Activation/Cleavage of C―O/C―C Bonds during Biomass Conversion
- Corresponding author: Yaxuan Jing, jingyaxuan@mail.ecust.edu.cn Yanqin Wang, wangyanqin@ecust.edu.cn
Citation: Hao Zhou, Yaxuan Jing, Yanqin Wang. Activation/Cleavage of C―O/C―C Bonds during Biomass Conversion[J]. Acta Physico-Chimica Sinica, ;2022, 38(10): 220301. doi: 10.3866/PKU.WHXB202203016
Sudarsanam, P.; Peeters, E.; Makshina, E. V.; Parvulescu, V. I.; Sels, B. F. Chem. Soc. Rev. 2019, 48 (8), 2366. doi: 10.1039/C8CS00452H
doi: 10.1039/C8CS00452H
Zhang, Z.; Song, J.; Han, B. Chem. Rev. 2017, 117 (10), 6834. doi: 10.1021/acs.chemrev.6b00457
doi: 10.1021/acs.chemrev.6b00457
Lin, Z.; Chen, R.; Qu, Z.; Chen, J. G. Green Chem. 2018, 20 (12), 2679. doi: 10.1039/C8GC00239H
doi: 10.1039/C8GC00239H
Robinson, A. M.; Hensley, J. E.; Medlin, J. W. ACS Catal. 2016, 6 (8), 5026. doi: 10.1021/acscatal.6b00923
doi: 10.1021/acscatal.6b00923
Li, H.; Riisager, A.; Saravanamurugan, S.; Pandey, A.; Sangwan, R. S.; Yang, S.; Luque, R. ACS Catal. 2018, 8 (1), 148. doi: 10.1021/acscatal.7b02577
doi: 10.1021/acscatal.7b02577
Nakagawa, Y.; Liu, S.; Tamura, M.; Tomishige, K. ChemSusChem 2015, 8 (7), 1114. doi: 10.1002/cssc.201403330
doi: 10.1002/cssc.201403330
Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S. -F.; Beckham, G.; Sels, B. F. Chem. Soc. Rev. 2018, 47 (3), 852. doi: 10.1039/C7CS00566K
doi: 10.1039/C7CS00566K
Jing, Y.; Guo, Y.; Xia, Q.; Liu, X.; Wang, Y. Chem 2019, 5 (10), 2520. doi: 10.1016/j.chempr.2019.05.022
doi: 10.1016/j.chempr.2019.05.022
Liu, S.; Dutta, S.; Zheng, W.; Gould, N. S.; Cheng, Z.; Xu, B.; Saha, B.; Vlachos, D. G. ChemSusChem 2017, 10 (16), 3225. doi: 10.1002/cssc.201700863
doi: 10.1002/cssc.201700863
Yang, J.; Li, S.; Zhang, L.; Liu, X.; Wang, J.; Pan, X.; Li, N.; Wang, A.; Cong, Y.; Wang, X. Appl. Catal. B 2017, 201, 266. doi: 10.1016/j.apcatb.2016.08.045
doi: 10.1016/j.apcatb.2016.08.045
Wang, A.; Li, J.; Zhang, T. Nat. Rev. Chem. 2018, 2 (6), 65. doi: 10.1038/s41570-018-0010-1
doi: 10.1038/s41570-018-0010-1
Wang, S.; Zhang, K.; Li, H.; Xiao, L. P.; Song, G. Nat. Commun. 2021, 12 (1), 416. doi: 10.1038/s41467-020-20684-1
doi: 10.1038/s41467-020-20684-1
Li, S.; Dong, M.; Yang, J.; Cheng, X.; Shen, X.; Liu, S.; Wang, Z. Q.; Gong, X. Q.; Liu, H.; Han, B. Nat. Commun. 2021, 12 (1), 584. doi: 10.1038/s41467-020-20878-7
doi: 10.1038/s41467-020-20878-7
Ding, S.; Hülsey, M. J.; Pérez-Ramírez, J.; Yan, N. Joule 2019, 3 (12), 2897. doi: 10.1016/j.joule.2019.09.015
doi: 10.1016/j.joule.2019.09.015
Kim, S.; Kwon, E. E.; Kim, Y. T.; Jung, S.; Kim, H. J.; Huber, G. W.; Lee, J. Green Chem. 2019, 21 (14), 3715. doi: 10.1039/C9GC01210A
doi: 10.1039/C9GC01210A
Liu, S.; Josephson, T. R.; Athaley, A.; Chen, Q. P.; Norton, A.; Ierapetritou, M.; Siepmann, J. I.; Saha, B.; Vlachos, D. G. Sci. Adv. 2019, 5 (2), eaav5487. doi: 10.1126/sciadv.aav5487
