Citation: Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2023, 39(2): 220304. doi: 10.3866/PKU.WHXB202203043 shu

Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries

  • Corresponding author: Long Qie, qie@hust.edu.cn Yunhui Huang, huangyh@hust.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 25 March 2022
    Revised Date: 19 April 2022
    Accepted Date: 26 April 2022
    Available Online: 9 May 2022

    Fund Project: the China Postdoctoral Science Foundation 2020M681386

  • The use of high-capacity ternary cathode materials for high-energy batteries can cause thermal runaway of lithium-ion batteries (LIBs), hindering their safe use and further development. Therefore, improving the energy density of LIBs while maintaining their safety is essential. Current collectors (CCs), which serve as the electron carrier during the electrochemical process, do not contribute to capacity and are regarded as "dead weight" to the cells. The use of composite CCs, which have a sandwich structure where a thin metal (e.g., Al and Cu) layer is deposited on both sides of polymer films, can reduce the weight of CCs owing to the use of the low-density insulating substrate and improve the safety of LIBs (evaluated by the nail penetration test). However, due to the weak interfacial adhesion between the substrate and metal coating layer, the composite CCs may easily delaminate in electrolytes during high-temperature immersion, which could not meet the requirement for the long-term stability. Herein, we introduced an oxide strengthening layer between the substrate (polyethylene terephthalate, PET) and Al layer. The objective of strengthening layer is to increase the interface binding force between the metal and polymer substrate by enhancing the mechanical interlocking effect between the layers and forming a stable chemical bond at the interface. This increased interface binding force effectively improved the electrolyte compatibility of composite CCs even at a high temperature of 85 ℃. Based on the results of atomic force microscopy and X-ray photoelectron spectroscopy, we proposed a mechanism for the enhancement of both mechanical interlocking and chemical bonding. Additionally, the composite CCs possessed good mechanical properties that ensure their compatibility with conventional battery fabrication technologies. LIBs using composite CCs exhibited a comparable electrochemical performance to that of aluminum-CC-based (Al CCs) cells, but better performance in nail penetration test. After 280 cycles at 0.2 C, the cell showed high-capacity retention. Al-CC-based cells and PET-AlOx-Al-CC based cells remain 80.55% and 80.9% capacity retention respectively, which indicates the comparable performance. This shows that the composite CCs technology is fully adapted to the existing battery manufacturing technology, and has little influence on the electrochemical performance of LIBs. Specifically, cells with PET-AlOx-Al CCs easily passed the nail penetration test under 100% state of charge without an obvious temperature rise. Furthermore, the voltage of the punctured batteries remained at ~4 V and could still be charged and discharged. The composite CCs successfully prevented the internal short circuit and markedly improved the safety of LIBs during the nail penetration test. Our findings provide theoretical guidance and solutions for the industrialization of composite CCs.
  • 加载中
    1. [1]

      Guo, Q. Solar Energy 2021, No. 12, 5.  doi: 10.19911/j.1003-0417.tyn20210318.05

    2. [2]

      Guan, J.; Li, N. W.; Yu, L. Acta Phys. -Chim. Sin. 2021, 37 (2), 2009011.  doi: 10.3866/PKU.WHXB202009011

    3. [3]

      Hua, G.; Fan, Y.; Zhang, Q. Acta Phys. -Chim. Sin. 2021, 37 (2), 2008089.  doi: 10.3866/PKU.WHXB202008089

    4. [4]

      Zhang, S.; Shen, Z.; Lu, Y. Acta Phys. -Chim. Sin. 2021, 37 (1), 2008065.  doi: 10.3866/PKU.WHXB202008065

    5. [5]

      Wu, F.; Li, Q.; Chen, L. Acta Phys. -Chim. Sin. 2020, 38 (5), 2007017.  doi: 10.3866/PKU.WHXB202007017

    6. [6]

      Dong, H; Zhang, S; Li, Y; Xian X; Yi, C; Liu, L; Yu, X; Han, G; Sheng, Y. Energy Storage Sci. Technol. 2019, 8 (S1), 65.  doi: 10.19799/j.cnki.2095-4239.2019.0052

    7. [7]

      Wang, Y.; Ren, D. S.; Feng, X. N.; Wang, L.; Ouyang, M. G. Appl. Energy 2022, 306, 117943. doi: 10.1016/j.apenergy.2021.117943  doi: 10.1016/j.apenergy.2021.117943

