Citation: Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst[J]. Acta Physico-Chimica Sinica, ;2022, 38(7): 220100. doi: 10.3866/PKU.WHXB202201008 shu

Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst

  • Corresponding author: Yigang Chen, wuxichen2512@njmu.edu.cn Haifeng Shi, hfshi@jiangnan.edu.cn
  • Received Date: 5 January 2022
    Revised Date: 27 January 2022
    Accepted Date: 5 February 2022
    Available Online: 10 January 2022

    Fund Project: the National Natural Science Foundation of China 22136002the National Natural Science Foundation of China 22172064Fundamental Research Funds for the Central Universities, China JUSRP51716ANational Laboratory of Solid State Microstructures, Nanjing University, China M34047Wuxi Translational Medicine Center, China 2020ZHYB10Major Scientific Research Projects of Wuxi Health Committee, China Z201901

  • Graphitic carbon nitride (g-C3N4) has been widely used as a potential photocatalytic material for the removal of tetracycline from water. However, the poor visible light absorption ability and high recombination rate of the photogenerated charge significantly inhibit the catalytic activity of g-C3N4. Therefore, facile methods to improve the photocatalytic efficiency of g-C3N4 need to be developed. Hematite (α-Fe2O3), which has a good visible light absorption and corrosion resistance, is often used for photocatalysis and photo-Fenton reactions. Therefore, a two-dimension/two-dimension (2D/2D) S-scheme heterojunction constructed of g-C3N4 and α-Fe2O3 nanosheets could be expected to improve the degradation efficiency of tetracycline. In this study, 2D/2D S-scheme α-Fe2O3/g-C3N4 photo-Fenton catalysts were prepared using a hydrothermal strategy. The photo-Fenton catalytic activity of α-Fe2O3/g-C3N4 (α-Fe2O3 50% (w)) was significantly improved by the addition of a small amount of H2O2, removing 78% of tetracycline within 20 min, which was approximately 3.5 and 5.8 times the removal achieved using α-Fe2O3 and g-C3N4, respectively. The high catalytic activity was attributed to the synergy between the photocatalysis and Fenton reaction promoted by the continuous Fe3+/Fe2+ conversion over the 2D/2D S-scheme heterojunction. The 2D/2D S-scheme heterojunction was crucial in the fabrication of the α-Fe2O3/g-C3N4 photocatalyst with a large surface area, adequate active sites, and strong oxidation-reduction capability. Furthermore, the photo-Fenton reaction provided additional hydroxyl radicals for the degradation of tetracycline with the aid of H2O2. The excess reaction product (Fe3+) was reduced to Fe2+ by the photogenerated electrons from the conduction band of α-Fe2O3. The resulting Fe2+ could participate in the photo-Fenton reaction. The morphological structures of α-Fe2O3/g-C3N4 were analyzed using transmission electron microscopy to demonstrate the formation of a 2D/2D structure with face-to-face contact, and the optical properties of the composites were measured using ultraviolet-visible diffuse reflectance spectroscopy. α-Fe2O3/g-C3N4 possessed a significantly improved visible light absorption compared to g-C3N4. Five sequential cyclic degradation tests and X-ray diffraction (XRD) patterns obtained before and after the reaction showed that the α-Fe2O3/g-C3N4 composites possessed stable photo-Fenton catalytic activity and crystal structures. Transient photocurrent responses of α-Fe2O3/g-C3N4 demonstrated that the prepared composites exhibited a higher charge transfer efficiency compared to that of single α-Fe2O3 and g-C3N4. In addition, according to the photoluminescence analysis and active species trapping experiments, a possible S-scheme heterojunction charge transfer process in the photo-Fenton catalytic reaction was proposed. This study provided a promising method for the construction of a high-performance photo-Fenton catalytic system to remove antibiotics from wastewater.
  • 加载中
    1. [1]

      Shi, H. Y.; Li, Y.; Wang, X. F.; Yu, H. G.; Yu, J. G. Appl. Catal. B Environ. 2021, 297, 120414. doi: 10.1016/j.apcatb.2021.120414  doi: 10.1016/j.apcatb.2021.120414

