Citation: Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices[J]. Acta Physico-Chimica Sinica, ;2022, 38(9): 220300. doi: 10.3866/PKU.WHXB202203004 shu

Progress on Carbonene Fibers for Energy Devices

  • Corresponding author: Liangti Qu, lqu@mail.tsinghua.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 4 March 2022
    Revised Date: 28 March 2022
    Accepted Date: 29 March 2022
    Available Online: 31 March 2022

    Fund Project: the National Natural Science Foundation of China 52090032the National Natural Science Foundation of China 22035005the National Natural Science Foundation of China 52022051the National Natural Science Foundation of China 22075165the National Natural Science Foundation of China 52073159the State Key Laboratory of Tribology, China SKLT2021B03the Tsinghua-Foshan Innovation Special Fund, China 2021THFS0501

  • Flexible and wearable electronics can integrate multiple functions, such as sensing, actuation, and wireless communication, showing great potential for application in flexible displays, health monitoring, human-computer interaction, and other fields. Energy devices to supply power are an important part of wearable electronics. Traditional energy devices have a relatively rigid plate structure, and their poor mechanical flexibility, low breathability and moisture conductivity make them difficult to adapt to the needs of wearability. These problems have severely limited the development and application of wearable devices, and there is therefore an urgent need to develop flexible, lightweight, high-performance wearable energy devices. Fiber-based energy devices have several obvious advantages. First, the diameter of these devices usually ranges from micrometers to millimeters, which makes them small in size and light in weight. Then, their outstanding flexibility endows them with wearable comfort and stable performance under mechanical deformation. Third, fibers can be woven or knitted into deformable textiles with excellent wearability and breathability. Because of these advantages, fiber-based energy devices have attracted considerable attention. Traditional fiber-based energy devices usually use polymer fibers covered by metal wires as electrodes, but these have inherent defects, such as poor chemical stability, inferior matching with active materials, and a lack of mechanical flexibility, that hinder their application in wearable devices. Carbonene materials are low-dimensional all-carbon materials composed of sp2-hybridized carbon atoms, including carbon nanotubes and graphene, which have the advantages of low density, good mechanical properties, excellent electrical and thermal conductivity, and high stability. "Carbonene fibers" mainly refers to high-performance fiber-like macroscopic assemblies composed of carbonene materials, and includes carbon nanotube fibers, graphene fibers, and graphene/carbon nanotube composite fibers. Carbonene fibers can effectively transfer the excellent performance of carbonene materials at the micro scale to the macro scale, showing high conductivity, strength, flexibility, stability, and ease of manufacture, making them widely used in research on advanced energy devices. In recent years, researchers have developed a variety of carbonene fiber-based energy devices. This paper reviews recent progress in the application of carbonene fibers in energy devices, including energy conversion and energy storage devices such as solar cells, moisture actuators and moisture power generators, thermoelectric generators, supercapacitors, and electrochemical cells. The preparation methods and wearable applications of carbonene fiber-based energy devices are emphasized. Discussion of the development prospects and challenges of energy storage/conversion devices based on carbonene fibers is included, and it is expected that this will provide valuable ideas for the future development of high-performance fiber-based wearable energy devices.
  • 加载中
    1. [1]

      Wang, H.; Zhang, Y.; Liang, X.; Zhang, Y. ACS Nano 2021, 15, 12497. doi: 10.1021/acsnano.1c06230  doi: 10.1021/acsnano.1c06230

    2. [2]

      Hasan, M. N.; Sahlan, S.; Osman, K.; Mohamed Ali, M. S. Adv. Mater. Technol. 2021, 6, 2000771. doi: 10.1002/admt.202000771  doi: 10.1002/admt.202000771

    3. [3]

      Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Acc. Chem. Res. 2019, 52, 523. doi: 10.1021/acs.accounts.8b00500  doi: 10.1021/acs.accounts.8b00500

    4. [4]

      Ma, W.; Zhang, Y.; Pan, S.; Cheng, Y.; Shao, Z.; Xiang, H.; Chen, G.; Zhu, L.; Weng, W.; Bai, H.; et al. Chem. Soc. Rev. 2021, 50, 7009. doi: 10.1039/d0cs01603a  doi: 10.1039/d0cs01603a

    5. [5]

      Huang, L.; Lin, S.; Xu, Z.; Zhou, H.; Duan, J.; Hu, B.; Zhou, J. Adv. Mater. 2020, 32, 1902034. doi: 10.1002/adma.201902034  doi: 10.1002/adma.201902034

    6. [6]

      Liao, C.-R.; Xiong, F.; Li, X.-J.; Wu, Y.-Q.; Luo, Y.-F. Acta Phys. -Chim. Sin. 2017, 33, 329.  doi: 10.3866/PKU.WHXB201611072

    7. [7]

      Zhang, Z.; Zhang, Y.; Li, Y.; Peng, H. Acta Polym. Sin. 2016, 10, 1284. doi: 10.11777/j.issn1000-3304  doi: 10.11777/j.issn1000-3304

    8. [8]

      Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; Waarbeek, R. F. T.; Jong, J. J. D.; Hoogerwerf, R. E.; et al. Science 2013, 339, 182. doi: 10.1126/science.1228061  doi: 10.1126/science.1228061

    9. [9]

      Marinho, B.; Ghislandi, M.; Tkalya, E.; Koning, C. E.; de With, G. Powder Technol. 2012, 221, 351. doi: 10.1016/j.powtec.2012.01.024  doi: 10.1016/j.powtec.2012.01.024

    10. [10]

      Wen, Y.; Ren, M.; Di, J.; Zhang, J. Acta Phys. -Chim. Sin. 2022, 38, 2107006.  doi: 10.3866/PKU.WHXB202107006

    11. [11]

      Thostensona, E. T.; Renb, Z.; Choua, T.-W. Compos. Sci. Technol. 2001, 61, 1899. doi: 10.1016/s0266-3538(01)00094-x  doi: 10.1016/s0266-3538(01)00094-x

