Citation: Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices[J]. Acta Physico-Chimica Sinica, ;2022, 38(9): 220401. doi: 10.3866/PKU.WHXB202204017 shu

Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices

  • Corresponding author: Quan Shi, shiquan@dicp.ac.cn Zhong-Shuai Wu, wuzs@dicp.ac.cn
  • These authors contributed equally to this work.
  • Received Date: 7 April 2022
    Revised Date: 29 April 2022
    Accepted Date: 29 April 2022
    Available Online: 17 May 2022

    Fund Project: the National Natural Science Foundation of China 22125903the National Natural Science Foundation of China 51872283the National Natural Science Foundation of China 21903082the National Natural Science Foundation of China 22003065

  • With the rapid advancement of intelligent microelectronics and the "Internet of Things" sensing microsystems with miniaturized and wearable properties, the development of novel fiber-based functional materials for application in flexible and microscale electrochemical energy storage devices has become an important strategic direction. However, this imparts higher requirements on the properties of fiber functional materials for use in flexible energy storage devices, including high bendability, stretchability, foldability, high strength, excellent interfacial stability, and high energy storage density. Based on its unique structure, excellent conductivity, and favorable mechanical and electrochemical properties, graphene-based fibers are expected to be a novel flexible functional material with high performance. To date, various strategies have been developed to control the microstructure to achieve further improvements in graphene fibers, from preparation methods to fundamental properties. In this review, a systematic summary of the recent advances in the preparation methods of graphene-based fibers is presented, including the limited hydrothermal synthesis, chemical vapor deposition (CVD), dry spinning, and wet spinning methods, and each method is discussed in terms of its advantages and disadvantages. Subsequently, strategies to improve the mechanical strength, electrical conductivity, and thermal conductivity of graphene fibers are highlighted, including the regulation of basic materials, improvement of the preparation process, and controlling subsequent processing. Recent research on the application of graphene fiber in energy storage and conversion is also summarized. Based on the exceptional electrical conductivity and pore structure of graphene fibers, it has significant application prospects in the field of electrochemical energy storage devices, such as supercapacitors, metal-ion batteries, and solar cells. Moreover, graphene fibers have a wide range of applications in phase change fibers and thermoelectric generators owing to their excellent thermal conductivity. This review summarizes and discusses the preparation of the basic constituent units of graphene fibers, development of novel graphene fibers, interfaces between graphene fibers and active materials, packaging strategies and safety issues of graphene fiber-based electrochemical energy storage devices, and current evaluation criteria for graphene fiber performance. Finally, the ongoing challenges and future prospects of graphene fibers for advanced energy conversion and storage systems are presented.
  • 加载中
    1. [1]

      Jayathilaka, W. A. D. M.; Qi, K.; Qin, Y.; Chinnappan, A.; Serrano-Garcia, W.; Baskar, C.; Wang, H.; He, J.; Cui, S.; Thomas, S. W.; et al. Adv. Mater. 2019, 31, 1805921. doi: 10.1002/adma.201805921  doi: 10.1002/adma.201805921

    2. [2]

      Ates, H. C.; Yetisen, A. K.; Guder, F.; Dincer, C. Nat. Electron. 2021, 4, 13. doi: 10.1038/s41928-020-00533-1  doi: 10.1038/s41928-020-00533-1

    3. [3]

      Araki, T.; Uemura, T.; Yoshimoto, S.; Takemoto, A.; Noda, Y.; Izumi, S.; Sekitani, T. Adv. Mater. 2020, 32, 1902684. doi: 10.1002/adma.201902684  doi: 10.1002/adma.201902684

    4. [4]

      Lim, H.-R.; Kim, H. S.; Qazi, R.; Kwon, Y.-T.; Jeong, J.-W.; Yeo, W.-H. Adv. Mater. 2020, 32, 1901924. doi: 10.1002/adma.201901924  doi: 10.1002/adma.201901924

    5. [5]

      Xia, K.-L.; Jian, M.-Q.; Zhang, Y.-Y. Acta Phys. -Chim. Sin. 2016, 32, 2427.  doi: 10.3866/PKU.WHXB201607261

    6. [6]

      Wang, H.; He, M.; Zhang, Y. Acta Phys. -Chim. Sin. 2019, 35, 1207.  doi: 10.3866/PKU.WHXB201811011

    7. [7]

      Zhang, S.; Zhang, N.; Zhang, J. Acta Phys. -Chim. Sin. 2020, 36, 1907021.  doi: 10.3866/PKU.WHXB201907021

    8. [8]

      Cheng, Y.; Wang, R.; Sun, J.; Gao, L. Adv. Mater. 2015, 27, 7365. doi: 10.1002/adma.201503558  doi: 10.1002/adma.201503558

    9. [9]

      Kwon, S.; Hwang, Y. H.; Nam, M.; Chae, H.; Lee, H. S.; Jeon, Y.; Lee, S.; Kim, C. Y.; Choi, S.; Jeong, E. G.; et al. Adv. Mater. 2020, 32, 1903488. doi: 10.1002/adma.201903488  doi: 10.1002/adma.201903488

    10. [10]

      Yang, Z.; Zhai, Z.; Song, Z.; Wu, Y.; Liang, J.; Shan, Y.; Zheng, J.; Liang, H.; Jiang, H. Adv. Mater. 2020, 32, 1907495. doi: 10.1002/adma.201907495  doi: 10.1002/adma.201907495

    11. [11]

      Xin, S.; Guo, Y.-G.; Wan, L.-J. Acc. Chem. Res. 2012, 45, 1759. doi: 10.1021/ar300094m  doi: 10.1021/ar300094m

    12. [12]

      Zhou, G.; Xu, L.; Hu, G.; Mai, L.; Cui, Y. Chem. Rev. 2019, 119, 11042. doi: 10.1021/acs.chemrev.9b00326  doi: 10.1021/acs.chemrev.9b00326

    13. [13]

      Wang, B.; Fang, X.; Sun, H.; He, S.; Ren, J.; Zhang, Y.; Peng, H. Adv. Mater. 2015, 27, 7854. doi: 10.1002/adma.201503441  doi: 10.1002/adma.201503441

    14. [14]

      Wang, X.; Shen, G. Nano Energy 2015, 15, 104. doi: 10.1016/j.nanoen.2015.04.011  doi: 10.1016/j.nanoen.2015.04.011

    15. [15]

      Xu, P.; Wei, B.; Cao, Z.; Zheng, J.; Gong, K.; Li, F.; Yu, J.; Li, Q.; Lu, W.; Byun, J.-H.; et al. ACS Nano 2015, 9, 6088. doi: 10.1021/acsnano.5b01244  doi: 10.1021/acsnano.5b01244

    16. [16]

      Weintraub, B.; Wei, Y.; Wang, Z. L. Angew. Chem. Int. Ed. 2009, 48, 8981. doi: 10.1002/anie.200904492  doi: 10.1002/anie.200904492