    2. [2]

      Xiong, Z.; Hou, Y. D.; Yuan, R. S.; Ding, Z. X.; Ong, W. J.; Wang, S. B. Acta Phys. -Chim. Sin. 2022, 38, 2111021.  doi: 10.3866/PKU.WHXB202111021

    3. [3]

      Shi, H. F.; Chen, G. Q.; Zou, Z. G. Appl. Catal. B: Environ. 2014, 156–157, 378. doi: 10.1016/j.apcatb.2014.03.036  doi: 10.1016/j.apcatb.2014.03.036

    4. [4]

      Shen, R. C.; Hao, L.; Chen, Q.; Zheng, Q. Q.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2022, 38, 2110014.  doi: 10.3866/PKU.WHXB202110014

    5. [5]

      Ye, J. W.; Cheng, B.; Yu, J. G.; Ho, W. K.; Wageh, S.; Al-Ghamdi, A.A. Appl. Catal. B Environ. 2022, 430, 132715. doi: 10.1016/j.cej.2021.132715  doi: 10.1016/j.cej.2021.132715

    6. [6]

      Liu, D.; Xu, Y. M. Acta Phys. -Chim. Sin. 2008, 24, 1584.  doi: 10.1016/S1872-1508(08)60066-2

    7. [7]

      Fu, J. W.; Xu, Q. L.; Low, J. X.; Jiang, C. J.; Yu, J. G. Appl. Catal. B Environ. 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011  doi: 10.1016/j.apcatb.2018.11.011

    8. [8]

      Liu, S. C.; Wang, K.; Yang, M. X.; Jin, Z. L. Acta Phys. -Chim. Sin. 2022, 38, 2109023.  doi: 10.3866/PKU.WHXB202109023

    9. [9]

      Lu, M. F.; Li, Q. Q.; Zhang, C. L.; Fan, X. X.; Li, L.; Dong, Y. M.; Chen, G. Q.; Shi, H. F. Carbon 2020, 160, 342. doi: 10.1016/j.carbon.2020.01.038  doi: 10.1016/j.carbon.2020.01.038

    10. [10]

      Xia, B. Q.; Yang, Y.; Zhang, Y. Z.; Xia, Y.; Jaroniec, M.; Yu, J. G.; Ran, J. R.; Qiao, S. Z. Chem. Eng. J. 2022, 431, 133944. doi: 10.1016/j.cej.2021.133944  doi: 10.1016/j.cej.2021.133944

    11. [11]

      Yu, Q. N.; Li, G. Q.; Zhang, F. Catal. Sci. Technol. 2019, 9, 5333. doi: 10.1039/c9cy01482a  doi: 10.1039/c9cy01482a

    12. [12]

      Vignesh, S.; Eniya, P.; Srinivasan, M.; Sundar, J. K.; Li, H.; Jayavel, S.; Pandiaraman, M.; Manthrammel, M. A.; Shkir, M.; Palanivel, B. J. Environ. Chem. Eng. 2021, 9, 105996. doi: 10.1016/j.jece.2021.105996  doi: 10.1016/j.jece.2021.105996

    13. [13]

      Zhong, B.; Kuang, P. Y.; Wang, L. X.; Yu, J. G. Appl. Catal. B Environ. 2021, 299, 120668. doi: 10.1016/j.apcatb.2021.120668  doi: 10.1016/j.apcatb.2021.120668

    14. [14]

      Cao, S. W.; Shen, B. J.; Tong, T.; Fu, J. W.; Yu, J. G. Adv. Funct. Mater. 2018, 28, 1800136. doi: 10.1002/adfm.201800136  doi: 10.1002/adfm.201800136

    15. [15]

      Chen, X. X.; Zhang, J.; Huang, C. P.; Wu, Q.; Wu, J.; Xia, L. G.; Xu, Q. J.; Yao, W. F. ACS Appl. Mater. Interfaces 2020, 12, 54619. doi: 10.1021/acsami.0c15236  doi: 10.1021/acsami.0c15236

    16. [16]

      Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355. doi: 10.1021/cs400956a  doi: 10.1021/cs400956a

    17. [17]

      Vignesh, S.; Suganthi, S.; Sundar, J. K.; Raj, V.; Devi, P. R. I. Appl. Surf. Sci. 2019, 479, 914. doi: 10.1016/j.apsusc.2019.02.064  doi: 10.1016/j.apsusc.2019.02.064

    18. [18]

      Vignesh, S.; Suganthi, S.; Sundar, J. K.; Raj, V. J. Ind. Eng. Chem. 2019, 76, 318. doi: 10.1016/j.jiec.2019.03.056  doi: 10.1016/j.jiec.2019.03.056

    19. [19]

      Shanmugam, V.; Jeyaperumal, K. S.; Mariappan, P.; Muppudathi, A. L. New J. Chem. 2020, 44, 13182. doi: 10.1039/d0nj02101f  doi: 10.1039/d0nj02101f

    20. [20]

      Cai, P. F.; Liu, T.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Appl. Surf. Sci. 2020, 504, 144501. doi: 10.1016/j.apsusc.2019.144501  doi: 10.1016/j.apsusc.2019.144501

    21. [21]

      Low, J. X.; Cheng, B.; Yu, J. G. Appl. Surf. Sci. 2017, 392, 658. doi: 10.1016/j.apsusc.2016.09.093  doi: 10.1016/j.apsusc.2016.09.093

    22. [22]

      Li, B. S.; Lai, C.; Zeng, G. M.; Qin, L.; Yi, H.; Huang, D. L.; Zhou, C. Y.; Liu, X. G.; Cheng, M.; Huang, F. L.; et al. Y. ACS Appl. Mater. Interfaces 2018, 10, 18824. doi: 10.1021/acsami.8b06128

    23. [23]

      Fan, K.; Chen, H.; He, B. W.; Yu, J. G. Chem. Eng. J. 2020, 392, 123744. doi: 10.1016/j.cej.2019.123744  doi: 10.1016/j.cej.2019.123744

    24. [24]

      Wu, H. Y.; Peng, J. H.; Sun, H. C.; Ruan, Q. S.; Dong, H. F.; Jin, Y. H.; Sun, Z. M.; Hu, Y. H. Chem. Eng. J. 2022, 432, 134339. doi: 10.1016/j.cej.2021.134339  doi: 10.1016/j.cej.2021.134339

    25. [25]

      Pan, J.; Li, Y. J.; Guo, G. X.; Zhao, X. F. Yu, J.; Li, Z.; Xu, S. C.; Man, B. Y.; Wei, D. M.; Zhang, C. Appl. Surf. Sci. 2022, 577, 151811. doi: 10.1016/j.apsusc.2021.151811  doi: 10.1016/j.apsusc.2021.151811

    26. [26]

      Shi, H. F.; Li, X. K.; Wang, D. F.; Yuan, Y. P.; Zou, Z. G.; Ye, J. H. Catal. Lett. 2009, 132, 205. doi: 10.1007/s10562-009-0087-8  doi: 10.1007/s10562-009-0087-8

    27. [27]

      Dou, X. C.; Zhang, C. L.; Shi, H. F. Sep. Purif. Technol. 2022, 282, 120023. doi: 10.1016/j.seppur.2021.120023  doi: 10.1016/j.seppur.2021.120023

    28. [28]

      Dou, X. C.; Chen, Y. G.; Shi, H. F. Chem. Eng. J. 2022, 431, 134054. doi: 10.1016/j.cej.2021.134054  doi: 10.1016/j.cej.2021.134054

    29. [29]

      Chen, Y. K.; Fang, J. J.; Dai, B. Y.; Kou, J. H.; Lu, C. H.; Xu, Z. Z. Appl. Surf. Sci. 2020, 534, 147640. doi: 10.1016/j.apsusc.2020.147640  doi: 10.1016/j.apsusc.2020.147640

    30. [30]

      Liu, Q. D.; Hou, J.; Wu, J.; Miao, L. Z.; You, G. X.; Ao, Y. H. J. Hazard. Mater. 2022, 423, 127063. doi: 10.1016/j.jhazmat.2021.127063  doi: 10.1016/j.jhazmat.2021.127063