    12. [12]

      Zhang, P.; Xu, Q.; Liao, Q.; Yao, H.; Wang, D.; Geng, H.; Cheng, H.; Li, C.; Ma, T.; Qu, L. Sci. China Mater. 2020, 63, 1948. doi: 10.1007/s40843-020-1491-x  doi: 10.1007/s40843-020-1491-x

    13. [13]

      Yao, H.; Zhang, P.; Yang, C.; Liao, Q.; Hao, X.; Huang, Y.; Zhang, M.; Wang, X.; Lin, T.; Cheng, H.; et al. Energy Environ. Sci. 2021, 14, 5330. doi: 10.1039/d1ee01381e  doi: 10.1039/d1ee01381e

    14. [14]

      Chen, Q.; Zhao, J.; Cheng, H.; Qu, L. Acta Phys. -Chim. Sin. 2022, 38, 2101020.  doi: 10.3866/PKU.WHXB202101020

    15. [15]

      Bulmer, J. S.; Kaniyoor, A.; Elliott, J. A. Adv. Mater. 2021, 33, 2008432. doi: 10.1002/adma.202008432  doi: 10.1002/adma.202008432

    16. [16]

      Lee, S.-H.; Park, J. H.; Kim, S. M. J. Korean Ceram. Soc. 2021, 58, 148. doi: 10.1007/s43207-020-00106-0  doi: 10.1007/s43207-020-00106-0

    17. [17]

      Qian, L.; Xie, Y.; Zou, M.; Zhang, J. J. Am. Chem. Soc. 2021, 143, 18805. doi: 10.1021/jacs.1c08554  doi: 10.1021/jacs.1c08554

    18. [18]

      Wu, K.; Zhang, Y.; Yong, Z.; Li, Q. Acta Phys. -Chim. Sin. 2022, 38, 2106034.  doi: 10.3866/PKU.WHXB202106034

    19. [19]

      Zhang, X.; Lu, W.; Zhou, G.; Li, Q. Adv. Mater. 2020, 32, 1902028. doi: 10.1002/adma.201902028  doi: 10.1002/adma.201902028

    20. [20]

      Hu, C.; Zhao, Y.; Cheng, H.; Wang, Y.; Dong, Z.; Jiang, C.; Zhai, X.; Jiang, L.; Qu, L. Nano Lett. 2012, 12, 5879. doi: 10.1021/nl303243h  doi: 10.1021/nl303243h

    21. [21]

      Meng, F.; Lu, W.; Li, Q.; Byun, J. H.; Oh, Y.; Chou, T. W. Adv. Mater. 2015, 27, 5113. doi: 10.1002/adma.201501126  doi: 10.1002/adma.201501126

    22. [22]

      Yu, G.-H.; Han, Q.; Qu, L.-T. Chinese J. Polym. Sci. 2019, 37, 535. doi: 10.1007/s10118-019-2245-9  doi: 10.1007/s10118-019-2245-9

    23. [23]

      Fang, B.; Chang, D.; Xu, Z.; Gao, C. Adv. Mater. 2020, 32, 1902664. doi: 10.1002/adma.201902664  doi: 10.1002/adma.201902664

    24. [24]

      Xu, T.; Zhang, Z.; Qu, L. Adv. Mater. 2020, 32, 1901979. doi: 10.1002/adma.201901979  doi: 10.1002/adma.201901979

    25. [25]

      Jian, M.; Zhang, Y.; Liu, Z. Acta Phys. -Chim. Sin. 2022, 38, 2007093.  doi: 10.3866/PKU.WHXB202007093

    26. [26]

      Xia, Z.; Shao, Y. Acta Phys. -Chim. Sin. 2022, 38, 2103046.  doi: 10.3866/PKU.WHXB202103046

    27. [27]

      Cheng, Y.; Wang, K.; Qi, Y.; Liu, Z. Acta Phys. -Chim. Sin. 2022, 38, 2006046.  doi: 10.3866/PKU.WHXB202006046

    28. [28]

      Lv, T.; Yao, Y.; Li, N.; Chen, T. Nano Today 2016, 11, 644. doi: 10.1016/j.nantod.2016.08.010  doi: 10.1016/j.nantod.2016.08.010

    29. [29]

      Zheng, X.; Hu, Q.; Zhou, X.; Nie, W.; Li, C.; Yuan, N. Mater. Design 2021, 201, 109476. doi: 10.1016/j.matdes.2021.109476  doi: 10.1016/j.matdes.2021.109476

    30. [30]

      Cao, Y.; Zhou, T.; Wu, K.; Yong, Z.; Zhang, Y. RSC Adv. 2021, 11, 6628. doi: 10.1039/d0ra09482j  doi: 10.1039/d0ra09482j

    31. [31]

      Wu, J.; Hong, Y.; Wang, B. J. Semicond. 2018, 39, 011004. doi: 10.1088/1674-4926/39/1/011004  doi: 10.1088/1674-4926/39/1/011004

    32. [32]

      Chen, L.; Liu, Y.; Zhao, Y.; Chen, N.; Qu, L. Nanotechnology 2016, 27, 032001. doi: 10.1088/0957-4484/27/3/032001  doi: 10.1088/0957-4484/27/3/032001

    33. [33]

      Luo, Y.; Li, X.; Zhang, J.; Liao, C.; Li, X. J. Nanomater. 2014, 2014, 580256. doi: 10.1155/2014/580256  doi: 10.1155/2014/580256

    34. [34]

      Sun, H.; You, X.; Deng, J.; Chen, X.; Yang, Z.; Ren, J.; Peng, H. Adv. Mater. 2014, 26, 2868. doi: 10.1002/adma.201305188  doi: 10.1002/adma.201305188

    35. [35]

      Fu, X.; Sun, H.; Xie, S.; Zhang, J.; Pan, Z.; Liao, M.; Xu, L.; Li, Z.; Wang, B.; Sun, X.; et al. J. Mater. Chem. A 2018, 6, 45. doi: 10.1039/c7ta08637g  doi: 10.1039/c7ta08637g