    17. [17]

      Chen, T.; Wang, S.; Yang, Z.; Feng, Q.; Sun, X.; Li, L.; Wang, Z.-S.; Peng, H. Angew. Chem. Int. Ed. 2011, 50, 1815. doi: 10.1002/anie.201003870  doi: 10.1002/anie.201003870

    18. [18]

      Li, R.; Xiang, X.; Tong, X.; Zou, J.; Li, Q. Adv. Mater. 2015, 27, 3831. doi: 10.1002/adma.201501333  doi: 10.1002/adma.201501333

    19. [19]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    20. [20]

      Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H.; et al. Chem. Rev. 2017, 117, 6225. doi: 10.1021/acs.chemrev.6b00558  doi: 10.1021/acs.chemrev.6b00558

    21. [21]

      Xu, M.; Liang, T.; Shi, M.; Chen, H. Chem. Rev. 2013, 113, 3766. doi: 10.1021/cr300263a  doi: 10.1021/cr300263a

    22. [22]

      Wang, K.; Shi, L.; Wang, M.; Yang, H.; Liu, Z.; Peng, H. Acta Phys. -Chim. Sin. 2019, 35, 1112.  doi: 10.3866/PKU.WHXB201805032

    23. [23]

      Cheng, Y.; Wang, K.; Qi, Y.; Liu, Z. Acta Phys. -Chim. Sin. 2022, 38, 2006046.  doi: 10.3866/PKU.WHXB202006046

    24. [24]

      Liu, Q.-B.; Yu, C.; He, Z.-Z.; Wang, J.-J.; Li, J.; Lu, W.-L.; Feng, Z.-H. Acta Phys. -Chim. Sin. 2016, 32, 787.  doi: 10.3866/PKU.WHXB201512183

    25. [25]

      Qu, L.; Liu, Y.; Baek, J.; Dai, L. ACS Nano 2010, 4, 1321. doi: 10.1021/nn901850u  doi: 10.1021/nn901850u

    26. [26]

      Wang, X.; Li, Y.; Das, P.; Zheng, S.; Zhou, F.; Wu, Z.-S. Energy Storage Mater. 2020, 31, 156. doi: 10.1016/j.ensm.2020.06.010  doi: 10.1016/j.ensm.2020.06.010

    27. [27]

      Wu, Z.-S.; Parvez, K.; Winter, A.; Vieker, H.; Liu, X.; Han, S.; Turchanin, A.; Feng, X.; Muellen, K. Adv. Mater. 2014, 26, 4552. doi: 10.1002/adma.201401228  doi: 10.1002/adma.201401228

    28. [28]

      Zhang, B.; Jiang, Y. Micro Nano Lett. 2019, 14, 224. doi: 10.1049/mnl.2018.5105  doi: 10.1049/mnl.2018.5105

    29. [29]

      Liu, H.; Sun, K.; Shi, X.; Yang, H.; Dong, H.; Kou, Y.; Das, P.; Wu, Z.-S.; Shi, Q. Energy Storage Mater. 2021, 42, 845. doi: 10.1016/j.ensm.2021.08.022  doi: 10.1016/j.ensm.2021.08.022

    30. [30]

      Chen, Y.; Yue, Y.-Y.; Wang, S.-R.; Zhang, N.; Feng, J.; Sun, H.-B. Adv. Electron. Mater. 2019, 5, 2779. doi: 10.1002/aelm.201900247  doi: 10.1002/aelm.201900247

    31. [31]

      Xu, Z.; Gao, C. Nat. Commun. 2011, 2, 571. doi: 10.1038/ncomms1583  doi: 10.1038/ncomms1583

    32. [32]

      Meng, F.; Lu, W.; Li, Q.; Byun, J.-H.; Oh, Y.; Chou, T.-W. Adv. Mater. 2015, 27, 5113. doi: 10.1002/adma.201501126  doi: 10.1002/adma.201501126

    33. [33]

      Guan, F.-L.; An, F.; Yang, J.; Li, X.; Li, X.-H.; Yu, Z.-Z. Chin. J. Polym. Sci. 2017, 35, 1381. doi: 10.1007/s10118-017-1972-z  doi: 10.1007/s10118-017-1972-z

    34. [34]

      Weng, W.; Yang, J.; Zhang, Y.; Li, Y.; Yang, S.; Zhu, L.; Zhu, M. Adv. Mater. 2019, 32, 1902301. doi: 10.1002/adma.201902301  doi: 10.1002/adma.201902301

    35. [35]

      Xu, Z.; Gao, C. Mater. Today 2015, 18, 480. doi: 10.1016/j.mattod.2015.06.009  doi: 10.1016/j.mattod.2015.06.009

    36. [36]

      Fang, B.; Chang, D.; Xu, Z.; Gao, C. Adv. Mater. 2020, 32, 29. doi: 10.1002/adma.201902664  doi: 10.1002/adma.201902664

    37. [37]

      Li, X.; Zhao, T.; Wang, K.; Yang, Y.; Wei, J.; Kang, F.; Wu, D.; Zhu, H. Langmuir 2011, 27, 12164. doi: 10.1021/la202380g  doi: 10.1021/la202380g

    38. [38]

      Dong, Z.; Jiang, C.; Cheng, H.; Zhao, Y.; Shi, G.; Jiang, L.; Qu, L. Adv. Mater. 2012, 24, 1856. doi: 10.1002/adma.201200170  doi: 10.1002/adma.201200170

    39. [39]

      Tian, Q.; Xu, Z.; Liu, Y.; Fang, B.; Peng, L.; Xi, J.; Lia, Z.; Gao, C. Nanoscale 2017, 9, 12335. doi: 10.1039/c7nr03895j  doi: 10.1039/c7nr03895j

    40. [40]

      Ansari, M. O.; Khan, M. M.; Ansari, S. A.; Amal, I.; Lee, J.; Cho, M. H. Chem. Eng. J. 2014, 242, 155. doi: 10.1016/j.cej.2013.12.033  doi: 10.1016/j.cej.2013.12.033

    41. [41]

      Chen, S.; Qiu, L.; Cheng, H.-M. Chem. Rev. 2020, 120, 2811. doi: 10.1021/acs.chemrev.9b00466  doi: 10.1021/acs.chemrev.9b00466

    42. [42]

      Xu, Z.; Gao, C. Acc. Chem. Res. 2014, 47, 1267. doi: 10.1021/ar4002813  doi: 10.1021/ar4002813

    43. [43]

      Sasikala, S. P.; Lim, J.; Kim, I. H.; Jung, H. J.; Yun, T.; Han, T. H.; Kim, S. O. Chem. Soc. Rev. 2018, 47, 6013. doi: 10.1039/c8cs00299a  doi: 10.1039/c8cs00299a

    44. [44]

