In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production
- Corresponding author: Zhiliang Jin, zl-jin@nun.edu.cn
Citation: Hongying Li, Haiming Gong, Zhiliang Jin. In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2022, 38(12): 220103. doi: 10.3866/PKU.WHXB202201037
Zhang, P.; Wang, J.; Li, Y.; Jiang, L.; Wang, Z.; Zhang, G. Acta Phys. -Chim. Sin. 2021, 37, 2009102.
doi: 10.3866/PKU.WHXB202009102
Xue, Y.; Huang, B.; Yi, Y.; Guo, Y.; Zuo, Z.; Li, Y.; Jia, Z.; Liu, H.; Li, Y. Nat. Commun. 2018, 9, 1460. doi: 10.1038/s41467-018-03896-4
doi: 10.1038/s41467-018-03896-4
Hui, L.; Xue, Y.; Yu, H.; Liu, Y.; Fang, Y.; Xing, C.; Huang, B.; Li, Y. J. Am. Chem. Soc. 2019, 141, 10677. doi: 10.1021/jacs.9b03004
doi: 10.1021/jacs.9b03004
Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, R.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2021, 37, 2010059.
doi: 10.3866/PKU.WHXB202010059
Hui, L.; Zhang, X.; Xue, Y.; Chen, X.; Fang, Y.; Xing, C.; Liu, Y.; Zheng, X.; Du, Y.; Zhang, C.; et al. J. Am. Chem. Soc. 2022, 144, 1921. doi: 10.1021/jacs.1c12310
doi: 10.1021/jacs.1c12310
Li, Y.; Yang, T.; Li, H.; Tong, R.; Peng, S.; Han, X. J. Colloid Interface Sci. 2020, 578, 273. doi: 10.1016/j.jcis.2020.05.124
doi: 10.1016/j.jcis.2020.05.124
Hu, S.; Shi, J.; Luo, B.; Ai, C.; Jing, D. J. Colloid Interface Sci. 2022, 608, 2058. doi: 10.1016/j.jcis.2021.10.136
doi: 10.1016/j.jcis.2021.10.136
Karunadasa, H. I.; Montalvo, E.; Sun, Y. Science 2012, 335, 698. doi: 10.1126/science.1215868
doi: 10.1126/science.1215868
Wang, L.; Xu, Z.; Wang, W. J. Am. Chem. Soc. 2014, 136, 6693. doi: 10.1021/ja501686w
doi: 10.1021/ja501686w
Zhou, X.; Zhao, W.; Pan, J.; Fang, Y.; Wang, F.; Huang, F. Chem. Commun. 2018, 54, 12714. doi: 10.1039/C8CC06714G
doi: 10.1039/C8CC06714G
Kozlova, M. N.; Enyashin, A. N.; Grayfer, E. D.; Kuznetsov, V. A.; Plyusnin, P. E.; Nebogatikova, N. A.; Zaikovskii, V. I.; Fedorov, V. E. J. Mater. Chem. C 2017, 5, 6601. doi: 10.1039/C7TC01320E
doi: 10.1039/C7TC01320E
Tiwari, R. K.; Yang, J.; Saeys, M.; Joachim, C. Surf. Sci. 2008, 602, 2628. doi: 10.1016/j.susc.2008.06.006
doi: 10.1016/j.susc.2008.06.006
Yan, Y.; Xia, B.; Ge, X.; Liu, Z.; Wang, J.; Wang, X. ACS Appl. Mater. Interfaces 2013, 5, 12794. doi: 10.1021/am404843b
doi: 10.1021/am404843b
Yin, J.; Cao, H. Inorg. Chem. 2012, 51, 6529. doi: 10.1021/ic300005c
doi: 10.1021/ic300005c
Chen, R.; Li, D.; Fang, Z.; Huang, Y.; Luo, B.; Shi, W. Acta Phys. -Chim. Sin. 2020, 36, 1903047.
doi: 10.3866/PKU.WHXB201903047
Reyes-Gil, K. R.; Reyes-García, E. A.; Raftery, D. J. Phys. Chem. C 2007, 111, 14579. doi: 10.1021/jp072831y
doi: 10.1021/jp072831y
Ma, D.; Shi, J.; Zou, Y.; Fan, Z.; Shi, J.; Cheng, L.; Sun, D. Nanoscale 2018, 10, 7860. doi: 10.1039/C8NR00170G
doi: 10.1039/C8NR00170G
Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi A. A. Adv. Mater. 2017, 29, 1601694. doi: 10.1002/adma.201601694
doi: 10.1002/adma.201601694
Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38, 2108028.
