Citation: Hao Zhou, Yaxuan Jing, Yanqin Wang. Activation/Cleavage of C―O/C―C Bonds during Biomass Conversion[J]. Acta Physico-Chimica Sinica, ;2022, 38(10): 220301. doi: 10.3866/PKU.WHXB202203016 shu

Activation/Cleavage of C―O/C―C Bonds during Biomass Conversion

  • Corresponding author: Yaxuan Jing, jingyaxuan@mail.ecust.edu.cn Yanqin Wang, wangyanqin@ecust.edu.cn
  • Received Date: 10 March 2022
    Revised Date: 11 April 2022
    Accepted Date: 11 April 2022
    Available Online: 13 April 2022

    Fund Project: the National Natural Science Foundation of China 21832002the National Natural Science Foundation of China 21808063the National Natural Science Foundation of China 21808043the National Natural Science Foundation of China 21872050the National Natural Science Foundation of China 22003016the National Natural Science Foundation of China 92145302the National Natural Science Foundation of China 22102056the China Postdoctoral Science Foundation 2021M691011the China Postdoctoral Science Foundation 2021TQ0106Shanghai Super Postdoctoral Fellow, and the Science and Technology Commission of Shanghai Municipality 10dz2220500

  • Sustainable fuels and chemicals are receiving unprecedented attention worldwide in the context of achieving global carbon neutrality. Biomass, as the only natural and sustainable carbon-based source, shows great potential in addressing our current environmental/energy problems and in creating a carbon-neutral society. Lignocellulosic biomass is made up of basic structural units containing C―O/C―C bonds, and the catalytic cleavage of these C―O/C―C bonds is the key for biomass valorization; thus, garnering considerable attention in the past decade. This viewpoint begins with a brief report on the current status of catalytic activation/cleavage of C―O/C―C bonds during biomass conversion, and then goes on to discuss the key challenges experienced and possible strategies that can be implemented using cooperative catalysis. Our goal is not to provide a comprehensive overview of the activation/cleavage of the C―O/C―C bonds in biomass, but rather to highlight the core questions and challenges related to this process and the requirements for future investigations. We selected several representative C―O/C―C bonds in carbohydrates and lignin to discuss their catalytic mechanism in terms of total/selective bond cleavage, and then present our own insights for future studies. Therefore, this article mainly discusses the following two aspects: (1) The activation and cleavage of C―O bonds, which includes total and selective C―O bond cleavage in furan-based fuel precursors and lignin. When aiming to produce liquid fuels, including alkanes and arenes from biomass, the total cleavage of C―O bonds is essential. During the hydrodeoxygenation (HDO) of furan-based fuel precursors, various C―O bonds need to be cleaved, especially the C―O bond of each tetrahydrofuran ring, which has the highest bond energy. When compared with the total HDO of fuel precursors, the removal of the phenolic hydroxyl groups in lignin to produce arenes is more challenging because of the competition between the over-hydrogenation of the benzene rings and the cleavage of phenolic C―O bonds. The selective or partial cleavage of C―O/C―C bonds to form highly functionalized chemicals has recently attracted great interest and is believed to be a dynamic future research avenue. For example, the production of phenol from lignin or lignin-model compounds, through the selective removal of methoxy groups and para-side-chain groups, while preserving the phenolic hydroxyl groups, has been extensively explored in the past few years. (2) The other important aspect of this article is the cleavage of the C―C bonds in carbohydrates and lignin. The cleavage of carbohydrate C―C bonds occurs via retro-aldol condensation, which produces propylene glycol, ethylene glycol, ethanol, and lactic acid. The cleavage of C―C bonds in lignin is challenging because the bond energy of the C―C bonds is generally higher than that of the C―O bonds in lignin. Therefore, in this section, we discuss the cleavage of the strongest 5―5' bond in lignin. Finally, some subjective perspectives and future directions are provided, also highlighting several major challenges in this field.
  • 加载中
    1. [1]

      Sudarsanam, P.; Peeters, E.; Makshina, E. V.; Parvulescu, V. I.; Sels, B. F. Chem. Soc. Rev. 2019, 48 (8), 2366. doi: 10.1039/C8CS00452H  doi: 10.1039/C8CS00452H

    2. [2]

      Zhang, Z.; Song, J.; Han, B. Chem. Rev. 2017, 117 (10), 6834. doi: 10.1021/acs.chemrev.6b00457  doi: 10.1021/acs.chemrev.6b00457

    3. [3]

      Lin, Z.; Chen, R.; Qu, Z.; Chen, J. G. Green Chem. 2018, 20 (12), 2679. doi: 10.1039/C8GC00239H  doi: 10.1039/C8GC00239H