      Behabtu, N.; Lomeda, J. R.; Green, M. J.; Higginbotham, A. L.; Sinitskii, A.; Kosynkin, D. V.; Tsentalovich, D.; Parra-Vasquez, A. N. G.; Schmidt, J.; Kesselman, E.; et al. Nat. Nanotechnol. 2010, 5, 406. doi: 10.1038/nnano.2010.86  doi: 10.1038/nnano.2010.86

    45. [45]

      Chen, D.; Feng, H.; Li, J. Chem. Rev. 2012, 112, 6027. doi: 10.1021/cr300115g  doi: 10.1021/cr300115g

    46. [46]

      Pham, V. P.; Jang, H.-S.; Whang, D.; Choi, J.-Y. Chem. Soc. Rev. 2017, 46, 6276. doi: 10.1039/c7cs00224f  doi: 10.1039/c7cs00224f

    47. [47]

      Huang, X.; Qi, X.; Boey, F.; Zhang, H. Chem. Soc. Rev. 2012, 41, 666. doi: 10.1039/c1cs15078b  doi: 10.1039/c1cs15078b

    48. [48]

      Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Chem. Rev. 2016, 116, 5464. doi: 10.1021/acs.chemrev.5b00620  doi: 10.1021/acs.chemrev.5b00620

    49. [49]

      Liu, Y.; Xu, Z.; Gao, W.; Cheng, Z.; Gao, C. Adv. Mater. 2017, 29, 1606794. doi: 10.1002/adma.201606794  doi: 10.1002/adma.201606794

    50. [50]

      Wu, S.; Qureshi, T.; Wang, G. Energies 2021, 14, 4614. doi: 10.3390/en14154614  doi: 10.3390/en14154614

    51. [51]

      Cheng, H.; Li, Q.; Zhu, L.; Chen, S. Small Methods 2021, 5, 2100502. doi: 10.1002/smtd.202100502  doi: 10.1002/smtd.202100502

    52. [52]

      Jian, M.; Zhang, Y.; Liu, Z. Acta Phys. -Chim. Sin. 2022, 38, 2007093.  doi: 10.3866/PKU.WHXB202007093

    53. [53]

      Ni, G.-X.; Yang, H.-Z.; Ji, W.; Baeck, S.-J.; Toh, C.-T.; Ahn, J.-H.; Pereira, V. M.; Oezyilmaz, B. Adv. Mater. 2014, 26, 1081. doi: 10.1002/adma.201304156  doi: 10.1002/adma.201304156

    54. [54]

      Deng, B.; Liu, Z.; Peng, H. Adv. Mater. 2019, 31, 1800996. doi: 10.1002/adma.201800996  doi: 10.1002/adma.201800996

    55. [55]

      Wang, M.; Jang, S. K.; Jang, W.-J.; Kim, M.; Park, S.-Y.; Kim, S.-W.; Kahng, S.-J.; Choi, J.-Y.; Ruoff, R. S.; Song, Y. J.; et al. Adv. Mater. 2013, 25, 2746. doi: 10.1002/adma.201204904  doi: 10.1002/adma.201204904

    56. [56]

      Chen, T.; Dai, L. Angew. Chem. Int. Ed. 2015, 54, 14947. doi: 10.1002/anie.201507246  doi: 10.1002/anie.201507246

    57. [57]

      Zheng, X.; Hu, Q.; Zhou, X.; Nie, W.; Li, C.; Yuan, N. Materials & Design 2021, 201, 109476. doi: 10.1016/j.matdes.2021.109476  doi: 10.1016/j.matdes.2021.109476

    58. [58]

      Xu, Z.; Peng, L.; Liu, Y.; Liu, Z.; Sun, H.; Gao, W.; Gao, C. Chem. Mater. 2017, 29, 319. doi: 10.1021/acs.chemmater.6b02882  doi: 10.1021/acs.chemmater.6b02882

    59. [59]

      Mirabedini, A.; Foroughi, J.; Thompson, B.; Wallace, G. G. Adv. Eng. Mater. 2016, 18, 284. doi: 10.1002/adem.201500201  doi: 10.1002/adem.201500201

    60. [60]

      Huang, T.; Zheng, B.; Kou, L.; Gopalsamy, K.; Xu, Z.; Gao, C.; Meng, Y.; Wei, Z. RSC Adv. 2013, 3, 23957. doi: 10.1039/c3ra44935a  doi: 10.1039/c3ra44935a

    61. [61]

      Meng, F.; Li, R.; Li, Q.; Lu, W.; Chou, T.-W. Carbon 2014, 72, 250. doi: 10.1016/j.carbon.2014.01.073  doi: 10.1016/j.carbon.2014.01.073

    62. [62]

      Lin, H.; Dong, H.; Xu, S.; Wang, X.; Zhang, J.; Wang, Y. Mater. Lett. 2016, 183, 147. doi: 10.1016/j.matlet.2016.07.092  doi: 10.1016/j.matlet.2016.07.092

    63. [63]

      Liu, Z.; Li, Z.; Xu, Z.; Xia, Z.; Hu, X.; Kou, L.; Peng, L.; Wei, Y.; Gao, C. Chem. Mater. 2014, 26, 6786. doi: 10.1021/cm5033089  doi: 10.1021/cm5033089

    64. [64]

      Kumar, M.; Gowda, A.; Kumar, S. Part. Part. Sys. Character. 2017, 34, 2103981. doi: 10.1002/ppsc.201700003  doi: 10.1002/ppsc.201700003

    65. [65]

      Narayan, R.; Kim, J. E.; Kim, J. Y.; Lee, K. E.; Kim, S. O. Adv. Mater. 2016, 28, 3045. doi: 10.1002/adma.201505122  doi: 10.1002/adma.201505122

    66. [66]

      Tang, X.; Cheng, D.; Ran, J.; Li, D.; He, C.; Bi, S.; Cai, G.; Wang, X. Nanotechnol. Rev. 2021, 10, 221. doi: 10.1515/ntrev-2021-0021  doi: 10.1515/ntrev-2021-0021

    67. [67]

      Xiao, Y.; Xin, B.; Chen, Z.; Lin, L.; Liu, Y.; Hu, Z. J. Industrial Text. 2019, 48, 1348. doi: 10.1177/1528083718760805  doi: 10.1177/1528083718760805

    68. [68]

      Wu, R.; Ma, L.; Liu, X. Y. Adv. Sci. 2022, 9, 2103981. doi: 10.1002/advs.202103981  doi: 10.1002/advs.202103981

    69. [69]

      Li, J.; Li, J.; Li, L.; Yu, M.; Ma, H.; Zhang, B. J. Mater. Chem. A 2014, 2, 6359. doi: 10.1039/c4ta00431k  doi: 10.1039/c4ta00431k

    70. [70]

