Citation: Gaowei Han, Feiyan Xu, Bei Cheng, Youji Li, Jiaguo Yu, Liuyang Zhang. Enhanced Photocatalytic H2O2 Production over Inverse Opal ZnO@Polydopamine S-Scheme Heterojunctions[J]. Acta Physico-Chimica Sinica, ;2022, 38(7): 211203. doi: 10.3866/PKU.WHXB202112037 shu

Enhanced Photocatalytic H2O2 Production over Inverse Opal ZnO@Polydopamine S-Scheme Heterojunctions

  • Corresponding author: Liuyang Zhang, zhangliuyang@cug.edu.cn
  • Received Date: 29 December 2021
    Revised Date: 12 January 2022
    Accepted Date: 14 January 2022
    Available Online: 18 January 2022

    Fund Project: the National Natural Science Foundation of China 52073223the National Natural Science Foundation of China 51872220the National Natural Science Foundation of China 51932007the National Natural Science Foundation of China 51961135303the National Natural Science Foundation of China 21871217the National Natural Science Foundation of China U1905215

  • Photocatalytic H2O2 production is a sustainable and inexpensive process that requires water and gaseous O2 as raw materials and sunlight as the energy source. However, the slow kinetics of current photocatalysts limits its practical application. ZnO is commonly used as a photocatalytic material in the solar-to-chemical conversion, owing to its high electron mobility, nontoxicity, and relatively low cost. The adsorption capacity of H2O2 on the ZnO surface is low, which leads to the continuous production of H2O2. However, its photoresponse is limited to the ultraviolet (UV) region due to its wide bandgap (3.2 eV). Polydopamine (PDA) has emerged as an effective surface functionalization material in the field of photocatalysis due to its abundant functional groups. PDA can be strongly anchored onto the surface of a semiconducting photocatalyst through covalent and noncovalent bonds. The superior properties of PDA served as a motivation for this study. Herein, we prepare an inverse opal-structured porous PDA-modified ZnO (ZnO@PDA) photocatalyst by in situ self-polymerization of dopamine hydrochloride. The crystal structure, morphology, valency, stability, and energy band structure of photocatalysts are characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), electrochemical impedance spectroscopy (EIS), Mott-Schottky curve (MS), and electron paramagnetic resonance (EPR). The experimental results showed that electrons in PDA are transferred to ZnO upon contact, which results in an electric field at their interface in the direction from PDA to ZnO. The photoexcited electrons in the ZnO conduction bands flow into PDA, driven by the electric field and bent bands, and are recombined with the holes of the highest occupied molecular orbital of PDA, thereby exhibiting an S-scheme charge transfer. This unique S-scheme mechanism ensures effective electron/hole separation and preserves the strong redox ability of used photocarriers. In addition, the inverse opal structure of ZnO@PDA promotes light-harvesting due to the supposed "slow photon" effect, as well as Bragg diffraction and scattering. Moreover, the enhanced surface area provides a high adsorption capacity and increased active sites for photocatalytic reactions. Therefore, the resulting ZnO@PDA (0.03% (atomic fraction) PDA) exhibits the optimal H2O2 production performance (1011.4 μmol·L-1·h-1), which is 4.4 and 8.9 times higher than pristine ZnO and PDA, respectively. The enhanced performance is ascribed to the improved light absorption, efficient charge separation, and strong redox capability of photocarriers in the S-scheme heterojunction. Therefore, this study provides a novel strategy for the design of inorganic/organic S-scheme heterojunctions for efficient photocatalytic H2O2 production.
  • 加载中
    1. [1]

      Wu, T.; He, Q.; Liu, Z.; Shao, B.; Liang, Q.; Pan, Y.; Huang, J.; Peng, Z.; Liu, Y.; Zhao, C.; et al. 2022, 424, 127177. doi: 10.1016/j.jhazmat.2021.127177

    2. [2]

      Lin, Y. J.; Khan, I.; Saha, S.; Wu, C. C.; Barman, S. R.; Kao, F. C.; Lin, Z. H. Nat. Commun. 2021, 12, 180. doi: 10.1038/s41467-020-20445-0  doi: 10.1038/s41467-020-20445-0

    3. [3]

      Chen, G.; Liu, J.; Li, Q.; Guan, P.; Yu, X.; Xing, L.; Zhang, J.; Che, R. Nano Res. 2019, 12, 2614. doi: 10.1007/s12274-019-2496-3  doi: 10.1007/s12274-019-2496-3

    4. [4]

      Nosaka, Y.; Nosaka, A. Y. Chem. Rev. 2017, 117, 11302. doi: 10.1021/acs.chemrev.7b00161  doi: 10.1021/acs.chemrev.7b00161

    5. [5]