    4. [4]

      Robinson, A. M.; Hensley, J. E.; Medlin, J. W. ACS Catal. 2016, 6 (8), 5026. doi: 10.1021/acscatal.6b00923  doi: 10.1021/acscatal.6b00923

    5. [5]

      Li, H.; Riisager, A.; Saravanamurugan, S.; Pandey, A.; Sangwan, R. S.; Yang, S.; Luque, R. ACS Catal. 2018, 8 (1), 148. doi: 10.1021/acscatal.7b02577  doi: 10.1021/acscatal.7b02577

    6. [6]

      Nakagawa, Y.; Liu, S.; Tamura, M.; Tomishige, K. ChemSusChem 2015, 8 (7), 1114. doi: 10.1002/cssc.201403330  doi: 10.1002/cssc.201403330

    7. [7]

      Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S. -F.; Beckham, G.; Sels, B. F. Chem. Soc. Rev. 2018, 47 (3), 852. doi: 10.1039/C7CS00566K  doi: 10.1039/C7CS00566K

    8. [8]

      Jing, Y.; Guo, Y.; Xia, Q.; Liu, X.; Wang, Y. Chem 2019, 5 (10), 2520. doi: 10.1016/j.chempr.2019.05.022  doi: 10.1016/j.chempr.2019.05.022

    9. [9]

      Liu, S.; Dutta, S.; Zheng, W.; Gould, N. S.; Cheng, Z.; Xu, B.; Saha, B.; Vlachos, D. G. ChemSusChem 2017, 10 (16), 3225. doi: 10.1002/cssc.201700863  doi: 10.1002/cssc.201700863

    10. [10]

      Yang, J.; Li, S.; Zhang, L.; Liu, X.; Wang, J.; Pan, X.; Li, N.; Wang, A.; Cong, Y.; Wang, X. Appl. Catal. B 2017, 201, 266. doi: 10.1016/j.apcatb.2016.08.045  doi: 10.1016/j.apcatb.2016.08.045

    11. [11]

      Wang, A.; Li, J.; Zhang, T. Nat. Rev. Chem. 2018, 2 (6), 65. doi: 10.1038/s41570-018-0010-1  doi: 10.1038/s41570-018-0010-1

    12. [12]

      Wang, S.; Zhang, K.; Li, H.; Xiao, L. P.; Song, G. Nat. Commun. 2021, 12 (1), 416. doi: 10.1038/s41467-020-20684-1  doi: 10.1038/s41467-020-20684-1

    13. [13]

      Li, S.; Dong, M.; Yang, J.; Cheng, X.; Shen, X.; Liu, S.; Wang, Z. Q.; Gong, X. Q.; Liu, H.; Han, B. Nat. Commun. 2021, 12 (1), 584. doi: 10.1038/s41467-020-20878-7  doi: 10.1038/s41467-020-20878-7

    14. [14]

      Ding, S.; Hülsey, M. J.; Pérez-Ramírez, J.; Yan, N. Joule 2019, 3 (12), 2897. doi: 10.1016/j.joule.2019.09.015  doi: 10.1016/j.joule.2019.09.015

    15. [15]

      Kim, S.; Kwon, E. E.; Kim, Y. T.; Jung, S.; Kim, H. J.; Huber, G. W.; Lee, J. Green Chem. 2019, 21 (14), 3715. doi: 10.1039/C9GC01210A  doi: 10.1039/C9GC01210A

    16. [16]

      Liu, S.; Josephson, T. R.; Athaley, A.; Chen, Q. P.; Norton, A.; Ierapetritou, M.; Siepmann, J. I.; Saha, B.; Vlachos, D. G. Sci. Adv. 2019, 5 (2), eaav5487. doi: 10.1126/sciadv.aav5487  doi: 10.1126/sciadv.aav5487

    17. [17]

      Xia, Q. N.; Cuan, Q.; Liu, X. H.; Gong, X. Q.; Lu, G. Z.; Wang, Y. Q. Angew. Chem. Int. Ed. 2014, 53 (37), 9755. doi: 10.1002/anie.201403440  doi: 10.1002/anie.201403440

    18. [18]

      Jing, Y.; Xin, Y.; Guo, Y.; Liu, X.; Wang, Y. Chin. J. Catal. 2019, 40 (8), 1168. doi: 10.1016/S1872-2067(19)63371-1  doi: 10.1016/S1872-2067(19)63371-1

    19. [19]

      Xue, F.; Ma, D.; Tong, T.; Liu, X.; Hu, Y.; Guo, Y.; Wang, Y. ACS Sustain. Chem. Eng. 2018, 6 (10), 13107. doi: 10.1021/acssuschemeng.8b02648  doi: 10.1021/acssuschemeng.8b02648