      Xin, G.; Yao, T.; Sun, H.; Scott, S. M.; Shao, D.; Wang, G.; Lian, J. Science 2015, 349, 1083. doi: 10.1126/science.aaa6502  doi: 10.1126/science.aaa6502

    71. [71]

      Mirabedini, A.; Ang, A.; Nikzad, M.; Fox, B.; Lau, K.-T.; Hameed, N. Adv. Sci. 2020, 7, 1903501. doi: 10.1002/advs.201903501  doi: 10.1002/advs.201903501

    72. [72]

      Chen, K.; Wang, Q.; Niu, Z.; Chen, J. J. Energy Chem. 2018, 27, 12. doi: 10.1016/j.jechem.2017.08.015  doi: 10.1016/j.jechem.2017.08.015

    73. [73]

      Chang, C.; Chen, W.; Chen, Y.; Chen, Y.; Chen, Y.; Ding, F.; Fan, C.; Fan, H. J.; Fan, Z.; Gong, C.; et al. Acta Phys. -Chim. Sin. 2021, 37, 2108017.  doi: 10.3866/PKU.WHXB202108017

    74. [74]

      Xin, G.; Zhu, W.; Deng, Y.; Cheng, J.; Zhang, L. T.; Chung, A. J.; De, S.; Lian, J. Nat. Nanotechnol. 2019, 14, 168. doi: 10.1038/s41565-018-0330-9  doi: 10.1038/s41565-018-0330-9

    75. [75]

      Xu, Z.; Liu, Y.; Zhao, X.; Peng, L.; Sun, H.; Xu, Y.; Ren, X.; Jin, C.; Xu, P.; Wang, M.; et al. Adv. Mater. 2016, 28, 6449. doi: 10.1002/adma.201506426  doi: 10.1002/adma.201506426

    76. [76]

      Xu, Z.; Sun, H.; Zhao, X.; Gao, C. Adv. Mater. 2013, 25, 188. doi: 10.1002/adma.201203448  doi: 10.1002/adma.201203448

    77. [77]

      Jalili, R.; Aboutalebi, S. H.; Esrafilzadeh, D.; Shepherd, R. L.; Chen, J.; Aminorroaya-Yamini, S.; Konstantinov, K.; Minett, A. I.; Razal, J. M.; Wallace, G. G. Adv. Funct. Mater. 2013, 23, 5345. doi: 10.1002/adfm.201300765  doi: 10.1002/adfm.201300765

    78. [78]

      Chen, X.-D.; Chen, Z.-L.; Sun, J.-Y.; Zhang, Y.-F.; Liu, Z.-F. Acta Phys. -Chim. Sin. 2016, 32, 14.  doi: 10.3866/PKU.WHXB201511133

    79. [79]

      Chen, Z.; Gao, P.; Liu, Z. Acta Phys. -Chim. Sin. 2020, 36, 1907004.  doi: 10.3866/PKU.WHXB201907004

    80. [80]

      Zheng, X.; Yao, L.; Mei, X.; Yu, S.; Zhang, W.; Qiu, Y. J. Mater. Sci. 2016, 51, 9889. doi: 10.1007/s10853-016-0222-z  doi: 10.1007/s10853-016-0222-z

    81. [81]

      Zhang, H. ACS Nano 2015, 9, 9451. doi: 10.1021/acsnano.5b05040  doi: 10.1021/acsnano.5b05040

    82. [82]

      Xu, Z.; Liu, Z.; Sun, H.; Gao, C. Adv. Mater. 2013, 25, 3249. doi: 10.1002/adma.201300774  doi: 10.1002/adma.201300774

    83. [83]

      Liu, Y.; Xu, Z.; Zhan, J.; Li, P.; Gao, C. Adv. Mater. 2016, 28, 7941. doi: 10.1002/adma.201602444  doi: 10.1002/adma.201602444

    84. [84]

      Ma, T.; Gao, H.-L.; Cong, H.-P.; Yao, H.-B.; Wu, L.; Yu, Z.-Y.; Chen, S.-M.; Yu, S.-H. Adv. Mater. 2018, 30, 1706435. doi: 10.1002/adma.201706435  doi: 10.1002/adma.201706435

    85. [85]

      Liu, Y.; Liang, H.; Xu, Z.; Xi, J.; Chen, G.; Gao, W.; Xue, M.; Gao, C. ACS Nano 2017, 11, 4301. doi: 10.1021/acsnano.7b01491  doi: 10.1021/acsnano.7b01491

    86. [86]

      Xiang, C.; Young, C. C.; Wang, X.; Yan, Z.; Hwang, C.-C.; Cerioti, G.; Lin, J.; Kono, J.; Pasquali, M.; Tour, J. M. Adv. Mater. 2013, 25, 4592. doi: 10.1002/adma.201301065  doi: 10.1002/adma.201301065

    87. [87]

      Zhang, Y.; Peng, J.; Li, M.; Saiz, E.; Wolf, S. E.; Cheng, Q. ACS Nano 2018, 12, 8901. doi: 10.1021/acsnano.8b04322  doi: 10.1021/acsnano.8b04322

    88. [88]

      Cong, H.-P.; Ren, X.-C.; Wang, P.; Yu, S.-H. Sci. Rep. 2012, 2, 613. doi: 10.1038/srep00613  doi: 10.1038/srep00613

    89. [89]

      Uetani, K.; Ata, S.; Tomonoh, S.; Yamada, T.; Yumura, M.; Hata, K. Adv. Mater. 2014, 26, 5857. doi: 10.1002/adma.201401736  doi: 10.1002/adma.201401736

    90. [90]

      Sheng, N.; Zhu, R.; Dong, K.; Nomura, T.; Zhu, C.; Aoki, Y.; Habazaki, H.; Akiyama, T. J. Mater. Chem. A 2019, 7, 4934. doi: 10.1039/c8ta11329g  doi: 10.1039/c8ta11329g

    91. [91]

      Xu, X.; Chen, J.; Zhou, J.; Li, B. Adv. Mater. 2018, 30, 1705544. doi: 10.1002/adma.201705544  doi: 10.1002/adma.201705544

    92. [92]

      Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Adv. Mater. 2017, 29, 1700589. doi: 10.1002/adma.201700589  doi: 10.1002/adma.201700589

    93. [93]

      Guo, Y.; Dun, C.; Xu, J.; Mu, J.; Li, P.; Gu, L.; Hou, C.; Hewitt, C. A.; Zhang, Q.; Li, Y.; et al. Small 2017, 13, 1702645. doi: 10.1002/smll.201702645  doi: 10.1002/smll.201702645

    94. [94]

      Li, Z.; Xu, Z.; Liu, Y.; Wang, R.; Gao, C. Nat. Commun. 2016, 7, 13684. doi: 10.1038/ncomms13684  doi: 10.1038/ncomms13684

    95. [95]