doi: 10.1126/sciadv.aav5487
Xia, Q. N.; Cuan, Q.; Liu, X. H.; Gong, X. Q.; Lu, G. Z.; Wang, Y. Q. Angew. Chem. Int. Ed. 2014, 53 (37), 9755. doi: 10.1002/anie.201403440
doi: 10.1002/anie.201403440
Jing, Y.; Xin, Y.; Guo, Y.; Liu, X.; Wang, Y. Chin. J. Catal. 2019, 40 (8), 1168. doi: 10.1016/S1872-2067(19)63371-1
doi: 10.1016/S1872-2067(19)63371-1
Xue, F.; Ma, D.; Tong, T.; Liu, X.; Hu, Y.; Guo, Y.; Wang, Y. ACS Sustain. Chem. Eng. 2018, 6 (10), 13107. doi: 10.1021/acssuschemeng.8b02648
doi: 10.1021/acssuschemeng.8b02648
Jin, W.; Pastor-Pérez, L.; Shen, D.; Sepúlveda-Escribano, A.; Gu, S.; Ramirez Reina, T. ChemCatChem 2019, 11 (3), 924. doi: 10.1002/cctc.201801722
doi: 10.1002/cctc.201801722
Gazi, S. Appl. Catal. B 2019, 257, 117936. doi: 10.1016/j.apcatb.2019.117936
doi: 10.1016/j.apcatb.2019.117936
Shao, Y.; Xia, Q.; Dong, L.; Liu, X.; Han, X.; Parker, S. F.; Cheng, Y.; Daemen, L. L.; Ramirez-Cuesta, A. J.; Yang, S.; et al. Nat. Commun. 2017, 8, 16104. doi: 10.1038/ncomms16104
doi: 10.1038/ncomms16104
Dong, L.; Yin, L. -L.; Xia, Q.; Liu, X.; Gong, X. -Q.; Wang, Y. Catal. Sci. Technol. 2018, 8 (3), 735. doi: 10.1039/c7cy02014g
doi: 10.1039/c7cy02014g
Sun, Z.; Fridrich, B.; De Santi, A.; Elangovan, S.; Barta, K. Chem. Rev. 2018, 118 (2), 614. doi: 10.1021/acs.chemrev.7b00588
doi: 10.1021/acs.chemrev.7b00588
Mao, J.; Zhou, J.; Xia, Z.; Wang, Z.; Xu, Z.; Xu, W.; Yan, P.; Liu, K.; Guo, X.; Zhang, Z. C. ACS Catal. 2017, 7 (1), 695. doi: 10.1021/acscatal.6b02368
doi: 10.1021/acscatal.6b02368
Ishida, T.; Murayama, T.; Taketoshi, A.; Haruta, M. Chem. Rev. 2019, 120 (2), 464. doi: 10.1021/acs.chemrev.9b00551
doi: 10.1021/acs.chemrev.9b00551
Dong, L.; Xin, Y.; Liu, X.; Guo, Y.; Pao, C. -W.; Chen, J. -L.; Wang, Y. Green Chem. 2019, 21 (11), 3081. doi: 10.1039/c9gc00327d
doi: 10.1039/c9gc00327d
Song, S.; Zhang, J.; Yan, N. Fuel Process. Technol. 2020, 199, 106224. doi: 10.1016/j.fuproc.2019.106224
doi: 10.1016/j.fuproc.2019.106224
Huang, X.; Ludenhoff, J. M.; Dirks, M.; Ouyang, X.; Boot, M. D.; Hensen, E. J. ACS Catal. 2018, 8 (12), 11184. doi: 10.1021/acscatal.8b03430
doi: 10.1021/acscatal.8b03430
Mei, Q.; Liu, H.; Shen, X.; Meng, Q.; Liu, H.; Xiang, J.; Han, B. Angew. Chem. Int. Ed. 2017, 56 (47), 14868. doi: 10.1002/anie.201706846
doi: 10.1002/anie.201706846
Li, L.; Dong, L.; Li, D.; Guo, Y.; Liu, X.; Wang, Y. ACS Catal. 2020, 10 (24), 15197. doi: 10.1021/acscatal.0c03170
doi: 10.1021/acscatal.0c03170
Colmenares, J. C.; Varma, R. S.; Nair, V. Chem. Soc. Rev. 2017, 46 (22), 6675. doi: 10.1039/C7CS00257B
doi: 10.1039/C7CS00257B
Cai, Z.; Long, J.; Li, Y.; Ye, L.; Yin, B.; France, L. J.; Dong, J.; Zheng, L.; He, H.; Liu, S. Chem 2019, 5 (9), 2365. doi: 10.1016/j.chempr.2019.05.021
doi: 10.1016/j.chempr.2019.05.021
Li, L.; Dong, L.; Liu, X.; Guo, Y.; Wang, Y. Appl. Catal. B 2020, 260, 118143. doi: 10.1016/j.apcatb.2019.118143
