PtRuAgCoNi High-Entropy Alloy Nanoparticles for High-Efficiency Electrocatalytic Oxidation of 5-Hydroxymethylfurfural
- Corresponding author: Tianfu Wang, tfwang@sjtu.edu.cn Xi Liu, liuxi@sjtu.edu.cn Liwei Chen, lwchen2018@sjtu.edu.cn
Citation:
Yan Yang, Bowen He, Hualong Ma, Sen Yang, Zhouhong Ren, Tian Qin, Fagui Lu, Liwen Ren, Yixiao Zhang, Tianfu Wang, Xi Liu, Liwei Chen. PtRuAgCoNi High-Entropy Alloy Nanoparticles for High-Efficiency Electrocatalytic Oxidation of 5-Hydroxymethylfurfural[J]. Acta Physico-Chimica Sinica,
;2022, 38(12): 220105.
doi:
10.3866/PKU.WHXB202201050
Battula, V. R.; Jaryal, A.; Kailasam, K. K. J. Mater. Chem. A 2019, 7, 5643. doi: 10.1039/C8TA10926E
doi: 10.1039/C8TA10926E
Akhade, S. A.; Singh, N.; Gutiérrez, O. Y.; Lopez-Ruiz, J.; Wang, H.; Holladay, J. D.; Liu, Y.; Karkamkar, A.; Weber, R. S.; Padmaperuma, A. B.; et al. Chem. Rev. 2020, 120, 11370. doi: 10.1021/acs.chemrev.0c00158
doi: 10.1021/acs.chemrev.0c00158
Banerjee, A.; Dick, G. R.; Yoshino, T.; Kanan, M. W. Nature 2016, 531, 215. doi: 10.1038/nature17185
doi: 10.1038/nature17185
Eerhart, A. J. J. E.; Faaij, A. P. C.; Patel, M. K. Energy Environ. Sci. 2012, 5, 6407. doi: 10.1039/c2ee02480b
doi: 10.1039/c2ee02480b
Hou, Q.; Qi, X.; Zhen, M.; Qian, H.; Nie, Y.; Bai, C.; Zhang, S.; Bai, X.; Ju, M. Green Chem. 2021, 23, 119. doi: 10.1039/d0gc02770g
doi: 10.1039/d0gc02770g
Yang, Y.; Mu, T. Green Chem. 2021, 23, 4228. doi: 10.1039/D1GC00914A
doi: 10.1039/D1GC00914A
You, B.; Liu, X.; Jiang, N.; Sun, Y. J. Am. Chem. Soc. 2016, 138, 13639. doi: 10.1021/jacs.6b07127
doi: 10.1021/jacs.6b07127
Jiang, N.; You, B.; Boonstra, R.; Rodriguez, I. M.; Sun, Y. ACS Energy Lett. 2016, 1, 386. doi: 10.1021/acsenergylett.6b00214
doi: 10.1021/acsenergylett.6b00214
You, B.; Jiang, N.; Liu, X.; Sun, Y. Angew. Chem. Int. Ed. 2016, 55, 9913. doi: 10.1002/ange.201603798
doi: 10.1002/ange.201603798
Li, S.; Sun, X.; Yao, Z.; Zhong, X.; Cao, Y.; Liang, Y.; Wei, Z.; Deng, S.; Zhuang, G.; Li, X.; Wang, J. Adv. Funct. Mater. 2019, 29, 1904780. doi: 10.1002/adfm.201904780
doi: 10.1002/adfm.201904780
Davis, S. E.; Houk, L. R.; Tamargoa, E. C.; Datye, A. K.; Davis, R. J. Catal. Today 2011, 160, 55. doi: 10.1016/j.cattod.2010.06.004
doi: 10.1016/j.cattod.2010.06.004
Vuyyuru, K.; Strasser, P. Catal. Today 2012, 195, 144. doi: 10.1016/j.cattod.2012.05.008
doi: 10.1016/j.cattod.2012.05.008
Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Adv. Eng. Mater. 2004, 6, 299. doi: 10.1002/adem.200300567
doi: 10.1002/adem.200300567
Zhao, K. N.; Li, X.; Su, D. Acta Phys. -Chim. Sin. 2021, 37, 2009077.