    36. [36]

      Li, Z.; Huang, T.; Gao, W.; Xu, Z.; Chang, D.; Zhang, C.; Gao, C. ACS Nano 2017, 11, 11056. doi: 10.1021/acsnano.7b05092  doi: 10.1021/acsnano.7b05092

    37. [37]

      Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. Nat. Commun. 2014, 5, 3754. doi: 10.1038/ncomms4754  doi: 10.1038/ncomms4754

    38. [38]

      Bai, Y.; Jantunen, H.; Juuti, J. Adv. Mater. 2018, 30, 1707271. doi: 10.1002/adma.201707271  doi: 10.1002/adma.201707271

    39. [39]

      Huang, Y.; Zhu, M.; Huang, Y.; Pei, Z.; Li, H.; Wang, Z.; Xue, Q.; Zhi, C. Adv. Mater. 2016, 28, 8344. doi: 10.1002/adma.201601928  doi: 10.1002/adma.201601928

    40. [40]

      Liu, R.; Liu, Y.; Zou, H.; Song, T.; Sun, B. Nano Res. 2017, 10, 1545. doi: 10.1007/s12274-017-1450-5  doi: 10.1007/s12274-017-1450-5

    41. [41]

      Cole, J. M.; Pepe, G.; Al Bahri, O. K.; Cooper, C. B. Chem. Rev. 2019, 119, 7279. doi: 10.1021/acs.chemrev.8b00632  doi: 10.1021/acs.chemrev.8b00632

    42. [42]

      Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y. Chem. Soc. Rev. 2017, 46, 5975. doi: 10.1039/c6cs00752j  doi: 10.1039/c6cs00752j

    43. [43]

      Chen, T.; Wang, S.; Yang, Z.; Feng, Q.; Sun, X.; Li, L.; Wang, Z. S.; Peng, H. Angew. Chem. Int. Ed. 2011, 50, 1815. doi: 10.1002/anie.201003870  doi: 10.1002/anie.201003870

    44. [44]

      Chen, T.; Qiu, L.; Cai, Z.; Gong, F.; Yang, Z.; Wang, Z.; Peng, H. Nano Lett. 2012, 12, 2568. doi: 10.1021/nl300799d  doi: 10.1021/nl300799d

    45. [45]

      Zhang, S.; Ji, C.; Bian, Z.; Yu, P.; Zhang, L.; Liu, D.; Shi, E.; Shang, Y.; Peng, H.; Cheng, Q.; et al. ACS Nano 2012, 6, 7191. doi: 10.1021/nn3022553  doi: 10.1021/nn3022553

    46. [46]

      Ali, A.; Shah, S. M.; Bozar, S.; Kazici, M.; Keskin, B.; Kaleli, M.; Akyurekli, S.; Gunes, S. Nanotechnology 2016, 27, 384003. doi: 10.1088/0957-4484/27/38/384003  doi: 10.1088/0957-4484/27/38/384003

    47. [47]

      Xu, Z.; Gao, C. Nat. Commun. 2011, 2, 571. doi: 10.1038/ncomms1583  doi: 10.1038/ncomms1583

    48. [48]

      Dong, Z.; Jiang, C.; Cheng, H.; Zhao, Y.; Shi, G.; Jiang, L.; Qu, L. Adv. Mater. 2012, 24, 1856. doi: 10.1002/adma.201200170  doi: 10.1002/adma.201200170

    49. [49]

      Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. Adv. Mater. 2013, 25, 2326. doi: 10.1002/adma.201300132  doi: 10.1002/adma.201300132

    50. [50]

      Chen, T.; Dai, L. Angew. Chem. Int. Ed. 2015, 54, 14947. doi: 10.1002/anie.201507246  doi: 10.1002/anie.201507246

    51. [51]

      Yang, Z.; Sun, H.; Chen, T.; Qiu, L.; Luo, Y.; Peng, H. Angew. Chem. Int. Ed. 2013, 52, 7545. doi: 10.1002/anie.201301776  doi: 10.1002/anie.201301776

    52. [52]

      Zhang, L.; Shi, E.; Ji, C.; Li, Z.; Li, P.; Shang, Y.; Li, Y.; Wei, J.; Wang, K.; Zhu, H.; et al. Nanoscale 2012, 4, 4954. doi: 10.1039/c2nr31440a  doi: 10.1039/c2nr31440a

    53. [53]

      Liu, D.; Zhao, M.; Li, Y.; Bian, Z.; Zhang, L.; Shang, Y.; Xia, X.; Zhang, S.; Yun, D.; Liu, Z.; et al. ACS Nano 2012, 6, 11027. doi: 10.1021/nn304638z  doi: 10.1021/nn304638z

    54. [54]

      Ko, H.; Javey, A. Acc. Chem. Res. 2017, 50, 691. doi: 10.1021/acs.accounts.6b00612  doi: 10.1021/acs.accounts.6b00612

    55. [55]

      Jang, Y.; Kim, S. M.; Spinks, G. M.; Kim, S. J. Adv. Mater. 2020, 32, 1902670. doi: 10.1002/adma.201902670  doi: 10.1002/adma.201902670

    56. [56]

      Poppinga, S.; Zollfrank, C.; Prucker, O.; Ruhe, J.; Menges, A.; Cheng, T.; Speck, T. Adv. Mater. 2018, 30, 1703653. doi: 10.1002/adma.201703653  doi: 10.1002/adma.201703653

    57. [57]

      Gao, T.; Xu, G.; Wen, Y.; Cheng, H.; Li, C.; Qu, L. Nanoscale Horiz. 2020, 5, 1226. doi: 10.1039/d0nh00268b  doi: 10.1039/d0nh00268b

    58. [58]

      Cheng, H.; Liu, J.; Zhao, Y.; Hu, C.; Zhang, Z.; Chen, N.; Jiang, L.; Qu, L. Angew. Chem. Int. Ed. 2013, 52, 10482. doi: 10.1002/anie.201304358  doi: 10.1002/anie.201304358