    31. [31]

      Ren, K. X.; Lv, M. S.; Xie, Q. J.; Zhang, C. L.; Shi, H. F. Carbon 2022, 186, 355. doi: 10.1016/j.carbon.2021.10.050  doi: 10.1016/j.carbon.2021.10.050

    32. [32]

      Li, Q. Q.; Zhao, W. L.; Zhai, Z. C.; Ren, K. X.; Wang, T. Y.; Guan, H.; Shi, H. F. J. Mater. Sci. Technol. 2020, 56, 216. doi: 10.1016/j.jmst.2020.03.038  doi: 10.1016/j.jmst.2020.03.038

    33. [33]

      Florent, M.; Giannakoudakis, D. A.; Bandosz, T. J. Appl. Catal. B: Environ. 2020, 272, 119038. doi: 10.1016/j.apcatb.2020.119038  doi: 10.1016/j.apcatb.2020.119038

    34. [34]

      Shanmugam, V.; Muppudathi, A. L.; Jayavel, S.; Jeyaperumal, K. S. Arab. J. Chem. 2020, 13, 2439. doi: 10.1016/j.arabjc.2018.05.009  doi: 10.1016/j.arabjc.2018.05.009

    35. [35]

      Suganthi, S.; Vignesh, S.; Mohanapriya, S.; Sundar, J. K.; Raj, V. J. Mater. Sci. Mater. Electron. 2019, 30, 15168. doi: 10.1007/s10854-019-01890-0  doi: 10.1007/s10854-019-01890-0

    36. [36]

      Shi, H. F.; Chen, G. Q.; Zhang, C. L.; Zou, Z. G. ACS Catal. 2014, 4, 3637. doi: 10.1021/cs500848f  doi: 10.1021/cs500848f

    37. [37]

      Rashidizadeh, A.; Zand, H. R. E.; Ghafuri, H.; Rezazadeh, Z. ACS Appl. Nano Mater. 2020, 3, 7057. doi: 10.1021/acsanm.0c01380  doi: 10.1021/acsanm.0c01380

    38. [38]

      Yang, Y.; Tang, Z.; Zhou, B. J.; Shen, J. Y.; He, H. C.; Ali, A.; Zhong, Q.; Xiong, Y. J.; Gao, C.; Alsaedi, A.; et al. Appl. Catal. B: Environ. 2020, 264, 118470. doi: 10.1016/j.apcatb.2019.118470  doi: 10.1016/j.apcatb.2019.118470

    39. [39]

      Zhu, S. S.; Zou, X. F.; Zhou, Y.; Zeng, Y. J.; Long, Y.; Yuan, Z. F.; Wu, Q. B.; Li, M.; Wang, Y. Z.; Xiang, B. J. Alloys Compd. 2019, 775, 63. doi: 10.1016/j.jallcom.2018.10.085  doi: 10.1016/j.jallcom.2018.10.085

    40. [40]

      Xu, Q. Q.; Huo, W.; Li, S. S.; Fang, J. H.; Li, L.; Zhang, B. Y.; Zhang, F.; Zhang, Y. X.; Li, S. W. Appl. Surf. Sci. 2020, 533, 147368. doi: 10.1016/j.apsusc.2020.147368  doi: 10.1016/j.apsusc.2020.147368

    41. [41]

      Liu, L. Z.; Hu, T. P.; Dai, K.; Zhang, J. F.; Liang, C. H. Chin. J. Catal. 2021, 42, 46. doi: 10.1016/S1872-2067(20)63560-4  doi: 10.1016/S1872-2067(20)63560-4

    42. [42]

      Geng, Y. X.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Appl. Catal. B: Environ. 2021, 280, 119409. doi: 10.1016/j.apcatb.2020.119409  doi: 10.1016/j.apcatb.2020.119409

    43. [43]

      Xiao, D.; Dai, K.; Qu, Y.; Yin, Y. P.; Chen, H. Appl. Surf. Sci. 2015, 358, 181. doi: 10.1016/j.apsusc.2015.09.042  doi: 10.1016/j.apsusc.2015.09.042