doi: 10.3866/PKU.WHXB202108028
Gong, H.; Li, Z.; Chen, Z.; Liu, Q.; Song, M.; Huang, C. ACS Appl. Nano Mater. 2020, 3, 3665. doi: 10.1021/acsanm.0c00388
doi: 10.1021/acsanm.0c00388
Gong, H.; Wang, G.; Li, H.; Jin, Z.; Guo, Q. Int. J. Hydrog. Energy 2020, 45, 26733. doi: 10.1016/j.ijhydene.2020.07.059
doi: 10.1016/j.ijhydene.2020.07.059
Zhang, M.; Hu, Q.; Ma, K.; Ding, Y.; Li, C. Nano Energy. 2020, 73, 104810. doi: 10.1016/j.nanoen.2020.104810
doi: 10.1016/j.nanoen.2020.104810
Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010
doi: 10.1016/j.chempr.2020.06.010
Wang, R.; Shen, J.; Zhang, W.; Liu, Q.; Zhang, M.; Zulfiqara, Tang, H. Ceram. Int. 2020, 46, 23. doi: 10.1016/j.ceramint.2019.08.226
doi: 10.1016/j.ceramint.2019.08.226
Hu, T.; Dai, K.; Zhang, J.; Zhu, G.; Liang, C. Mater. Lett. 2019, 257, 126740. doi: 10.1016/j.matlet.2019.126740
doi: 10.1016/j.matlet.2019.126740
Liu, X.; Min, S.; Xue, Y.; Lei, Y.; Chen, Y.; Wang, F.; Zhang, Z. Renew. Energy 2019, 138, 562. doi: 10.1016/j.renene.2019.01.127
doi: 10.1016/j.renene.2019.01.127
Sathish, R.; Ran, D.; Kang, L.; Mao, N.; Zhang, J. Appl. Catal. B Environ. 2016, 194, 16. doi: 10.1016/j.apcatb.2016.04.007
doi: 10.1016/j.apcatb.2016.04.007
Yan, X.; Wang, G.; Zhang, Y.; Guo, Q.; Jin, Z. Int. J. Hydrog. Energy 2020, 45, 2578. doi: 10.1016/j.ijhydene.2019.11.227
doi: 10.1016/j.ijhydene.2019.11.227
Peng, Y.; Bin, W.; Liu, Z. Int. J. Hydrog. Energy 2018, 43, 23109. doi: 10.1016/j.ijhydene.2018.10.215
doi: 10.1016/j.ijhydene.2018.10.215
Zhang, Z.; Huang, L.; Zhang, J.; Wang, F.; Xie, Y.; Shang, X.; Gu, Y.; Zhao, H.; Wang, X. Appl. Catal. B Environ. 2018, 233, 112. doi: 10.1016/j.apcatb.2018.04.006
doi: 10.1016/j.apcatb.2018.04.006
Massey, A.T.; Gusain, R.; Kumari, S.; Khatri, O. P. Ind. Eng. Chem. Res. 2016, 55, 7124. doi: 10.1021/acs.iecr.6b01115
doi: 10.1021/acs.iecr.6b01115
Rai, P.; Wook Yoon, J.; Hoon-Kwak, C.; Lee-Heun, J. J. Mater. Chem. A 2016, 4, 264. doi: 10.1039/C5TA08873A
doi: 10.1039/C5TA08873A
Sun, L.; Zhuang, Y.; Yuan, Y.; Zhan, W.; Wang, X.; Han, X.; Zhao, Y. Adv. Energy Mater. 2019, 9, 1902839. doi: 10.1002/aenm.201902839
doi: 10.1002/aenm.201902839
Wang, F.; He, X.; Sun, L.; Chen, J.; Wang, X.; Xu, J.; Han, X. J. Mater. Chem. A 2018, 6, 2091. doi: 10.1039/C7TA09166D
doi: 10.1039/C7TA09166D
Yan, T.; Zhang, X.; Liu, H.; Jin, Z. J. Struct. Chem. 2022, 41, 2201047. doi: 10.14102/j.cnki.0254-5861.2021-0057
doi: 10.14102/j.cnki.0254-5861.2021-0057
Li, Y.; Wang, G.; Wang, Y.; Jin, Z. Catal. Sci. Technol. 2020, 10, 2931. doi: 10.1039/D0CY00087F
doi: 10.1039/D0CY00087F
Zhang, L.; Hao, X.; Li, Y.; Jin, Z. Appl. Surf. Sci. 2020, 499, 143862. doi: 10.1016/j.apsusc.2019.143862