    59. [59]

      Cheng, H.; Hu, Y.; Zhao, F.; Dong, Z.; Wang, Y.; Chen, N.; Zhang, Z.; Qu, L. Adv. Mater. 2014, 26, 2909. doi: 10.1002/adma.201305708  doi: 10.1002/adma.201305708

    60. [60]

      He, S.; Chen, P.; Qiu, L.; Wang, B.; Sun, X.; Xu, Y.; Peng, H. Angew. Chem. Int. Ed. 2015, 54, 14880. doi: 10.1002/anie.201507108  doi: 10.1002/anie.201507108

    61. [61]

      Gu, X.; Fan, Q.; Yang, F.; Cai, L.; Zhang, N.; Zhou, W.; Zhou, W.; Xie, S. Nanoscale 2016, 8, 17881. doi: 10.1039/c6nr06185k  doi: 10.1039/c6nr06185k

    62. [62]

      Wang, H.; Cheng, H.; Huang, Y.; Yang, C.; Wang, D.; Li, C.; Qu, L. Nano Energy 2020, 67, 104238. doi: 10.1016/j.nanoen.2019.104238  doi: 10.1016/j.nanoen.2019.104238

    63. [63]

      Huang, Y.; Cheng, H.; Qu, L. ACS Mater. Lett. 2021, 3, 193. doi: 10.1021/acsmaterialslett.0c00474  doi: 10.1021/acsmaterialslett.0c00474

    64. [64]

      Wang, H.; Sun, Y.; He, T.; Huang, Y.; Cheng, H.; Li, C.; Xie, D.; Yang, P.; Zhang, Y.; Qu, L. Nat. Nanotechnol. 2021, 16, 811. doi: 10.1038/s41565-021-00903-6  doi: 10.1038/s41565-021-00903-6

    65. [65]

      Wang, Z.; Li, J.; Shao, C.; Lin, X.; Yang, Y.; Chen, N.; Wang, Y.; Qu, L. Nano Energy 2021, 90, 106529. doi: 10.1016/j.nanoen.2021.106529  doi: 10.1016/j.nanoen.2021.106529

    66. [66]

      Bai, J.; Huang, Y.; Wang, H.; Guang, T.; Liao, Q.; Cheng, H.; Deng, S.; Li, Q.; Shuai, Z.; Qu, L. Adv. Mater. 2022, 2103897. doi: 10.1002/adma.202103897  doi: 10.1002/adma.202103897

    67. [67]

      Cheng, H.; Huang, Y.; Zhao, F.; Yang, C.; Zhang, P.; Jiang, L.; Shi, G.; Qu, L. Energy Environ. Sci. 2018, 11, 2839. doi: 10.1039/c8ee01502c  doi: 10.1039/c8ee01502c

    68. [68]

      Bai, J.; Huang, Y.; Cheng, H.; Qu, L. Nanoscale 2019, 11, 23083. doi: 10.1039/c9nr06113d  doi: 10.1039/c9nr06113d

    69. [69]

      Liang, Y.; Zhao, F.; Cheng, Z.; Zhou, Q.; Shao, H.; Jiang, L.; Qu, L. Nano Energy 2017, 32, 329. doi: 10.1016/j.nanoen.2016.12.062  doi: 10.1016/j.nanoen.2016.12.062

    70. [70]

      Shao, C.; Gao, J.; Xu, T.; Ji, B.; Xiao, Y.; Gao, C.; Zhao, Y.; Qu, L. Nano Energy 2018, 53, 698. doi: 10.1016/j.nanoen.2018.09.043  doi: 10.1016/j.nanoen.2018.09.043

    71. [71]

      Xu, Y.; Chen, P.; Zhang, J.; Xie, S.; Wan, F.; Deng, J.; Cheng, X.; Hu, Y.; Liao, M.; Wang, B.; et al. Angew. Chem. Int. Ed. 2017, 56, 12940. doi: 10.1002/anie.201706620  doi: 10.1002/anie.201706620

    72. [72]

      Chen, W.-Y.; Shi, X.-L.; Zou, J.; Chen, Z.-G. Nano Energy 2021, 81, 105684. doi: 10.1016/j.nanoen.2020.105684  doi: 10.1016/j.nanoen.2020.105684

    73. [73]

      Shi, X.-L.; Chen, W.-Y.; Zhang, T.; Zou, J.; Chen, Z.-G. Energy Environ. Sci. 2021, 14, 729. doi: 10.1039/d0ee03520c  doi: 10.1039/d0ee03520c

    74. [74]

      Yadav, A.; Pipe, K. P.; Shtein, M. J. Power Sources 2008, 175, 909. doi: 10.1016/j.jpowsour.2007.09.096  doi: 10.1016/j.jpowsour.2007.09.096

    75. [75]

      Zhang, L.; Lin, S.; Hua, T.; Huang, B.; Liu, S.; Tao, X. Adv. Energy Mater. 2018, 8, 1700524. doi: 10.1002/aenm.201700524  doi: 10.1002/aenm.201700524

    76. [76]

      Balandin, A. A. Nat. Mater. 2011, 10, 569. doi: 10.1038/nmat3064  doi: 10.1038/nmat3064

    77. [77]

      Blackburn, J. L.; Ferguson, A. J.; Cho, C.; Grunlan, J. C. Adv. Mater. 2018, 30, 1704386. doi: 10.1002/adma.201704386  doi: 10.1002/adma.201704386

    78. [78]

      Xu, Y.; Li, Z.; Duan, W. Small 2014, 10, 2182. doi: 10.1002/smll.201303701  doi: 10.1002/smll.201303701

    79. [79]

      Lin, Y.; Liu, J.; Wang, X.; Xu, J.; Liu, P.; Nie, G.; Liu, C.; Jiang, F. Compos. Commun. 2019, 16, 79. doi: 10.1016/j.coco.2019.09.002  doi: 10.1016/j.coco.2019.09.002