      Mase, K.; Yoneda, M.; Yamada, Y.; Fukuzumi, S. Nat. Commun. 2016, 7, 11470. doi: 10.1038/ncomms11470  doi: 10.1038/ncomms11470

    6. [6]

      Disselkamp, R. S. Energy Fuels 2008, 22, 2771. doi: 10.1021/ef800050t  doi: 10.1021/ef800050t

    7. [7]

      Yi, Y.; Wang, L.; Li, G.; Guo, H. Catal. Sci. Technol. 2016, 6, 1593. doi: 10.1039/c5cy01567g  doi: 10.1039/c5cy01567g

    8. [8]

      Jia, X.; Sun, F.; Fei, Y.; Jin, M.; Zhang, F.; Xu, W.; Shi, N.; Lv, Z. 2018, 119, 218. doi: 10.1016/j.psep.2018.08.007

    9. [9]

      Song, W.; Yu, L.; Xie, X.; Hao, Z.; Sun, M.; Wen, H.; Li, Y. RSC Adv. 2017, 7, 25305. doi: 10.1039/c7ra02003a  doi: 10.1039/c7ra02003a

    10. [10]

      Nishimi, T.; Kamachi, T.; Kato, K.; Kato, T.; Yoshizawa, K. Eur. J. Org. Chem. 2011, 2011, 4113. doi: 10.1002/ejoc.201100300  doi: 10.1002/ejoc.201100300

    11. [11]

      Fellinger, T. -P.; Hasché, F.; Strasser, P.; Antonietti, M. J. Am. Chem. Soc. 2012, 134, 4072. doi: 10.1021/ja300038p  doi: 10.1021/ja300038p

    12. [12]

      Landon, P.; Collier, P. J.; Papworth, A. J.; Kiely, C. J.; Hutchings, G. J. Chem. Commun. 2002, 2058. doi: 10.1039/b205248m  doi: 10.1039/b205248m

    13. [13]

      Yang, Y.; Cheng, B.; Yu, J.; Wang, L.; Ho, W. Nano Res. 2021, doi: 10.1007/s12274-021-3733-0  doi: 10.1007/s12274-021-3733-0

    14. [14]

      Wei, Z.; Liu, M.; Zhang, Z.; Yao, W.; Tan, H.; Zhu, Y. Energy Environ. Sci. 2018, 11, 2581. doi: 10.1039/c8ee01316k  doi: 10.1039/c8ee01316k

    15. [15]

      Wang, L.; Zhang, J.; Zhang, Y.; Yu, H.; Qu, Y.; Yu, J. Small 2022, 18, 2104561. doi: 10.1002/smll.202104561  doi: 10.1002/smll.202104561

    16. [16]

      Hong, Y.; Cho, Y.; Go, E. M.; Sharma, P.; Cho, H.; Lee, B.; Lee, S. M.; Park, S. O.; Ko, M.; Kwak, S. K.; et al. Chem. Eng. J. 2021, 418, 129346. doi: 10.1016/j.cej.2021.129346  doi: 10.1016/j.cej.2021.129346

    17. [17]

      Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. Science 2019, 366, 226. doi: 10.1126/science.aay1844  doi: 10.1126/science.aay1844

    18. [18]

      Yu, X.; Viengkeo, B.; He, Q.; Zhao, X.; Huang, Q.; Li, P.; Huang, W.; Li, Y. Adv. Sustain. Syst. 2021, 5, 2100184. doi: 10.1002/adsu.202100184  doi: 10.1002/adsu.202100184

    19. [19]

      Zhang, K.; Zhou, M.; Yang, K.; Yu, C.; Mu, P.; Yu, Z.; Lu, K.; Huang, W.; Dai, W. J. Hazard. Mater. 2022, 423, 127172. doi: 10.1016/j.jhazmat.2021.127172  doi: 10.1016/j.jhazmat.2021.127172

    20. [20]

      Liu, M.; Xia, H.; Yang, W.; Liu, X.; Xiang, J.; Wang, X.; Hu, L.; Lu, F. Appl. Catal. B 2022, 301, 120765. doi: 10.1016/j.apcatb.2021.120765  doi: 10.1016/j.apcatb.2021.120765

    21. [21]

      Moon, G. -H.; Kim, W.; Bokare, A. D.; Sung, N. -E.; Choi, W. Energy Environ. Sci. 2014, 7, 4023. doi: 10.1039/c4ee02757d  doi: 10.1039/c4ee02757d

    22. [22]

      Zhang, Y.; Xia, Y.; Wang, L.; Cheng, B.; Yu, J. Nanotechnology 2021, 32, 415402. doi: 10.1088/1361-6528/ac1221  doi: 10.1088/1361-6528/ac1221

    23. [23]