    8. [8]

      Li, Y.; Liu, X.; Wang, L.; Feng, X. N.; Ren, D. S.; Wu, Y.; Xu, G. L.; Lu, L. G.; Hou, J. X.; Zhang, W. F.; et al. Nano Energy 2021, 85, 105878. doi: 10.1016/j.nanoen.2021.105878  doi: 10.1016/j.nanoen.2021.105878

    9. [9]

      Yun, J. H.; Han, G. B.; Lee, Y. M.; Lee, Y. G.; Kim, K. M.; Park, J. K.; Cho, K. Y. Electrochem. Solid State Lett. 2011, 14 (8), A116. doi: 10.1149/1.3596721  doi: 10.1149/1.3596721

    10. [10]

      Fritsch, M.; Coeler, M.; Kunz, K.; Krause, B.; Marcinkowski, P.; Potschke, P.; Wolter, M.; Michaelis, A. Batteries 2020, 6 (4), 60. doi: 10.3390/batteries6040060  doi: 10.3390/batteries6040060

    11. [11]

      Ye, Y. S.; Chou, L. Y.; Liu, Y. Y.; Wang, H. S.; Lee, H. K.; Huang, W. X.; Wan, J. Y.; Liu, K.; Zhou, G. M.; Yang, Y. F.; et al. Nat. Energy 2020, 5(10), 786. doi: 10.1038/s41560-020-00702-8  doi: 10.1038/s41560-020-00702-8

    12. [12]

      Pham, M. T. M.; Darst, J. J.; Walker, W. Q.; Heenan, T. M. M.; Patel, D.; Iacoviello, F.; Rack, A.; Olbinado, M. P.; Hinds, G.; Brett, D. J. L.; et al. Cell Rep. Phys. Sci. 2021, 2 (3), 100360. doi: 10.1016/j.xcrp.2021.100360  doi: 10.1016/j.xcrp.2021.100360

    13. [13]

      Kang, H.; Park, H.; Park, Y.; Jung, M.; Kim, B. C.; Wallace, G.; Cho, G. Sci. Rep. 2014, 4 (1), 5387. doi: 10.1038/srep05387  doi: 10.1038/srep05387

    14. [14]

      Shin, K. -H.; Nguyen, H. A. D.; Park, J.; Shin, D.; Lee, D. J. Coat. Technol. Res. 2017, 14 (1), 95. doi: 10.1007/s11998-016-9844-y  doi: 10.1007/s11998-016-9844-y

    15. [15]

      Struller, C. F.; Kelly, P. J.; Copeland, N. J. Surf. Coat. Technol. 2014, 241, 130. doi: 10.1016/j.surfcoat.2013.08.011  doi: 10.1016/j.surfcoat.2013.08.011

    16. [16]

      Kouicem, M. M.; Tomasella, E.; Bousquet, A.; Batisse, N.; Monier, G.; Robert-Goumet, C.; Dubost, L. Appl. Surf. Sci. 2021, 564, 150322. doi: 10.1016/j.apsusc.2021.150322  doi: 10.1016/j.apsusc.2021.150322

    17. [17]

      Schissel, P.; Kennedy, C.; Goggin, R. J. Adhes. Sci. Technol. 1995, 9 (4), 413. doi: 10.1163/156856195X00356  doi: 10.1163/156856195X00356

    18. [18]

      Mwema, F. M.; Oladijo, O. P.; Akinlabi, S. A.; Akinlabi, E. T. J. Alloy. Compd. 2018, 747, 306. doi: 10.1016/j.jallcom.2018.03.006  doi: 10.1016/j.jallcom.2018.03.006

    19. [19]

      Kim, S. H.; Kim, M.; Lee, J. H.; Lee, S. ACS Appl. Mater. Interfaces 2018, 10 (12), 10454. doi: 10.1021/acsami.8b00761  doi: 10.1021/acsami.8b00761

    20. [20]

      Bichler, C.; Kerbstadt, T.; Langowski, H. C.; Moosheimer, U. Surf. Coat. Technol. 1999, 112 (1–3), 373. doi: 10.1016/s0257-8972(98)00780-4  doi: 10.1016/s0257-8972(98)00780-4

    21. [21]

      Cueff, R.; Baud, G.; Benmalek, M.; Besse, J. P.; Butruille, J. R.; Dunlop, H. M.; Jacquet, M. Thin Solid Films 1995, 270 (1), 230. doi: 10.1016/0040-6090(95)06917-8  doi: 10.1016/0040-6090(95)06917-8

    22. [22]

      Xie, C; Wang, K. Plast. Packag. 2018, 28 (2), 8.
       