    80. [80]

      Liu, J.; Liu, G.; Xu, J.; Liu, C.; Zhou, W.; Liu, P.; Nie, G.; Duan, X.; Jiang, F. ACS Appl. Energy Mater. 2020, 3, 6165. doi: 10.1021/acsaem.0c00001  doi: 10.1021/acsaem.0c00001

    81. [81]

      Komatsu, N.; Ichinose, Y.; Dewey, O. S.; Taylor, L. W.; Trafford, M. A.; Yomogida, Y.; Wehmeyer, G.; Pasquali, M.; Yanagi, K.; Kono, J. Nat. Commun. 2021, 12, 4931. doi: 10.1038/s41467-021-25208-z  doi: 10.1038/s41467-021-25208-z

    82. [82]

      Lee, T.; Lee, J. W.; Park, K. T.; Kim, J. S.; Park, C. R.; Kim, H. ACS Nano 2021, 15, 13118. doi: 10.1021/acsnano.1c02508  doi: 10.1021/acsnano.1c02508

    83. [83]

      Li, X.; Wang, Y.; Zhao, Y.; Zhang, J.; Qu, L. Small Structures 2022, 3, 2100124. doi: 10.1002/sstr.202100124  doi: 10.1002/sstr.202100124

    84. [84]

      Dubal, D. P.; Ayyad, O.; Ruiz, V.; Gomez-Romero, P. Chem. Soc. Rev. 2015, 44, 1777. doi: 10.1039/c4cs00266k  doi: 10.1039/c4cs00266k

    85. [85]

      Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41, 797. doi: 10.1039/c1cs15060j  doi: 10.1039/c1cs15060j

    86. [86]

      Lu, B.; Liu, F.; Sun, G.; Gao, J.; Xu, T.; Xiao, Y.; Shao, C.; Jin, X.; Yang, H.; Zhao, Y.; et al. Adv. Mater. 2020, 32, 1907005. doi: 10.1002/adma.201907005  doi: 10.1002/adma.201907005

    87. [87]

      Lu, B.; Jin, X.; Han, Q.; Qu, L. Small 2021, 17, 2006827. doi: 10.1002/smll.202006827  doi: 10.1002/smll.202006827

    88. [88]

      Chen, D.; Jiang, K.; Huang, T.; Shen, G. Adv. Mater. 2020, 32, 1901806. doi: 10.1002/adma.201901806  doi: 10.1002/adma.201901806

    89. [89]

      Senthilkumar, S. T.; Wang, Y.; Huang, H. J. Mater. Chem. A 2015, 3, 20863. doi: 10.1039/c5ta04731e  doi: 10.1039/c5ta04731e

    90. [90]

      Cheng, H.; Li, Q.; Zhu, L.; Chen, S. Small Methods 2021, 5, 2100502. doi: 10.1002/smtd.202100502  doi: 10.1002/smtd.202100502

    91. [91]

      Choi, C.; Lee, J. A.; Choi, A. Y.; Kim, Y. T.; Lepro, X.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Adv. Mater. 2014, 26, 2059. doi: 10.1002/adma.201304736  doi: 10.1002/adma.201304736

    92. [92]

      Lu, Z.; Foroughi, J.; Wang, C.; Long, H.; Wallace, G. G. Adv. Energy Mater. 2017, 8, 1702047. doi: 10.1002/aenm.201702047  doi: 10.1002/aenm.201702047

    93. [93]

      Xu, P.; Gu, T.; Cao, Z.; Wei, B.; Yu, J.; Li, F.; Byun, J.-H.; Lu, W.; Li, Q.; Chou, T.-W. Adv. Energy Mater. 2014, 4, 1300759. doi: 10.1002/aenm.201300759  doi: 10.1002/aenm.201300759

    94. [94]

      Dalton, A. B.; Collins, S.; Muñoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; N. J.; Coleman; Kim, B. G.; Baughman, R. H. Science 2003, 423, 703. doi: 10.1038/423703a  doi: 10.1038/423703a

    95. [95]

      Chen, X.; Qiu, L.; Ren, J.; Guan, G.; Lin, H.; Zhang, Z.; Chen, P.; Wang, Y.; Peng, H. Adv. Mater. 2013, 25, 6436. doi: 10.1002/adma.201301519  doi: 10.1002/adma.201301519

    96. [96]

      Meng, Q.; Wu, H.; Meng, Y.; Xie, K.; Wei, Z.; Guo, Z. Adv. Mater. 2014, 26, 4100. doi: 10.1002/adma.201400399  doi: 10.1002/adma.201400399

    97. [97]

      Liang, Y.; Wang, Z.; Huang, J.; Cheng, H.; Zhao, F.; Hu, Y.; Jiang, L.; Qu, L. J. Mater. Chem. A 2015, 3, 2547. doi: 10.1039/c4ta06574c  doi: 10.1039/c4ta06574c

    98. [98]

      Hu, Y.; Cheng, H.; Zhao, F.; Chen, N.; Jiang, L.; Feng, Z.; Qu, L. Nanoscale 2014, 6, 6448. doi: 10.1039/c4nr01220h  doi: 10.1039/c4nr01220h

    99. [99]

      Cai, W.; Lai, T.; Ye, J. J. Mater. Chem. A 2015, 3, 5060. doi: 10.1039/c5ta00365b  doi: 10.1039/c5ta00365b

    100. [100]

      Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. Angew. Chem. Int. Ed. 2008, 47, 373. doi: 10.1002/anie.200702721  doi: 10.1002/anie.200702721

    101. [101]

      Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Science 2006, 313, 1760. doi: 10.1126/science.1132195  doi: 10.1126/science.1132195

    102. [102]

      Lu, C.; Meng, J.; Zhang, J.; Chen, X.; Du, M.; Chen, Y.; Hou, C.; Wang, J.; Ju, A.; Wang, X.; et al. ACS Appl. Mater. Interfaces 2019, 11, 25205. doi: 10.1021/acsami.9b06406  doi: 10.1021/acsami.9b06406