      Peng, Y.; Cui, Y. Joule 2020, 4, 724. doi: 10.1016/j.joule.2020.02.011  doi: 10.1016/j.joule.2020.02.011

    96. [96]

      Zhu, B.; Li, W.; Zhang, Q.; Li, D.; Liu, X.; Wang, Y.; Xu, N.; Wu, Z.; Li, J.; Li, X.; et al. Nat. Nanotechnol. 2021. doi: 10.1038/s41565-021-00987-0  doi: 10.1038/s41565-021-00987-0

    97. [97]

      Hsu, P. C.; Song, A. Y.; Catrysse, P. B.; Liu, C.; Peng, Y. C.; Xie, J.; Fan, S. H.; Cui, Y. Science 2016, 353, 1019. doi: 10.1126/science.aaf5471  doi: 10.1126/science.aaf5471

    98. [98]

      Pyun, K. R.; Ko, S. H. Mater. Today Energy 2019, 12, 431. doi: 10.1016/j.mtener.2019.04.008  doi: 10.1016/j.mtener.2019.04.008

    99. [99]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849  doi: 10.1038/nmat1849

    100. [100]

      Shi, X.; Wu, Z. S.; Qin, J.; Zheng, S.; Wang, S.; Zhou, F.; Sun, C.; Bao, X. Adv. Mater. 2017, 29, 1703034. doi: 10.1002/adma.201703034  doi: 10.1002/adma.201703034

    101. [101]

      Zhou, C.; Gao, T.; Wang, Y.; Liu, Q.; Huang, Z.; Liu, X.; Qing, M.; Xiao, D. Small 2019, 15, 1803469. doi: 10.1002/smll.201803469  doi: 10.1002/smll.201803469

    102. [102]

      Wang, Z.; Zhang, M.; Zhou, J. ACS Appl. Mater. Interfaces 2016, 8, 11507. doi: 10.1021/acsami.6b01958  doi: 10.1021/acsami.6b01958

    103. [103]

      Chen, X.; Ma, Y. Adv. Mater. Technol. 2018, 3, 1800041. doi: 10.1002/admt.201800041  doi: 10.1002/admt.201800041

    104. [104]

      Fang, J.; Xie, Z.; Wallace, G.; Wang, X. Appl. Surf. Sci. 2017, 412, 131. doi: 10.1016/j.apsusc.2017.03.257  doi: 10.1016/j.apsusc.2017.03.257

    105. [105]

      Wang, K.; Frewin, C. L.; Esrafilzadeh, D.; Yu, C.; Wang, C.; Pancrazio, J. J.; Romero-Ortega, M.; Jalili, R.; Wallace, G. Adv. Mater. 2019, 31, 1805867. doi: 10.1002/adma.201805867  doi: 10.1002/adma.201805867

    106. [106]

      Liu, J.; Liu, G.; Xu, J.; Liu, C.; Zhou, W.; Liu, P.; Nie, G.; Duan, X.; Jiang, F. ACS Appl. Energy Mater. 2020, 3, 6165. doi: 10.1021/acsaem.0c00001  doi: 10.1021/acsaem.0c00001

    107. [107]

      Ma, W.; Liu, Y.; Yan, S.; Miao, T.; Shi, S.; Yang, M.; Zhang, X.; Gao, C. Nano Res. 2016, 9, 3536. doi: 10.1007/s12274-016-1231-6  doi: 10.1007/s12274-016-1231-6

    108. [108]

      Varma, S. J.; Kumar, K. S.; Seal, S.; Rajaraman, S.; Thomas, J. Adv. Sci. 2018, 5, 1800340. doi: 10.1002/advs.201800340  doi: 10.1002/advs.201800340

    109. [109]

      Yao, Y.; Lv, T.; Li, N.; Chen, Z.; Zhang, C.; Chen, T. Sci. Bull. 2020, 65, 486. doi: 10.1016/j.scib.2019.11.013  doi: 10.1016/j.scib.2019.11.013

    110. [110]

      Li, G.; Hong, G.; Dong, D.; Song, W.; Zhang, X. Adv. Mater. 2018, 30, 1801754. doi: 10.1002/adma.201801754  doi: 10.1002/adma.201801754

    111. [111]

      Lee, J.; Llerena Zambrano, B.; Woo, J.; Yoon, K.; Lee, T. Adv. Mater. 2020, 32, e1902532. doi: 10.1002/adma.201902532  doi: 10.1002/adma.201902532

    112. [112]

      Yang, Z.; Zhao, W.; Niu, Y.; Zhang, Y.; Wang, L.; Zhang, W.; Xiang, X.; Li, Q. Carbon 2018, 132, 241. doi: 10.1016/j.carbon.2018.02.041  doi: 10.1016/j.carbon.2018.02.041

    113. [113]

      Yang, Z.; Zhu, M.; Niu, Y.; Kozliak, E.; Yao, B.; Zhang, Y.; Zhang, C.; Qin, T.; Jia, Y.; Li, Q. Adv. Funct. Mater. 2019, 29, 1906813. doi: 10.1002/adfm.201906813  doi: 10.1002/adfm.201906813

    114. [114]

      Yang, Z.; Jia, Y.; Niu, Y.; Yong, Z.; Wu, K.; Zhang, C.; Zhu, M.; Zhang, Y.; Li, Q. Chem. Eng. J. 2020, 400, 125835. doi: 10.1016/j.cej.2020.125835  doi: 10.1016/j.cej.2020.125835

    115. [115]

      Yang, Z.; Jia, Y.; Niu, Y.; Zhang, Y.; Zhang, C.; Li, P.; Zhu, M.; Li, Q. J. Energy Chem. 2020, 51, 434. doi: 10.1016/j.jechem.2020.02.023  doi: 10.1016/j.jechem.2020.02.023

    116. [116]

      Mo, F.; Liang, G.; Huang, Z.; Li, H.; Wang, D.; Zhi, C. Adv. Mater. 2020, 32, 1902151. doi: 10.1002/adma.201902151  doi: 10.1002/adma.201902151

    117. [117]

      Shi, X.; Pei, S.; Zhou, F.; Ren, W.; Cheng, H.-M.; Wu, Z.-S.; Bao, X. Energy Environ. Sci. 2019, 12, 1534. doi: 10.1039/c8ee02924e  doi: 10.1039/c8ee02924e

    118. [118]

      Zhou, F.; Huang, H.; Xiao, C.; Zheng, S.; Shi, X.; Qin, J.; Fu, Q.; Bao, X.; Feng, X.; Mullen, K.; et al. J. Am. Chem. Soc. 2018, 140, 8198. doi: 10.1021/jacs.8b03235  doi: 10.1021/jacs.8b03235

    119. [119]

      Yu, G.-H.; Han, Q.; Qu, L.-T. Chin. J. Polym. Sci. 2019, 37, 535. doi: 10.1007/s10118-019-2245-9  doi: 10.1007/s10118-019-2245-9