    20. [20]

      Jin, W.; Pastor-Pérez, L.; Shen, D.; Sepúlveda-Escribano, A.; Gu, S.; Ramirez Reina, T. ChemCatChem 2019, 11 (3), 924. doi: 10.1002/cctc.201801722  doi: 10.1002/cctc.201801722

    21. [21]

      Gazi, S. Appl. Catal. B 2019, 257, 117936. doi: 10.1016/j.apcatb.2019.117936  doi: 10.1016/j.apcatb.2019.117936

    22. [22]

      Shao, Y.; Xia, Q.; Dong, L.; Liu, X.; Han, X.; Parker, S. F.; Cheng, Y.; Daemen, L. L.; Ramirez-Cuesta, A. J.; Yang, S.; et al. Nat. Commun. 2017, 8, 16104. doi: 10.1038/ncomms16104  doi: 10.1038/ncomms16104

    23. [23]

      Dong, L.; Yin, L. -L.; Xia, Q.; Liu, X.; Gong, X. -Q.; Wang, Y. Catal. Sci. Technol. 2018, 8 (3), 735. doi: 10.1039/c7cy02014g  doi: 10.1039/c7cy02014g

    24. [24]

      Sun, Z.; Fridrich, B.; De Santi, A.; Elangovan, S.; Barta, K. Chem. Rev. 2018, 118 (2), 614. doi: 10.1021/acs.chemrev.7b00588  doi: 10.1021/acs.chemrev.7b00588

    25. [25]

      Mao, J.; Zhou, J.; Xia, Z.; Wang, Z.; Xu, Z.; Xu, W.; Yan, P.; Liu, K.; Guo, X.; Zhang, Z. C. ACS Catal. 2017, 7 (1), 695. doi: 10.1021/acscatal.6b02368  doi: 10.1021/acscatal.6b02368

    26. [26]

      Ishida, T.; Murayama, T.; Taketoshi, A.; Haruta, M. Chem. Rev. 2019, 120 (2), 464. doi: 10.1021/acs.chemrev.9b00551  doi: 10.1021/acs.chemrev.9b00551

    27. [27]

      Dong, L.; Xin, Y.; Liu, X.; Guo, Y.; Pao, C. -W.; Chen, J. -L.; Wang, Y. Green Chem. 2019, 21 (11), 3081. doi: 10.1039/c9gc00327d  doi: 10.1039/c9gc00327d

    28. [28]

      Song, S.; Zhang, J.; Yan, N. Fuel Process. Technol. 2020, 199, 106224. doi: 10.1016/j.fuproc.2019.106224  doi: 10.1016/j.fuproc.2019.106224

    29. [29]

      Huang, X.; Ludenhoff, J. M.; Dirks, M.; Ouyang, X.; Boot, M. D.; Hensen, E. J. ACS Catal. 2018, 8 (12), 11184. doi: 10.1021/acscatal.8b03430  doi: 10.1021/acscatal.8b03430

    30. [30]

      Mei, Q.; Liu, H.; Shen, X.; Meng, Q.; Liu, H.; Xiang, J.; Han, B. Angew. Chem. Int. Ed. 2017, 56 (47), 14868. doi: 10.1002/anie.201706846  doi: 10.1002/anie.201706846

    31. [31]

      Li, L.; Dong, L.; Li, D.; Guo, Y.; Liu, X.; Wang, Y. ACS Catal. 2020, 10 (24), 15197. doi: 10.1021/acscatal.0c03170  doi: 10.1021/acscatal.0c03170

    32. [32]

      Colmenares, J. C.; Varma, R. S.; Nair, V. Chem. Soc. Rev. 2017, 46 (22), 6675. doi: 10.1039/C7CS00257B  doi: 10.1039/C7CS00257B

    33. [33]

      Cai, Z.; Long, J.; Li, Y.; Ye, L.; Yin, B.; France, L. J.; Dong, J.; Zheng, L.; He, H.; Liu, S. Chem 2019, 5 (9), 2365. doi: 10.1016/j.chempr.2019.05.021  doi: 10.1016/j.chempr.2019.05.021

    34. [34]

      Li, L.; Dong, L.; Liu, X.; Guo, Y.; Wang, Y. Appl. Catal. B 2020, 260, 118143. doi: 10.1016/j.apcatb.2019.118143  doi: 10.1016/j.apcatb.2019.118143

    35. [35]

      Xin, Y.; Jing, Y.; Dong, L.; Liu, X.; Guo, Y.; Wang, Y. Chem. Commun. 2019, 55 (63), 9391. doi: 10.1039/c9cc04101j  doi: 10.1039/c9cc04101j