    103. [103]

      Meng, J.; Nie, W.; Zhang, K.; Xu, F.; Ding, X.; Wang, S.; Qiu, Y. ACS Appl. Mater. Interfaces 2018, 10, 13652. doi: 10.1021/acsami.8b04438  doi: 10.1021/acsami.8b04438

    104. [104]

      Zheng, X.; Zhang, K.; Yao, L.; Qiu, Y.; Wang, S. J. Mater. Chem. A 2018, 6, 896. doi: 10.1039/c7ta08362a  doi: 10.1039/c7ta08362a

    105. [105]

      Cai, S.; Huang, T.; Chen, H.; Salman, M.; Gopalsamy, K.; Gao, C. J. Mater. Chem. A 2017, 5, 22489. doi: 10.1039/c7ta07937k  doi: 10.1039/c7ta07937k

    106. [106]

      Liu, K.; Chen, Z.; Lv, T.; Yao, Y.; Li, N.; Li, H.; Chen, T. Nano-Micro Lett. 2020, 12, 64. doi: 10.1007/s40820-020-0390-x  doi: 10.1007/s40820-020-0390-x

    107. [107]

      Cheng, H.; Dong, Z.; Hu, C.; Zhao, Y.; Hu, Y.; Qu, L.; Chen, N.; Dai, L. Nanoscale 2013, 5, 3428. doi: 10.1039/c3nr00320e  doi: 10.1039/c3nr00320e

    108. [108]

      Yu, D.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.; Zhang, Q.; Dai, L.; Chen, Y. Nat. Nanotechnol. 2014, 9, 555. doi: 10.1038/nnano.2014.93  doi: 10.1038/nnano.2014.93

    109. [109]

      Park, H.; Ambade, R. B.; Noh, S. H.; Eom, W.; Koh, K. H.; Ambade, S. B.; Lee, W. J.; Kim, S. H.; Han, T. H. ACS Appl. Mater. Interfaces 2019, 11, 9011. doi: 10.1021/acsami.8b17908  doi: 10.1021/acsami.8b17908

    110. [110]

      Wei, W.; Cui, X.; Chen, W.; Ivey, D. G. Chem. Soc. Rev. 2011, 40, 1697. doi: 10.1039/c0cs00127a  doi: 10.1039/c0cs00127a

    111. [111]

      Augustyn, V.; Simon, P.; Dunn, B. Energy Environ. Sci. 2014, 7, 1597. doi: 10.1039/c3ee44164d  doi: 10.1039/c3ee44164d

    112. [112]

      Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z. Nano Lett. 2010, 10, 4863. doi: 10.1021/nl102661q  doi: 10.1021/nl102661q

    113. [113]

      Wu, Z.-S.; Zhou, G.; Yin, L.-C.; Ren, W.; Li, F.; Cheng, H.-M. Nano Energy 2012, 1, 107. doi: 10.1016/j.nanoen.2011.11.001  doi: 10.1016/j.nanoen.2011.11.001

    114. [114]

      Wang, K.; Meng, Q.; Zhang, Y.; Wei, Z.; Miao, M. Adv. Mater. 2013, 25, 1494. doi: 10.1002/adma.201204598  doi: 10.1002/adma.201204598

    115. [115]

      Cheng, X.; Zhang, J.; Ren, J.; Liu, N.; Chen, P.; Zhang, Y.; Deng, J.; Wang, Y.; Peng, H. J. Phys. Chem. C 2016, 120, 9685. doi: 10.1021/acs.jpcc.6b02794  doi: 10.1021/acs.jpcc.6b02794

    116. [116]

      Zheng, X.; Yao, L.; Qiu, Y.; Wang, S.; Zhang, K. ACS Appl. Energy Mater. 2019, 2, 4335. doi: 10.1021/acsaem.9b00558  doi: 10.1021/acsaem.9b00558

    117. [117]

      Salman, A.; Padmajan Sasikala, S.; Kim, I. H.; Kim, J. T.; Lee, G. S.; Kim, J. G.; Kim, S. O. Nanoscale 2020, 12, 20239. doi: 10.1039/d0nr06636b  doi: 10.1039/d0nr06636b

    118. [118]

      Wang, B.; Fang, X.; Sun, H.; He, S.; Ren, J.; Zhang, Y.; Peng, H. Adv. Mater. 2015, 27, 7854. doi: 10.1002/adma.201503441  doi: 10.1002/adma.201503441

    119. [119]

      Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Chem. Rev. 2011, 111, 3577. doi: 10.1021/cr100290v  doi: 10.1021/cr100290v

    120. [120]

      Wu, J.; Pan, Z.; Zhang, Y.; Wang, B.; Peng, H. J. Mater. Chem. A 2018, 6, 12932. doi: 10.1039/c8ta03968b  doi: 10.1039/c8ta03968b

    121. [121]

      Xi, Z.; Zhang, X.; Ma, Y.; Zhou, C.; Yang, J.; Wu, Y.; Li, X.; Luo, Y.; Chen, D. ChemElectroChem 2018, 5, 3127. doi: 10.1002/celc.201800741  doi: 10.1002/celc.201800741

    122. [122]

      Zhang, T.-W.; Tian, T.; Shen, B.; Song, Y.-H.; Yao, H.-B. Compos. Commun. 2019, 14, 7. doi: 10.1016/j.coco.2019.05.003  doi: 10.1016/j.coco.2019.05.003

    123. [123]

      Mo, F.; Liang, G.; Huang, Z.; Li, H.; Wang, D.; Zhi, C. Adv. Mater. 2020, 32, 1902151. doi: 10.1002/adma.201902151  doi: 10.1002/adma.201902151

    124. [124]

      Chen, X.; Ma, Y. Adv. Mater. Technol. 2018, 3, 1800041. doi: 10.1002/admt.201800041  doi: 10.1002/admt.201800041

    125. [125]