doi: 10.3866/PKU.WHXB202009077
Zhang, G.; Ming, K.; Kang, J.; Huang, Q.; Zhang, Z.; Zheng, X.; Bi, X. Electrochim. Acta 2018, 279, 19. doi: 10.1016/j.electacta.2018.05.035
doi: 10.1016/j.electacta.2018.05.035
Qiu, H. J.; Fang, G.; Gao, J.; Wen, Y.; Lv, J.; Li, H.; Xie, G.; Liu, X.; Sun, S. ACS Mater. Lett. 2019, 1, 526. doi: 10.1021/acsmaterialslett.9b00414
doi: 10.1021/acsmaterialslett.9b00414
Yao, Y.; Huang, Z.; Li, T.; Wang, H.; Liu, Y.; Stein, H. S.; Mao, Y.; Gao, J.; Jiao, M.; Dong, Q.; et al. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 6316. doi: 10.1073/pnas.1903721117
doi: 10.1073/pnas.1903721117
Yang, Y.; Song, B.; Ke, X.; Xu, F.; Bozhilov, K. N.; Hu, L.; Shahbazian-Yassar, R.; Zachariah, M. R. Langmuir 2020, 36, 1985. doi: 10.1021/acs.langmuir.9b03392
doi: 10.1021/acs.langmuir.9b03392
Lu, L.; Zou, S.; Fang, B. ACS Catal. 2021, 11, 6020. doi: 10.1021/acscatal.1c00903
doi: 10.1021/acscatal.1c00903
Wanjala, B. N.; Loukrakpam, R.; Luo, J.; Njoki, P. N.; Mott, D.; Zhong, C. J.; Shao, M.; Protsailo, L.; Kawamura, T. J. Phys. Chem. C 2010, 114, 17580. doi: 10.1021/jp106843k
doi: 10.1021/jp106843k
Li, D.; Wang, C.; Tripkovic, D.; Sun, S.; Markovic, N. M.; Stamenkovic, V. R. ACS Catal. 2012, 2, 1358. doi: 10.1021/cs300219j
doi: 10.1021/cs300219j
Zhong, R. Y.; Yang, J. W.; Hu, Z.; Xu, B. Q. ACS Appl. Nano Mater. 2019, 2, 5720. doi: 10.1021/acsanm.9b01197
doi: 10.1021/acsanm.9b01197
Niu, Z.; Li, Y. Chem. Mater. 2014, 26, 72. doi: 10.1021/cm4022479
doi: 10.1021/cm4022479
Lu, F.; Zhou, S.; Li, S.; Jiang, H.; He, B.; Qi, J.; Zhang, Y.; Liu, X.; Xu, J.; Li, Y.; Liu, X.; Chen, L. J. Phys. Chem. C 2021, 125, 23205. doi: 10.1021/acs.jpcc.1c07437
doi: 10.1021/acs.jpcc.1c07437
Bondesgaard, M.; Broge, N. L. N.; Mamakhel, A.; Bremholm, M.; Iversen, B. B. Adv. Funct. Mater. 2019, 29, 1905933. doi: 10.1002/adfm.201905933
doi: 10.1002/adfm.201905933
Cai, Z. X.; Goou, H.; Ito, Y.; Tokunaga, T.; Miyauchi, M.; Abe, H.; Fujita, T. Chem. Sci. 2021, 12, 11306. doi: 10.1039/D1SC01981C
doi: 10.1039/D1SC01981C
Shyu, J. Z.; Otto, K. Appl. Surf. Sci. 1988, 32, 246. doi: 10.1016/0169-4332(88)90085-2
doi: 10.1016/0169-4332(88)90085-2
Wang, A. Q.; Liu, J. H.; Lin, S. D.; Lin, T. S.; Mou, C. Y. J. Catal. 2005, 233, 186. doi: 10.1016/j.jcat.2005.04.028
doi: 10.1016/j.jcat.2005.04.028
Xu, S. K.; Li, L. M.; Guo, N. N.; Su, Y. L.; Zhang, P. Acta Phys. -Chim. Sin. 2012, 28, 177.