doi: 10.1016/j.apsusc.2019.143862
Zhang, L.; Wang, G.; Hao, X.; Jin, Z.; Wang, Y. Chem. Eng. J. 2020, 395, 125113. doi: 10.1016/j.cej.2020.125113
doi: 10.1016/j.cej.2020.125113
Jin, Z.; Li, H.; Gong, H.; Yang, K.; Guo, Q. Catal. Sci. Technol. 2021, 11, 4749. doi: 10.1039/D1CY00683E
doi: 10.1039/D1CY00683E
Li, J.; Luo, B.; Zheng, X.; Jing, D.; Ma, L. Catal. Sci. Technol. 2021, 11, 7624. doi: 10.1039/D1CY01677F
doi: 10.1039/D1CY01677F
Quarto, F.; Sunseri, C.; Piazza S.; Romano, M. C. J. Phys. Chem. B 1997, 101, 2519. doi: 10.1021/jp970046n
doi: 10.1021/jp970046n
Li, M.; Li, J.; Jin, Z. Dalton Trans. 2020, 49, 5143. doi: 10.1039/D0DT00271B
doi: 10.1039/D0DT00271B
Li, Y.; Jin, Z.; Zhang, L.; Fan, K. Chin. J. Catal. 2019, 40, 390. doi: 10.1016/S1872-2067(18)63173-0
doi: 10.1016/S1872-2067(18)63173-0
Maiti, R.; Mukherjee, S.; Haldar, S.; Bhowmick, D.; Ray, S. K. Carbon 2016, 104, 226. doi: 10.1016/j.carbon.2016.04.004
doi: 10.1016/j.carbon.2016.04.004
Ke, L.; Li, P.; Wu, X.; Jiang, S.; Luo, M.; Liu, Y.; Le, Z.; Sun, C.; Song, S. Appl. Catal. B: Environ. 2017, 205, 319. doi: 10.1016/j.apcatb.2016.12.043
doi: 10.1016/j.apcatb.2016.12.043
Hao, X.; Cui, Z.; Zhou, J.; Wang, Y.; Hu, Y.; Wang, Y.; Zou, Z. Nano Energy 2018, 52, 105. doi: 10.1016/j.nanoen.2018.07.043
doi: 10.1016/j.nanoen.2018.07.043
Hu, Y.; Hao, X.; Cui, Z.; Zhou, J.; Chu, S.; Wang, Y.; Zou, Z. Appl. Catal. B: Environ. 2020, 260, 118131. doi: 10.1016/j.apcatb.2019.118131
doi: 10.1016/j.apcatb.2019.118131
Zhao, S.; Xu, J.; Mao, M.; Li, L.; Li, X. Appl. Surf. Sci. 2020, 528, 147016. doi: 10.1016/j.apsusc.2020.147016
doi: 10.1016/j.apsusc.2020.147016
Gong, H.; Zhang, X.; Wang, G.; Liu, Y.; Li, Y.; Jin, Z. Mol. Catal. 2020, 485, 110832. doi: 10.1016/j.mcat.2020.110832
doi: 10.1016/j.mcat.2020.110832
Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012
doi: 10.1002/anie.201916012
Li, H.; Hao, X.; Gong, H.; Jin, Z.; Zhao, T. J. Colloid Interface Sci. 2021, 586, 84. doi: 10.1016/j.jcis.2020.10.072
doi: 10.1016/j.jcis.2020.10.072
Li, H.; Gong, H.; Jin, Z. Appl. Catal. B: Environ. 2022, 307, 121166. doi: 10.1016/j.apcatb.2022.121166
doi: 10.1016/j.apcatb.2022.121166
Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Chin. J. Catal. 2021, 42, 56. doi: 10.1016/S1872-2067(20)63634-8
doi: 10.1016/S1872-2067(20)63634-8
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Xiao-Ya Yuan , Cong-Cong Wang , Bing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Rongxin Zhu , Shengsheng Yu , Xuanzong Yang , Ruyu Zhu , Hui Liu , Kaikai Niu , Lingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524