, 672. doi: 10.1002/cssc.200900059
doi: 10.1002/cssc.200900059
Casanova, O.; Iborra, S.; Corma, A. ChemSusChem 2009, 2, 1138. doi: 10.1002/cssc.200900137
doi: 10.1002/cssc.200900137
Davis, S. E.; Houk, L. R.; Tamargo, E. C.; Datye, A. K.; Davis, R. J. Catal. Today 2011, 160, 55. doi: 10.1016/j.cattod.2010.06.004
doi: 10.1016/j.cattod.2010.06.004
Luo, H. H.; Wang, L. Y.; Shang, S. S.; Li, G. S.; Lv, Y.; Gao, S.; Dai, W. Angew. Chem. Int. Ed. 2020, 59, 19268. doi: 10.1002/anie.202008261
doi: 10.1002/anie.202008261
Donoeva, B.; Masoud, N.; de Jongh, P. E. ACS Catal. 2017, 7, 4581. doi: 10.1021/acscatal.7b00829
doi: 10.1021/acscatal.7b00829
Sarina, S.; Bai, S.; Huang, Y. M.; Chen, C.; Jia, J. F.; Jaatinen, E.; Ayoko, G. A.; Bao, Z.; Zhu, H. Y. Green Chem. 2014, 16, 331. doi: 10.1039/C3GC41866A
doi: 10.1039/C3GC41866A
Whittaker, A. M.; Dong, V. M. Angew. Chem. Int. Ed. 2015, 54, 1312. doi: 10.1002/anie.20141032
doi: 10.1002/anie.20141032
Lili Wang , Ya Yan , Rulin Li , Xujie Han , Jiahui Li , Ting Ran , Jialu Li , Baichuan Xiong , Xiaorong Song , Zhaohui Yin , Hong Wang , Qingjun Zhu , Bowen Cheng , Zhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Yanling Yang , Zhenfa Ding , Huimin Wang , Jianhui Li , Yanping Zheng , Hongquan Guo , Li Zhang , Bing Yang , Qingqing Gu , Haifeng Xiong , Yifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585
Weizhong LING , Xiangyun CHEN , Wenjing LIU , Yingkai HUANG , Yu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Xiaoxiao Huang , Zhi-Long He , Yangpeng Chen , Lei Li , Zhenyu Yang , Chunyang Zhai , Mingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271
Liang Ming , Dan Liu , Qiyue Luo , Chaochao Wei , Chen Liu , Ziling Jiang , Zhongkai Wu , Lin Li , Long Zhang , Shijie Cheng , Chuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387