    36. [36]

      Chen, S.; Wojcieszak, R.; Dumeignil, F.; Marceau, E.; Royer, S. B. Chem. Rev. 2018, 118 (22), 11023. doi: 10.1021/acs.chemrev.8b00134  doi: 10.1021/acs.chemrev.8b00134

    37. [37]

      Nakagawa, Y.; Tamura, M.; Tomishige, K. ACS Catal. 2013, 3 (12), 2655. doi: 10.1021/cs400616p  doi: 10.1021/cs400616p

    38. [38]

      Ji, N.; Zhang, T.; Zheng, M.; Wang, A.; Wang, H.; Wang, X.; Chen, J. G. Angew. Chem. Int. Ed. 2008, 120 (44), 8638. doi: 10.1002/ange.200803233  doi: 10.1002/ange.200803233

    39. [39]

      Liu, C.; Zhang, C.; Hao, S.; Sun, S.; Liu, K.; Xu, J.; Zhu, Y.; Li, Y. Catal. Today 2016, 261, 116. doi: 10.1016/j.cattod.2015.06.030  doi: 10.1016/j.cattod.2015.06.030

    40. [40]

      Wattanapaphawong, P.; Reubroycharoen, P.; Yamaguchi, A. RSC Adv. 2017, 7 (30), 18561. doi: 10.1039/c6ra28568f  doi: 10.1039/c6ra28568f

    41. [41]

      Zhu, J.; Wang, J.; Dong, G. Nat. Chem. 2019, 11 (1), 45. doi: 10.1038/s41557-018-0157-x  doi: 10.1038/s41557-018-0157-x

    42. [42]

      Dong, L.; Lin, L.; Han, X.; Si, X.; Liu, X.; Guo, Y.; Lu, F.; Rudić, S.; Parker, S. F.; Yang, S.; et al. Chem 2019, 5 (6), 1521. doi: 10.1016/j.chempr.2019.03.007  doi: 10.1016/j.chempr.2019.03.007

    43. [43]

      Shuai, L.; Sitison, J.; Sadula, S.; Ding, J.; Thies, M. C.; Saha, B. ACS Catal. 2018, 8 (7), 6507. doi: 10.1021/acscatal.8b00200  doi: 10.1021/acscatal.8b00200

    44. [44]

      Wang, M.; Wang, F. Adv. Mater. 2019, 31 (50), 1901866. doi: 10.1002/adma.201901866  doi: 10.1002/adma.201901866

    45. [45]

      Rinaldi, R.; Jastrzebski, R.; Clough, M. T.; Ralph, J.; Kennema, M.; Bruijnincx, P. C.; Weckhuysen, B. M. Angew. Chem. Int. Ed. 2016, 55 (29), 8164. doi: 10.1002/anie.201510351  doi: 10.1002/anie.201510351

    46. [46]

      Giummarella, N.; Pu, Y.; Ragauskas, A. J.; Lawoko, M. Green Chem. 2019, 21 (7), 1573. doi: 10.1039/C8GC03606C  doi: 10.1039/C8GC03606C

    47. [47]

      Yan, J.; Meng, Q.; Shen, X.; Chen, B.; Sun, Y.; Xiang, J.; Liu, H.; Han, B. Sci. Adv. 2020, 6 (45), eabd1951. doi: 10.1126/sciadv.abd1951  doi: 10.1126/sciadv.abd1951

    48. [48]

      Meng, Q.; Yan, J.; Wu, R.; Liu, H.; Sun, Y.; Wu, N.; Xiang, J.; Zheng, L.; Zhang, J.; Han, B. Nat. Commun. 2021, 12 (1), 4534. doi: 10.1038/s41467-021-24780-8  doi: 10.1038/s41467-021-24780-8

    49. [49]

      Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.; Chandra, R.; Chen, F.; Davis, M. F.; Davison, B. H.; Dixon, R. A.; Gilna, P.; Keller, M. Science 2014, 344 (6185), 1246843. doi: 10.1126/science.1246843  doi: 10.1126/science.1246843

    50. [50]

      Wu, X.; Fan, X.; Xie, S.; Lin, J.; Cheng, J.; Zhang, Q.; Chen, L.; Wang, Y. Nat. Catal. 2018, 1 (10), 772. doi: 10.1038/s41929-018-0148-8  doi: 10.1038/s41929-018-0148-8

  • 加载中
    1. [1]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    4. [4]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    5. [5]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    9. [9]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    10. [10]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    11. [11]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    13. [13]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    16. [16]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    19. [19]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    20. [20]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

Metrics
  • PDF Downloads(26)
  • Abstract views(668)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return