    23. [23]

      Liu, Y; Wang, J; Xiong, L. J. Wuhan Inst. Technol. 2010, 32 (5), 4.  doi: 10.3969/j.issn.1674

    24. [24]

      Sundararajan, M; Subramani, S. Devarajan, M; Jaafar, M. J. Mater. Sci: Mater Electron. 2020, 31, 9641. doi: 10.1007/s10854-020-03507-3  doi: 10.1007/s10854-020-03507-3

    25. [25]

      Zhai, L; Ling, G; Li, J. Mater. Rep. 2006, No. S2, 274.  doi: 10.3321/j.issn:1005-023X.2006.z2.080

    26. [26]

      Drabold, D. A.; Adams, J. B.; Anderson, D. C.; Kieffer. J. Adhesion 1993, 42 (1–2), 55. doi: 10.1080/00218469308026570  doi: 10.1080/00218469308026570

    27. [27]

      Liu, Z; Lin, J; Sun, Z; Gao, D. J. Vac. Sci. Technol. 2009, 29 (S1), 94.  doi: 10.3969/j.issn.1672-7126.2009.z1.22

    28. [28]

      Madocks, J; Rewhinkle, J; Barton, L. Mater. Sci. Eng. 2005, 119 (3). 2683. doi: 10.1016/j.mseb.2004.12.080  doi: 10.1016/j.mseb.2004.12.080

    29. [29]

      Peacock, A. Handbook of Polyethylene: Structures: Properties, and Applications, 1st ed.; CRC Press. : Boca Raton, FL, USA, 2000; pp. 20–25

    30. [30]

      Lv, D; Li, W. J. Power Sources 2007, 31 (10), 3.  doi: 10.3969/j.issn.1002-087X.2007.10.020

    31. [31]

      Chen, H. Study on the Anti-Corrosion of Alumium Current Collector for Lithium-Ion Battery. Master Dissertation, Harbin Institute of Technology, Harbin, 2009.

    32. [32]

      Raveh, A.; Tsameret, Z. K.; Grossman, E. Surf. Coat. Technol. 1997, 88 (1–3), 103. doi: 10.1016/S0257-8972(95)02757-2  doi: 10.1016/S0257-8972(95)02757-2

    33. [33]

      Alfonsetti, R.; Lozzi, L.; Passacantando, M.; Picozzi, P.; Santucci, S. Appl. Surf. Sci. 1993, s70–71, 222. doi: 10.1016/0169-4332(93)90431-A  doi: 10.1016/0169-4332(93)90431-A

    34. [34]

      Moulder, J. F.; Stickle, W. F.; Sobol, P. E. Handbook of X-Ray Photoelectron Spectroscopy, 1st ed.; Perkin-Elmer Corporation: Physical Electronics Division 6509 Flying Cloud Drive Eden Prairie, MN 55344, USA, 1992; pp. 55–58.

    35. [35]

      Huang, C.; Liu, C. H.; Wu, S. Y. Surf. Interface Anal. 2009, 41 (1), 44. doi: 10.1002/sia.2975  doi: 10.1002/sia.2975

    36. [36]

      Williams, K. R.; Gupta, K.; Wasilik, M. J. Microelectromech. Syst. 2003, 12, 761. doi: 10.1109/JMEMS.2003.820936  doi: 10.1109/JMEMS.2003.820936

    37. [37]

      Williams, K. R.; Gupta, K.; Wasilik, M. J. Microelectromech. Syst. 2003, 12 (6), 761. doi: 10.1109/jmems.2003.820936  doi: 10.1109/jmems.2003.820936

  • 加载中
    1. [1]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    2. [2]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    12. [12]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    13. [13]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    14. [14]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    15. [15]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    20. [20]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

Metrics
  • PDF Downloads(84)
  • Abstract views(1778)
  • HTML views(513)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return