    44. [44]

      Bhattacharya, C.; Saji, S. E.; Mohan, A.; Madav, V.; Jia, G. H.; Yin, Z. Y. Adv. Energy Mater. 2020, 10, 2002402. doi: 10.1002/aenm.202002402  doi: 10.1002/aenm.202002402

    45. [45]

      Jiang, Z. F.; Wan, W. M.; Li, H. M.; Yuan, S. Q.; Zhao, H. J.; Wong, P. K. Adv. Mater. 2018, 30, 1706108. doi: 10.1002/adma.201706108  doi: 10.1002/adma.201706108

    46. [46]

      Wang, Y. J.; Song, H. M.; Chen, J.; Chai, S. N.; Shi, L. M.; Chen, C. W.; Wang, Y. B.; He, C. Appl. Surf. Sci. 2020, 512, 145650. doi: 10.1016/j.apsusc.2020.145650  doi: 10.1016/j.apsusc.2020.145650

    47. [47]

      Wang, W. L.; Zhao, W. L.; Zhang, H. C.; Dou, X. C.; Shi, H. F. Chin. J. Catal. 2021, 42, 97. doi: 10.1016/S1872-2067(20)63602-6  doi: 10.1016/S1872-2067(20)63602-6

    48. [48]

      Kuang, P. Y.; Sayed, M.; Fan, J. J.; Cheng, B.; Yu, J. G. Adv. Energy Mater. 2020, 10, 1903802. doi: 10.1002/aenm.201903802  doi: 10.1002/aenm.201903802

    49. [49]

      Wang, W. L.; Zhao, W. L.; Huang, H. M.; Chen, R. Y.; Shi, H. F. Catal. Sci. Technol. 2021, 11, 2948. doi: 10.1039/D1CY00051A  doi: 10.1039/D1CY00051A

    50. [50]

      Hu, X. Y.; Yu, Y. T.; Chen, D. D.; Xu, W. C.; Fang, J. Z.; Liu, Z.; Li, R. Q.; Yao, L.; Qin, J. J.; Fang, Z. Q. Chem. Eng. J. 2022, 432, 134375. doi: 10.1016/j.cej.2021.134375  doi: 10.1016/j.cej.2021.134375

    51. [51]

      Yin, Z. Y.; Chen, X. T.; Wang, C.; Guo, Z. J.; Wu, X. L.; Zhao, Z. Y.; Yao, Y. F.; Luo, W. J.; Zou, Z. G. Chem. Sci. 2020, 11, 6297. doi: 10.1039/D0SC01052A  doi: 10.1039/D0SC01052A

    52. [52]

      Cheng, H. J.; Hou, J. G.; Takeda, O.; Guo, X. M.; Zhu, H. M. J. Mater. Chem. A. 2015, 3, 11006. doi: 10.1039/c5ta01864a  doi: 10.1039/c5ta01864a

    53. [53]

      Shen, R. C.; Zhang, L. P.; Chen, X. Z.; Jaroniec, M.; Li, N.; Li, X. Appl. Catal. B: Environ. 2020, 266, 118619. doi: 10.1016/j.apcatb.2020.118619  doi: 10.1016/j.apcatb.2020.118619

    54. [54]

      Sultana, S.; Mansingh, S.; Parida, K. M. J. Phys. Chem. C 2018, 122, 808. doi: 10.1021/acs.jpcc.7b08534  doi: 10.1021/acs.jpcc.7b08534

    55. [55]

      Chen, W.; He, Z. C.; Huang, G. B.; Wu, C. L.; Chen, W. F.; Liu, X. H. Chem. Eng. J. 2019, 359, 244. doi: 10.1016/j.cej.2018.11.141  doi: 10.1016/j.cej.2018.11.141

    56. [56]

      Wang, M.; Shen, M.; Zhang, L. X.; Tian, J. J.; Jin, X. X.; Zhou, Y. J.; Shi, J. L. Carbon 2017, 120, 23. doi: 10.1016/j.carbon.2017.05.024  doi: 10.1016/j.carbon.2017.05.024