      Zhou, Y.; Wang, C. H.; Lu, W.; Dai, L. Adv. Mater. 2020, 32, 1902779. doi: 10.1002/adma.201902779  doi: 10.1002/adma.201902779

    126. [126]

      Zhang, Y.; Bai, W.; Ren, J.; Weng, W.; Lin, H.; Zhang, Z.; Peng, H. J. Mater. Chem. A 2014, 2, 11054. doi: 10.1039/c4ta01878h  doi: 10.1039/c4ta01878h

    127. [127]

      Wu, Z.; Liu, K.; Lv, C.; Zhong, S.; Wang, Q.; Liu, T.; Liu, X.; Yin, Y.; Hu, Y.; Wei, D.; et al. Small 2018, 14, 1800414. doi: 10.1002/smll.201800414  doi: 10.1002/smll.201800414

    128. [128]

      Zhang, Y.; Weng, W.; Yang, J.; Liang, Y.; Yang, L.; Luo, X.; Zuo, W.; Zhu, M. J. Mater. Sci. 2018, 54, 582. doi: 10.1007/s10853-018-2813-3  doi: 10.1007/s10853-018-2813-3

    129. [129]

      Ren, J.; Zhang, Y.; Bai, W.; Chen, X.; Zhang, Z.; Fang, X.; Weng, W.; Wang, Y.; Peng, H. Angew. Chem. Int. Ed. 2014, 53, 7864. doi: 10.1002/anie.201402388  doi: 10.1002/anie.201402388

    130. [130]

      Zhang, Y.; Bai, W.; Cheng, X.; Ren, J.; Weng, W.; Chen, P.; Fang, X.; Zhang, Z.; Peng, H. Angew. Chem. Int. Ed. 2014, 53, 14564. doi: 10.1002/anie.201409366  doi: 10.1002/anie.201409366

    131. [131]

      Weng, W.; Sun, Q.; Zhang, Y.; Lin, H.; Ren, J.; Lu, X.; Wang, M.; Peng, H. Nano Lett. 2014, 14, 3432. doi: 10.1021/nl5009647  doi: 10.1021/nl5009647

    132. [132]

      Hoshide, T.; Zheng, Y.; Hou, J.; Wang, Z.; Li, Q.; Zhao, Z.; Ma, R.; Sasaki, T.; Geng, F. Nano Lett. 2017, 17, 3543. doi: 10.1021/acs.nanolett.7b00623  doi: 10.1021/acs.nanolett.7b00623

    133. [133]

      Wang, B.; Ryu, J.; Choi, S.; Song, G.; Hong, D.; Hwang, C.; Chen, X.; Wang, B.; Li, W.; Song, H. K.; et al. ACS Nano 2018, 12, 1739. doi: 10.1021/acsnano.7b08489  doi: 10.1021/acsnano.7b08489

    134. [134]

      Rao, J.; Liu, N.; Zhang, Z.; Su, J.; Li, L.; Xiong, L.; Gao, Y. Nano Energy 2018, 51, 425. doi: 10.1016/j.nanoen.2018.06.067  doi: 10.1016/j.nanoen.2018.06.067

    135. [135]

      Tan, P.; Chen, B.; Xu, H.; Zhang, H.; Cai, W.; Ni, M.; Liu, M.; Shao, Z. Energy Environ. Sci. 2017, 10, 2056. doi: 10.1039/c7ee01913k  doi: 10.1039/c7ee01913k

    136. [136]

      Mei, J.; Liao, T.; Liang, J.; Qiao, Y.; Dou, S. X.; Sun, Z. Adv. Energy Mater. 2019, 10, 1901997. doi: 10.1002/aenm.201901997  doi: 10.1002/aenm.201901997

    137. [137]

      Zhang, Y.; Jiao, Y.; Lu, L.; Wang, L.; Chen, T.; Peng, H. Angew. Chem. Int. Ed. 2017, 56, 13741. doi: 10.1002/anie.201707840  doi: 10.1002/anie.201707840

    138. [138]

      Li, Y.; Zhong, C.; Liu, J.; Zeng, X.; Qu, S.; Han, X.; Deng, Y.; Hu, W.; Lu, J. Adv. Mater. 2018, 30, 1703657. doi: 10.1002/adma.201703657  doi: 10.1002/adma.201703657

    139. [139]

      Xu, Y.; Zhao, Y.; Ren, J.; Zhang, Y.; Peng, H. Angew. Chem. Int. Ed. 2016, 55, 7979. doi: 10.1002/anie.201601804  doi: 10.1002/anie.201601804

    140. [140]

      Dai, C.; Hu, L.; Jin, X.; Zhao, Y.; Qu, L. Small 2021, 17, 2008043. doi: 10.1002/smll.202008043  doi: 10.1002/smll.202008043

    141. [141]

      Jin, X.; Song, L.; Dai, C.; Xiao, Y.; Han, Y.; Zhang, X.; Li, X.; Bai, C.; Zhang, J.; Zhao, Y.; et al. Adv. Energy Mater. 2021, 11, 2101523. doi: 10.1002/aenm.202101523  doi: 10.1002/aenm.202101523

    142. [142]

      Jin, X.; Song, L.; Dai, C.; Xiao, Y.; Han, Y.; Li, X.; Wang, Y.; Zhang, J.; Zhao, Y.; Zhang, Z.; et al. Adv. Mater. 2022, 2109450. doi: 10.1002/adma.202109450  doi: 10.1002/adma.202109450

    143. [143]

      Ma, H.; Chen, H.; Hu, Y.; Yang, B.; Feng, J.; Xu, Y.; Sun, Y.; Cheng, H.; Li, C.; Yan, X.; et al. Energy Environ. Sci. 2022, 15, 1131. doi: 10.1039/d1ee03672f  doi: 10.1039/d1ee03672f

    144. [144]

      Ao, H.; Zhao, Y.; Zhou, J.; Cai, W.; Zhang, X.; Zhu, Y.; Qian, Y. J. Mater. Chem. A 2019, 7, 18708. doi: 10.1039/c9ta06433h  doi: 10.1039/c9ta06433h