    120. [120]

      Yu, D.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.; Zhang, Q.; Dai, L.; Chen, Y. Nat. Nanotechnol. 2014, 9, 555. doi: 10.1038/nnano.2014.93  doi: 10.1038/nnano.2014.93

    121. [121]

      Ma, W.; Zhang, Y.; Pan, S.; Cheng, Y.; Shao, Z.; Xiang, H.; Chen, G.; Zhu, L.; Weng, W.; Bai, H.; et al. Chem. Soc. Rev. 2021, 50, 7009. doi: 10.1039/d0cs01603a  doi: 10.1039/d0cs01603a

    122. [122]

      Huang, L.; Santiago, D.; Loyselle, P.; Dai, L. Small 2018, 14, 1800879. doi: 10.1002/smll.201800879  doi: 10.1002/smll.201800879

    123. [123]

      Zheng, S.; Shi, X.; Das, P.; Wu, Z. S.; Bao, X. Adv. Mater. 2019, e1900583. doi: 10.1002/adma.201900583  doi: 10.1002/adma.201900583

    124. [124]

      Chen, D.; Jiang, K.; Huang, T.; Shen, G. Adv. Mater. 2020, 32, 1901806. doi: 10.1002/adma.201901806  doi: 10.1002/adma.201901806

    125. [125]

      Cheng, H.; Meng, J.; Wu, G.; Chen, S. Angew. Chem. Int. Ed. 2019, 58, 17465. doi: 10.1002/anie.201911023  doi: 10.1002/anie.201911023

    126. [126]

      Dhawale, D. S.; Benzigar, M. R.; Wahab, M. A.; Anand, C.; Varghese, S.; Balasubramanian, V. V.; Aldeyab, S. S.; Ariga, K.; Vinu, A. Electrochim. Acta 2012, 77, 256. doi: 10.1016/j.electacta.2012.05.095  doi: 10.1016/j.electacta.2012.05.095

    127. [127]

      Shao, Y.; El-Kady, M. F.; Wang, L. J.; Zhang, Q.; Li, Y.; Wang, H.; Mousavi, M. F.; Kaner, R. B. Chem. Soc. Rev. 2015, 44, 3639. doi: 10.1039/c4cs00316k  doi: 10.1039/c4cs00316k

    128. [128]

      Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41, 797. doi: 10.1039/c1cs15060j  doi: 10.1039/c1cs15060j

    129. [129]

      Liu, L.; Niu, Z.; Chen, J. Chem. Soc. Rev. 2016, 45, 4340. doi: 10.1039/c6cs00041j  doi: 10.1039/c6cs00041j

    130. [130]

      Meng, J.; Nie, W.; Zhang, K.; Xu, F.; Ding, X.; Wang, S.; Qiu, Y. ACS Appl. Mater. Interfaces 2018, 10, 13652. doi: 10.1021/acsami.8b04438  doi: 10.1021/acsami.8b04438

    131. [131]

      Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. Adv. Mater. 2013, 25, 2326. doi: 10.1002/adma.201300132  doi: 10.1002/adma.201300132

    132. [132]

      Li, Q.; Cheng, H.; Wu, X.; Wang, C.-F.; Wu, G.; Chen, S. J. Mater. Chem. A 2018, 6, 14112. doi: 10.1039/c8ta02124d  doi: 10.1039/c8ta02124d

    133. [133]

      Jia, Y.; Ahmed, A.; Jiang, X.; Zhou, L.; Fan, Q.; Shao, J. Electrochim. Acta 2020, 354, 136731. doi: 10.1016/j.electacta.2020.136731  doi: 10.1016/j.electacta.2020.136731

    134. [134]

      Park, H.; Ambade, R. B.; Noh, S. H.; Eom, W.; Koh, K. H.; Ambade, S. B.; Lee, W. J.; Kim, S. H.; Han, T. H. ACS Appl. Mater. Interfaces 2019, 11, 9011. doi: 10.1021/acsami.8b17908  doi: 10.1021/acsami.8b17908

    135. [135]

      Cai, W.; Lai, T.; Ye, J. J. Mater. Chem. A 2015, 3, 5060. doi: 10.1039/c5ta00365b  doi: 10.1039/c5ta00365b

    136. [136]

      Sun, J.; Wu, C.; Sun, X.; Hu, H.; Zhi, C.; Hou, L.; Yuan, C. J. Mater. Chem. A 2017, 5, 9443. doi: 10.1039/c7ta00932a  doi: 10.1039/c7ta00932a

    137. [137]

      Jiang, Y.; Liu, J. Energy Environm. Mater. 2019, 2, 30. doi: 10.1002/eem2.12028  doi: 10.1002/eem2.12028

    138. [138]

      Sun, J.; Guo, L.; Sun, X.; Zhang, J.; Hou, L.; Li, L.; Yang, S.; Yuan, C. Batteries Supercaps 2019, 2, 820. doi: 10.1002/batt.201900021  doi: 10.1002/batt.201900021

    139. [139]

      Wu, N.; Bai, X.; Pan, D.; Dong, B.; Wei, R.; Naik, N.; Patil, R. R.; Guo, Z. Adv. Mater. Interfaces 2021, 8. doi: 10.1002/admi.202001710  doi: 10.1002/admi.202001710

    140. [140]

      Jiang, B.; Tian, C.; Wang, L.; Sun, L.; Chen, C.; Nong, X.; Qiao, Y.; Fu, H. Appl. Surf. Sci. 2012, 258, 3438. doi: 10.1016/j.apsusc.2011.11.091  doi: 10.1016/j.apsusc.2011.11.091

    141. [141]

      Jiang, S.; Dong, S.; Wu, L.; Chen, Z.; Shen, L.; Zhang, X. J. Electroanal. Chem. 2019, 842, 82. doi: 10.1016/j.jelechem.2019.04.042  doi: 10.1016/j.jelechem.2019.04.042

    142. [142]

      Wu, G.; Tan, P.; Wu, X.; Peng, L.; Cheng, H.; Wang, C.-F.; Chen, W.; Yu, Z.; Chen, S. Adv. Funct. Mater. 2017, 27, 1702493. doi: 10.1002/adfm.201702493  doi: 10.1002/adfm.201702493

    143. [143]

      Azhagan, M. V. K.; Vaishampayan, M. V.; Shelke, M. V. J. Mater. Chem. A 2014, 2, 2152. doi: 10.1039/c3ta14076h  doi: 10.1039/c3ta14076h

    144. [144]

      Chang, X.; El-Kady, M. F.; Huang, A.; Lin, C.-W.; Aguilar, S.; Anderson, M.; Zhu, J. Z. J.; Kaner, R. B. Adv. Funct. Mater. 2021, 31, 2102397. doi: 10.1002/adfm.202102397  doi: 10.1002/adfm.202102397

    145. [145]

      Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y. Nano Lett. 2014, 14, 2522. doi: 10.1021/nl500255v  doi: 10.1021/nl500255v

    146. [146]

      Boota, M.; Gogotsi, Y. Adv. Energy Mater. 2019, 9, 1802917. doi: 10.1002/aenm.201802917  doi: 10.1002/aenm.201802917

    147. [147]

      Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H. N. Adv. Energy Mater. 2018, 8, 1703043. doi: 10.1002/aenm.201703043  doi: 10.1002/aenm.201703043

    148. [148]

      Wu, H.; Guo, Z.; Li, M.; Hu, G.; Tang, T.; Wen, J.; Li, X.; Huang, H. Electrochim. Acta 2021, 370, 137758. doi: 10.1016/j.electacta.2021.137758  doi: 10.1016/j.electacta.2021.137758

    149. [149]

      Zheng, X.; Yao, L.; Qiu, Y.; Wang, S.; Zhang, K. ACS Appl. Energy Mater. 2019, 2, 4335. doi: 10.1021/acsaem.9b00558  doi: 10.1021/acsaem.9b00558

    150. [150]

      Yang, Q.; Xu, Z.; Fang, B.; Huang, T.; Cai, S.; Chen, H.; Liu, Y.; Gopalsamy, K.; Gao, W.; Gao, C. J. Mater. Chem. A 2017, 5, 22113. doi: 10.1039/c7ta07999k  doi: 10.1039/c7ta07999k

    151. [151]

      Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. Nat. Commun. 2014, 5, 3754. doi: 10.1038/ncomms4754  doi: 10.1038/ncomms4754

    152. [152]

      Ma, Y.; Li, P.; Sedloff, J. W.; Zhang, X.; Zhang, H.; Liu, J. ACS Nano 2015, 9, 1352. doi: 10.1021/nn505412v  doi: 10.1021/nn505412v

    153. [153]

      Qu, G.; Cheng, J.; Li, X.; Yuan, D.; Chen, P.; Chen, X.; Wang, B.; Peng, H. Adv. Mater. 2016, 28, 3646. doi: 10.1002/adma.201600689  doi: 10.1002/adma.201600689

    154. [154]

      He, N.; Liao, J.; Zhao, F.; Gao, W. ACS Appl. Mater. Interfaces 2020, 12, 15211. doi: 10.1021/acsami.0c00182  doi: 10.1021/acsami.0c00182

    155. [155]

      Lu, Z.; Foroughi, J.; Wang, C.; Long, H.; Wallace, G. G. Adv. Energy Mater. 2018, 8, 1702047. doi: 10.1002/aenm.201702047  doi: 10.1002/aenm.201702047

    156. [156]

      Zhai, S.; Wang, C.; Karahan, H. E.; Wang, Y.; Chen, X.; Sui, X.; Huang, Q.; Liao, X.; Wang, X.; Chen, Y. Small 2018, 14, 1800582. doi: 10.1002/smll.201800582  doi: 10.1002/smll.201800582

    157. [157]

      Zhou, X.; Qin, Y.; He, X.; Li, Q.; Sun, J.; Lei, Z.; Liu, Z.-H. ACS Appl. Mater. Interfaces 2020, 12, 11833. doi: 10.1021/acsami.9b21874  doi: 10.1021/acsami.9b21874

    158. [158]

      Tang, M.; Wu, Y.; Yang, J.; Xue, Y. J. Alloy. Compd. 2020, 828, 153622. doi: 10.1016/j.jallcom.2019.153622  doi: 10.1016/j.jallcom.2019.153622

    159. [159]

      Ni, T.; Wang, S.; Shi, J.; Du, X.; Cheng, Q.; Dong, Z.; Ruan, L.; Zeng, W.; Guo, X.; Ren, X.; et al. Adv. Mater. Technol. 2020, 5, 2000268. doi: 10.1002/admt.202000268  doi: 10.1002/admt.202000268

    160. [160]

      Wen, P.; Lu, P.; Shi, X.; Yao, Y.; Shi, H.; Liu, H.; Yu, Y.; Wu, Z.-S. Adv. Energy Mater. 2021, 11, 2002930. doi: 10.1002/aenm.202002930  doi: 10.1002/aenm.202002930

    161. [161]

      Yan, F.; Tang, X.; Wei, Y.; Chen, L.; Cao, G.; Zhang, M.; Wang, T. J. Mater. Chem. A 2015, 3, 12672. doi: 10.1039/c5ta02107c  doi: 10.1039/c5ta02107c

    162. [162]

      Li, S.; Shu, K.; Zhao, C.; Wang, C.; Guo, Z.; Wallace, G.; Liu, H. K. ACS Appl. Mater. Interfaces 2014, 6, 16679. doi: 10.1021/am503572w  doi: 10.1021/am503572w

    163. [163]

      Fang, X.; Weng, W.; Ren, J.; Peng, H. Adv. Mater. 2016, 28, 491. doi: 10.1002/adma.201504241  doi: 10.1002/adma.201504241

    164. [164]

      Hoshide, T.; Zheng, Y.; Hou, J.; Wane, Z.; Li, Q.; Zhao, Z.; Ma, R.; Sasaki, T.; Geng, F. Nano Lett. 2017, 17, 3543. doi: 10.1021/acs.nanolett.7b00623  doi: 10.1021/acs.nanolett.7b00623

    165. [165]

      Chong, W. G.; Huang, J.-Q.; Xu, Z.-L.; Qin, X.; Wang, X.; Kim, J.-K. Adv. Funct. Mater. 2017, 27, 1604815. doi: 10.1002/adfm.201604815  doi: 10.1002/adfm.201604815

    166. [166]

      Rao, J.; Liu, N.; Zhang, Z.; Su, J.; Li, L.; Xiong, L.; Gao, Y. Nano Energy 2018, 51, 425. doi: 10.1016/j.nanoen.2018.06.067  doi: 10.1016/j.nanoen.2018.06.067

    167. [167]

      Zhang, Y.; Bi, Z.; Liang, Y.; Zuo, W.; Xu, G.; Zhu, M. Energy Storage Mater. 2022, 48, 35. doi: 10.1016/j.ensm.2022.03.002  doi: 10.1016/j.ensm.2022.03.002

    168. [168]

      Xu, T.; Ji, W.; Wang, X.; Zhang, Y.; Zeng, H.; Mao, L.; Zhang, M. Angew. Chem. Int. Ed. 2022, e202115074. doi: 10.1002/anie.202115074  doi: 10.1002/anie.202115074

    169. [169]

      Yin, F.; Hu, J.; Hong, Z.; Wang, H.; Liu, G.; Shen, J.; Wang, H.-L.; Zhang, K.-Q. RSC Adv. 2020, 10, 5722. doi: 10.1039/c9ra10823h  doi: 10.1039/c9ra10823h

    170. [170]