    57. [57]

      Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Adv. Mater. 2021, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    58. [58]

      Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    59. [59]

      Yang, H.; He, D. Y.; Liu, C. H.; Zhang, T. T.; Qu, J.; Jin, D. X.; Zhang, K. N.; Lv, Y. H.; Zhang, Z. C.; Zhang. Y. N. Chemosphere 2022, 287, 132072. doi: 10.1016/j.chemosphere.2021.132072  doi: 10.1016/j.chemosphere.2021.132072

    60. [60]

      Fei, X. G.; Tan, H. Y.; Cheng, B.; Zhu, B. C.; Zhang, L. Y. Acta Phys. -Chim. Sin. 2021, 37, 2010027.  doi: 10.3866/PKU.WHXB202010027

    61. [61]

      Wageh, S.; Al-Ghamdi, A. A.; Liu, L. J. Acta Phys. -Chim. Sin. 2021, 37, 2010024.  doi: 10.3866/PKU.WHXB202010024

    62. [62]

      Li, X. B.; Liu, J. Y.; Huang, J. T.; He, C. Z.; Feng, Z. J.; Chen, Z.; Wan, L. Y.; Deng, F. Acta Phys. -Chim. Sin. 2021, 37, 2010030.  doi: 10.3866/PKU.WHXB202010030

    63. [63]

      Huang, Y.; Mei, F. F.; Zhang, J. F.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38, 2108028.  doi: 10.3866/PKU.WHXB202108028

    64. [64]

      Jin, C. Y.; Li, Z. L.; Zhang, Y.; Wang, M.; Wu, Z. M.; Xie, Y. H.; Wang, Y. Z.; Zhu, T. Sep. Purif. Technol. 2019, 224, 33. doi: 10.1016/j.seppur.2019.05.006  doi: 10.1016/j.seppur.2019.05.006

    65. [65]

      Jo, W. K.; Kumar, S. T.; Eslava, S.; Tonda, S. Appl. Catal. B Environ. 2018, 239, 586. doi: 10.1016/j.apcatb.2018.08.056  doi: 10.1016/j.apcatb.2018.08.056

    66. [66]

      Guo, W.; Fan, K.; Zhang, J. J.; Xu, C. J. Appl. Surf. Sci. 2018, 447, 125. doi: 10.1016/j.apsusc.2018.03.080  doi: 10.1016/j.apsusc.2018.03.080

    67. [67]

      Xi, J. H.; Xia, H.; Ning, X. M.; Zhang, Z.; Liu, J.; Mu, Z. J.; Zhang, S. T.; Du, P. Y.; Lu, X. Q. Small 2019, 15, 1902744. doi: 10.1002/smll.201902744  doi: 10.1002/smll.201902744

    68. [68]

      Liu, X. N.; Lu, Q. F.; Zhu, C. F.; Liu, S. W. RSC Adv. 2014, 5, 4077. doi: 10.1007/10.1039/c4ra11613e  doi: 10.1007/10.1039/c4ra11613e

    69. [69]

      Ren, S. S.; Chen, C. H.; Zhou, Y.; Dong, Q. M.; Ding, H. M. Res. Chem. Intermed. 2017, 43, 3307. doi: 10.1007/s11164-016-2827-x  doi: 10.1007/s11164-016-2827-x

    70. [70]

      Guo, T.; Wang, K.; Zhang, G. K.; Wu, X. Y. Appl. Surf. Sci. 2019, 469, 331. doi: 10.1016/j.apsusc.2018.10.183  doi: 10.1016/j.apsusc.2018.10.183

  • 加载中
    1. [1]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    2. [2]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    3. [3]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    4. [4]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    5. [5]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    6. [6]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    7. [7]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    8. [8]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    9. [9]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    10. [10]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    11. [11]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    12. [12]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    13. [13]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    14. [14]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    15. [15]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    16. [16]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    17. [17]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    18. [18]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    19. [19]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    20. [20]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(49)
  • Abstract views(1041)
  • HTML views(316)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return