    145. [145]

      Liu, T.; Cheng, X.; Yu, H.; Zhu, H.; Peng, N.; Zheng, R.; Zhang, J.; Shui, M.; Cui, Y.; Shu, J. Energy Stor. Mater. 2019, 18, 68. doi: 10.1016/j.ensm.2018.09.027  doi: 10.1016/j.ensm.2018.09.027

    146. [146]

      Zhao, Y.; Chen, Z.; Mo, F.; Wang, D.; Guo, Y.; Liu, Z.; Li, X.; Li, Q.; Liang, G.; Zhi, C. Adv. Sci. 2020, 8, 2002590. doi: 10.1002/advs.202002590  doi: 10.1002/advs.202002590

    147. [147]

      Zhang, Y.; Wang, Y.; Wang, L.; Lo, C.-M.; Zhao, Y.; Jiao, Y.; Zheng, G.; Peng, H. J. Mater. Chem. A 2016, 4, 9002. doi: 10.1039/c6ta03477b  doi: 10.1039/c6ta03477b

    148. [148]

      Fang, G.; Zhou, J.; Pan, A.; Liang, S. ACS Energy Lett. 2018, 3, 2480. doi: 10.1021/acsenergylett.8b01426  doi: 10.1021/acsenergylett.8b01426

    149. [149]

      Xu, W.; Wang, Y. Nano-Micro Lett. 2019, 11, 90. doi: 10.1007/s40820-019-0322-9  doi: 10.1007/s40820-019-0322-9

    150. [150]

      Zhang, Q.; Li, C.; Li, Q.; Pan, Z.; Sun, J.; Zhou, Z.; He, B.; Man, P.; Xie, L.; Kang, L.; et al. Nano Lett. 2019, 19, 4035. doi: 10.1021/acs.nanolett.9b01403  doi: 10.1021/acs.nanolett.9b01403

    151. [151]

      Guo, S.; Yi, J.; Sun, Y.; Zhou, H. Energy Environ. Sci. 2016, 9, 2978. doi: 10.1039/c6ee01807f  doi: 10.1039/c6ee01807f

    152. [152]

      Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Chem. Soc. Rev. 2017, 46, 3529. doi: 10.1039/c6cs00776g  doi: 10.1039/c6cs00776g

    153. [153]

      Guo, Z.; Zhao, Y.; Ding, Y.; Dong, X.; Chen, L.; Cao, J.; Wang, C.; Xia, Y.; Peng, H.; Wang, Y. Chem 2017, 3, 348. doi: 10.1016/j.chempr.2017.05.004  doi: 10.1016/j.chempr.2017.05.004

    154. [154]

      Chong, W. G.; Huang, J.-Q.; Xu, Z.-L.; Qin, X.; Wang, X.; Kim, J.-K. Adv. Funct. Mater. 2017, 27, 1604815. doi: 10.1002/adfm.201604815  doi: 10.1002/adfm.201604815

    155. [155]

      Wang, K.; Zhang, X.; Han, J.; Zhang, X.; Sun, X.; Li, C.; Liu, W.; Li, Q.; Ma, Y. ACS Appl. Mater. Interfaces 2018, 10, 24573. doi: 10.1021/acsami.8b07756  doi: 10.1021/acsami.8b07756

    156. [156]

      Li, C.; Zhang, Q.; E, S.; Li, T.; Zhu, Z.; He, B.; Zhou, Z.; Man, P.; Li, Q.; Yao, Y. J. Mater. Chem. A 2019, 7, 2034. doi: 10.1039/c8ta10807b  doi: 10.1039/c8ta10807b

    157. [157]

      Wang, M.; Xie, S.; Tang, C.; Zhao, Y.; Liao, M.; Ye, L.; Wang, B.; Peng, H. Adv. Funct. Mater. 2019, 30, 1905971. doi: 10.1002/adfm.201905971  doi: 10.1002/adfm.201905971

    158. [158]

      Fu, Y.; Wu, H.; Ye, S.; Cai, X.; Yu, X.; Hou, S.; Kafafy, H.; Zou, D. Energy Environ. Sci. 2013, 6, 805. doi: 10.1039/c3ee23970e  doi: 10.1039/c3ee23970e

    159. [159]

      Han, Y.; Wang, W.; Zou, J.; Li, Z.; Cao, X.; Xu, S. Nano Energy 2020, 76, 105008. doi: 10.1016/j.nanoen.2020.105008  doi: 10.1016/j.nanoen.2020.105008

    160. [160]

      Zhang, Y.; Zhao, Y.; Cheng, X.; Weng, W.; Ren, J.; Fang, X.; Jiang, Y.; Chen, P.; Zhang, Z.; Wang, Y.; et al. Angew. Chem. Int. Ed. 2015, 54, 11177. doi: 10.1002/anie.201506142  doi: 10.1002/anie.201506142

    161. [161]

      Yao, Y.; Lv, T.; Li, N.; Chen, Z.; Zhang, C.; Chen, T. Sci. Bull. 2020, 65, 486. doi: 10.1016/j.scib.2019.11.013  doi: 10.1016/j.scib.2019.11.013

    162. [162]

      Sun, H.; Jiang, Y.; Xie, S.; Zhang, Y.; Ren, J.; Ali, A.; Doo, S.-G.; Son, I. H.; Huang, X.; Peng, H. J. Mater. Chem. A 2016, 4, 7601. doi: 10.1039/C6TA01514J  doi: 10.1039/C6TA01514J

    163. [163]

      He, J.; Lu, C.; Jiang, H.; Han, F.; Shi, X.; Wu, J.; Wang, L.; Chen, T.; Wang, J.; Zhang, Y.; et al. Nature 2021, 597, 57. doi: 10.1038/s41586-021-03772-0  doi: 10.1038/s41586-021-03772-0

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    8. [8]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    9. [9]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    10. [10]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    13. [13]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    18. [18]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(22)
  • Abstract views(623)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return