      Sheng, L.; Wei, T.; Liang, Y.; Jiang, L.; Qu, L.; Fan, Z. Carbon 2017, 120, 17. doi: 10.1016/j.carbon.2017.05.033  doi: 10.1016/j.carbon.2017.05.033

    171. [171]

      Kanahashi, K.; Pu, J.; Takenobu, T. Adv. Energy Mater. 2020, 10, 1902842. doi: 10.1002/aenm.201902842  doi: 10.1002/aenm.201902842

    172. [172]

      Shi, X.-L.; Zou, J.; Chen, Z.-G. Chem. Rev. 2020, 120, 7399. doi: 10.1021/acs.chemrev.0c00026  doi: 10.1021/acs.chemrev.0c00026

    173. [173]

      Wang, T.; Liu, C.; Jiang, F.; Xu, Z.; Wang, X.; Li, X.; Li, C.; Xu, J.; Yang, X. Phys. Chem. Chem. Phys. 2017, 19, 17560. doi: 10.1039/c7cp02011b  doi: 10.1039/c7cp02011b

    174. [174]

      Lin, Y.; Liu, J.; Wang, X.; Xu, J.; Liu, P.; Nie, G.; Liu, C.; Jiang, F. Comp. Commun. 2019, 16, 79. doi: 10.1016/j.coco.2019.09.002  doi: 10.1016/j.coco.2019.09.002

    175. [175]

      Ma, W.; Liu, Y.; Yan, S.; Miao, T.; Shi, S.; Xu, Z.; Zhang, X.; Gao, C. Nano Res. 2018, 11, 741. doi: 10.1007/s12274-017-1683-3  doi: 10.1007/s12274-017-1683-3

    176. [176]

      Li, H.; Dong, H.; Li, J.; Wu, Z. Acta Phys. -Chim. Sin. 2021, 37, 2007006.  doi: 10.3866/PKU.WHXB202007006

    177. [177]

      Wageh, S.; Al-Ghamdi, A. A.; Zhao, L. Acta Phys. -Chim. Sin. 2022, 38, 2111009.  doi: 10.3866/PKU.WHXB202111009

    178. [178]

      Zang, Z.; Li, H.; Jiang, X.; Ning, Z. Acta Phys. -Chim. Sin. 2021, 37, 2007090.  doi: 10.3866/PKU.WHXB202007090

    179. [179]

      Zhou, W.; Chen, Y.; Zhou, H. Acta Physico-Chimica Sinica 2021, 37, 2009044.  doi: 10.3866/PKU.WHXB202009044

    180. [180]

      Yang, Z.; Sun, H.; Chen, T.; Qiu, L.; Luo, Y.; Peng, H. Angew. Chem. Int. Ed. 2013, 52, 7545. doi: 10.1002/anie.201301776  doi: 10.1002/anie.201301776

    181. [181]

      Liu, K.; Chen, Z.; Lv, T.; Yao, Y.; Li, N.; Li, H.; Chen, T. Nano-Micro Lett. 2020, 12, 64. doi: 10.1007/s40820-020-0390-x  doi: 10.1007/s40820-020-0390-x

    182. [182]

      Lin, Y.-K.; Hong, Y.-T.; Shyue, J.-J.; Hsueh, C.-H. Superlattices Microstruct. 2019, 126, 42. doi: 10.1016/j.spmi.2018.12.015  doi: 10.1016/j.spmi.2018.12.015

    183. [183]

      Oh, W.-C.; Areerob, Y. Kor. Ceram. Soc. 2021, 58, 50. doi: 10.1007/s43207-020-00063-8  doi: 10.1007/s43207-020-00063-8

    184. [184]

      Ishikawa, R.; Watanabe, S.; Yamazaki, S.; Oya, T.; Tsuboi, N. ACS Appl. Energy Mater. 2019, 2, 171. doi: 10.1021/acsaem.8b01606  doi: 10.1021/acsaem.8b01606

    185. [185]

      Sun, K.; Kou, Y.; Dong, H.; Ye, S.; Zhao, D.; Liu, J.; Shi, Q. J. Mater. Chem. A 2020, 9, 1213. doi: 10.1039/D0TA09035B  doi: 10.1039/D0TA09035B

    186. [186]

      Sun, K.; Dong, H.; Kou, Y.; Yang, H.; Liu, H.; Li, Y.; Shi, Q. Chem. Eng. J. 2021, 419, 129637. doi: 10.1016/j.cej.2021.129637  doi: 10.1016/j.cej.2021.129637

    187. [187]

      Kou, Y.; Sun, K.; Luo, J.; Zhou, F.; Huang, H.; Wu, Z.; Shi, Q. Energy Storage Mater. 2020, 34, 508. doi: 10.1016/j.ensm.2020.10.014  doi: 10.1016/j.ensm.2020.10.014

    188. [188]

      Li, Y.; Sun, K.; Kou, Y.; Liu, H.; Wang, L.; Yin, N.; Dong, H.; Shi, Q. Chem. Eng. J. 2022, 429, 132439. doi: 10.1016/j.cej.2021.132439  doi: 10.1016/j.cej.2021.132439

    189. [189]

      Chen, X.; Gao, H.; Tang, Z.; Dong, W.; Li, A.; Wang, G. Energy Environ. Sci. 2020, 13, 4498. doi: 10.1039/d0ee01355b  doi: 10.1039/d0ee01355b

    190. [190]

      Chen, X.; Tang, Z.; Liu, P.; Gao, H.; Chang, Y.; Wang, G. Matter 2020, 3, 708. doi: 10.1016/j.matt.2020.05.016  doi: 10.1016/j.matt.2020.05.016

    191. [191]

      Sun, K.; Kou, Y.; Zhang, Y.; Liu, T.; Shi, Q. ACS Sustain. Chem. Eng. 2020, 8, 3445. doi: 10.1021/acssuschemeng.9b07659  doi: 10.1021/acssuschemeng.9b07659

    192. [192]

      Yuan, K.; Shi, J.; Aftab, W.; Qin, M.; Usman, A.; Zhou, F.; Lv, Y.; Gao, S.; Zou, R. Adv. Funct. Mater. 2019, 30, 1904228. doi: 10.1002/adfm.201904228  doi: 10.1002/adfm.201904228

  • 加载中
    1. [1]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    13. [13]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    14. [14]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    15. [15]

      Sifang Zhang Yanli Tan Yu Tao Jiaoyan Zhao Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067

    16. [16]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    19. [19]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    20. [20]

      Jingfeng Lan Li Wu Guangnong Lu Liu Yang Xiaolong Li Xiangyang Xu Yongwen Shen E Yu . Application of 3E Method in the Negative List Management System in Teaching Laboratory. University Chemistry, 2024, 39(4): 54-61. doi: 10.3866/PKU.DXHX202310130

Metrics
  • PDF Downloads(21)
  • Abstract views(910)
  • HTML views(129)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return