doi: 10.1016/j.apcatb.2019.118143
Xin, Y.; Jing, Y.; Dong, L.; Liu, X.; Guo, Y.; Wang, Y. Chem. Commun. 2019, 55 (63), 9391. doi: 10.1039/c9cc04101j
doi: 10.1039/c9cc04101j
Chen, S.; Wojcieszak, R.; Dumeignil, F.; Marceau, E.; Royer, S. B. Chem. Rev. 2018, 118 (22), 11023. doi: 10.1021/acs.chemrev.8b00134
doi: 10.1021/acs.chemrev.8b00134
Nakagawa, Y.; Tamura, M.; Tomishige, K. ACS Catal. 2013, 3 (12), 2655. doi: 10.1021/cs400616p
doi: 10.1021/cs400616p
Ji, N.; Zhang, T.; Zheng, M.; Wang, A.; Wang, H.; Wang, X.; Chen, J. G. Angew. Chem. Int. Ed. 2008, 120 (44), 8638. doi: 10.1002/ange.200803233
doi: 10.1002/ange.200803233
Liu, C.; Zhang, C.; Hao, S.; Sun, S.; Liu, K.; Xu, J.; Zhu, Y.; Li, Y. Catal. Today 2016, 261, 116. doi: 10.1016/j.cattod.2015.06.030
doi: 10.1016/j.cattod.2015.06.030
Wattanapaphawong, P.; Reubroycharoen, P.; Yamaguchi, A. RSC Adv. 2017, 7 (30), 18561. doi: 10.1039/c6ra28568f
doi: 10.1039/c6ra28568f
Zhu, J.; Wang, J.; Dong, G. Nat. Chem. 2019, 11 (1), 45. doi: 10.1038/s41557-018-0157-x
doi: 10.1038/s41557-018-0157-x
Dong, L.; Lin, L.; Han, X.; Si, X.; Liu, X.; Guo, Y.; Lu, F.; Rudić, S.; Parker, S. F.; Yang, S.; et al. Chem 2019, 5 (6), 1521. doi: 10.1016/j.chempr.2019.03.007
doi: 10.1016/j.chempr.2019.03.007
Shuai, L.; Sitison, J.; Sadula, S.; Ding, J.; Thies, M. C.; Saha, B. ACS Catal. 2018, 8 (7), 6507. doi: 10.1021/acscatal.8b00200
doi: 10.1021/acscatal.8b00200
Wang, M.; Wang, F. Adv. Mater. 2019, 31 (50), 1901866. doi: 10.1002/adma.201901866
doi: 10.1002/adma.201901866
Rinaldi, R.; Jastrzebski, R.; Clough, M. T.; Ralph, J.; Kennema, M.; Bruijnincx, P. C.; Weckhuysen, B. M. Angew. Chem. Int. Ed. 2016, 55 (29), 8164. doi: 10.1002/anie.201510351
doi: 10.1002/anie.201510351
Giummarella, N.; Pu, Y.; Ragauskas, A. J.; Lawoko, M. Green Chem. 2019, 21 (7), 1573. doi: 10.1039/C8GC03606C
doi: 10.1039/C8GC03606C
Yan, J.; Meng, Q.; Shen, X.; Chen, B.; Sun, Y.; Xiang, J.; Liu, H.; Han, B. Sci. Adv. 2020, 6 (45), eabd1951. doi: 10.1126/sciadv.abd1951
doi: 10.1126/sciadv.abd1951
Meng, Q.; Yan, J.; Wu, R.; Liu, H.; Sun, Y.; Wu, N.; Xiang, J.; Zheng, L.; Zhang, J.; Han, B. Nat. Commun. 2021, 12 (1), 4534. doi: 10.1038/s41467-021-24780-8
doi: 10.1038/s41467-021-24780-8
Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.; Chandra, R.; Chen, F.; Davis, M. F.; Davison, B. H.; Dixon, R. A.; Gilna, P.; Keller, M. Science 2014, 344 (6185), 1246843. doi: 10.1126/science.1246843
doi: 10.1126/science.1246843
Wu, X.; Fan, X.; Xie, S.; Lin, J.; Cheng, J.; Zhang, Q.; Chen, L.; Wang, Y. Nat. Catal. 2018, 1 (10), 772. doi: 10.1038/s41929-018-0148-8
doi: 10.1038/s41929-018-0148-8
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Lei Wan , Yizhou Tong , Xi Lu , Yao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
Chen Li , Ziyuan Zhao , Shouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128