doi: 10.3866/PKU.WHXB201111181
Pan, Z. M.; Liu, M. H.; Niu, P. P.; Guo, F. S.; Fu, X. Z.; Wang, X. C. Acta Phys. -Chim. Sin. 2020, 36, 1906014.
doi: 10.3866/PKU.WHXB201906014
Nellaiappan, S.; Katiyar, N. K.; Kumar, R.; Parui, A.; Malviya, K. D.; Pradeep, K. G.; Singh, A. K.; Sharma, S.; Tiwary, C. S.; Biswas, K. ACS Catal. 2020, 10, 3658. doi: 10.1021/acscatal.9b04302
doi: 10.1021/acscatal.9b04302
Shao, M.; Odell, J. H.; Choi, S. I.; Xia, Y. Electrochem. Commun. 2013, 31, 46. doi: 10.1021/acscatal.9b04302
doi: 10.1021/acscatal.9b04302
Collins, G.; Davitt, F.; O'Dwyer, C.; Holmes, J. D. ACS Appl. Nano Mater. 2018, 1, 7129. doi: 10.1021/acsanm.8b02019
doi: 10.1021/acsanm.8b02019
Chen, W.; Kim, J.; Sun, S.; Chen, S. Phys. Chem. Chem. Phys. 2006, 8, 2779. doi: 10.1039/B603045A
doi: 10.1039/B603045A
Weidner, J.; Barwe, S.; Sliozberg, K.; Piontek, S.; Masa, J.; Apfel, U. P.; Schuhmann, W. Beilstein J. Org. Chem. 2018, 14, 1436. doi: 10.3762/bjoc.14.121
doi: 10.3762/bjoc.14.121
Yan, D.; Li, Y.; Huo, J.; Chen, R.; Dai, L.; Wang, S. Adv. Mater. 2017, 29, 1606459. doi: 10.1002/adma.201606459
doi: 10.1002/adma.201606459
Gu, K.; Wang, D.; Xie, C.; Wang, T.; Huang, G.; Liu, Y.; Zou, Y.; Tao, L.; Wang, S. Angew. Chem. Int. Ed. 2021, 133, 20415. doi: 10.1002/ange.202107390
doi: 10.1002/ange.202107390
Lili Wang , Ya Yan , Rulin Li , Xujie Han , Jiahui Li , Ting Ran , Jialu Li , Baichuan Xiong , Xiaorong Song , Zhaohui Yin , Hong Wang , Qingjun Zhu , Bowen Cheng , Zhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Zhaojun Liu , Zerui Mu , Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Qiyan Wu , Qing Li . Topologically close-packed intermetallic alloy electrocatalysts for CO2 reduction towards high value-added multi-carbon chemicals. Chinese Chemical Letters, 2025, 36(1): 110384-. doi: 10.1016/j.cclet.2024.110384
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
Yuchen Wang , Zhenhao Xu , Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Kaili Wang , Pengcheng Liu , Mingzhe Wang , Tianran Wei , Jitao Lu , Xingling Zhao , Zaiyong Jiang , Zhimin Yuan , Xijun Liu , Jia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Yanling Yang , Zhenfa Ding , Huimin Wang , Jianhui Li , Yanping Zheng , Hongquan Guo , Li Zhang , Bing Yang , Qingqing Gu , Haifeng Xiong , Yifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585
Xiaoxue Li , Hongwei Zhou , Rongrong Qian , Xu Zhang , Lei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036
Linfang ZHANG , Wenzhu YIN , Gui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405