      Liu, Q.; Zhou, L.; Liu, L.; Li, J.; Wang, S.; Znad, H.; Liu, S. Compos. B Eng. 2020, 200, 108345. doi: 10.1016/j.compositesb.2020.108345  doi: 10.1016/j.compositesb.2020.108345

    24. [24]

      Liu, Y.; Han, J.; Qiu, W.; Gao, W. Appl. Surf. Sci. 2012, 263, 389. doi: 10.1016/j.apsusc.2012.09.067  doi: 10.1016/j.apsusc.2012.09.067

    25. [25]

      Fu, Y.; Liu, C.; Zhang, M.; Zhu, C.; Li, H.; Wang, H.; Song, Y.; Huang, H.; Liu, Y.; Kang, Z. Adv. Energy Mater. 2018, 8, 1802525. doi: 10.1002/aenm.201802525  doi: 10.1002/aenm.201802525

    26. [26]

      Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. ACS Catal. 2014, 4, 774. doi: 10.1021/cs401208c  doi: 10.1021/cs401208c

    27. [27]

      Liu, B.; Bie, C.; Zhang, Y.; Wang, L.; Li, Y.; Yu, J. Langmuir 2021, 37, 14114. doi: 10.1021/acs.langmuir.1c02360  doi: 10.1021/acs.langmuir.1c02360

    28. [28]

      Lee, J. H.; Cho, H.; Park, S. O.; Hwang, J. M.; Hong, Y.; Sharma, P.; Jeon, W. C.; Cho, Y.; Yang, C.; Kwak, S. K.; et al. Appl. Catal. B 2021, 284, 119690. doi: 10.1016/j.apcatb.2020.119690  doi: 10.1016/j.apcatb.2020.119690

    29. [29]

      Ghoreishian, S. M.; Ranjith, K. S.; Park, B.; Hwang, S. -K.; Hosseini, R.; Behjatmanesh-Ardakani, R.; Pourmortazavi, S. M.; Lee, H. U.; Son, B.; Mirsadeghi, S.; et al. Chem. Eng. J. 2021, 419, 129530. doi: 10.1016/j.cej.2021.129530  doi: 10.1016/j.cej.2021.129530

    30. [30]

      Wu, Y.; Gao, Z.; Feng, Y.; Cui, Q.; Du, C.; Yu, C.; Liang, L.; Zhao, W.; Feng, J.; Sun, J.; et al. Appl. Catal. B 2021, 298, 120572. doi: 10.1016/j.apcatb.2021.120572  doi: 10.1016/j.apcatb.2021.120572

    31. [31]

      Li, X.; Wang, X.; Xiao, G.; Zhu, Y. J. Colloid Interface Sci. 2021, 602, 799. doi: 10.1016/j.jcis.2021.06.068  doi: 10.1016/j.jcis.2021.06.068

    32. [32]

      Fuku, K.; Takioka, R.; Iwamura, K.; Todoroki, M.; Sayama, K.; Ikenaga, N. Appl. Catal. B 2020, 272, 119003. doi: 10.1016/j.apcatb.2020.119003  doi: 10.1016/j.apcatb.2020.119003

    33. [33]

      Sayed, M.; Zhu, B.; Kuang, P.; Liu, X.; Cheng, B.; Ghamdi, A. A. A.; Wageh, S.; Zhang, L.; Yu, J. Adv. Sustain. Syst. 2022, 6, 2100264. doi: 10.1002/adsu.202100264  doi: 10.1002/adsu.202100264

    34. [34]

      Chen, Y.; Wang, Y.; Fang, J.; Dai, B.; Kou, J.; Lu, C.; Zhao, Y. Chin. J. Catal. 2021, 42, 184. doi: 10.1016/S1872-2067(20)63588-4  doi: 10.1016/S1872-2067(20)63588-4

    35. [35]

      Huang, X.; Hu, Y.; Zhou, L.; Lei, J.; Wang, L.; Zhang, J. J. CO2 Util. 2021, 54, 101779. doi: 10.1016/j.jcou.2021.101779  doi: 10.1016/j.jcou.2021.101779

    36. [36]

      Temerov, F.; Pham, K.; Juuti, P.; Mäkelä, J. M.; Grachova, E. V.; Kumar, S.; Eslava, S.; Saarinen, J. J. ACS Appl. Mater. Interfaces 2020, 12, 41200. doi: 10.1021/acsami.0c08624  doi: 10.1021/acsami.0c08624

    37. [37]

      Zheng, X.; Zhang, Z.; Meng, S.; Wang, Y.; Li, D. Chem. Eng. J. 2020, 393, 124676. doi: 10.1016/j.cej.2020.124676  doi: 10.1016/j.cej.2020.124676

    38. [38]

      Zeng, Y.; Yang, T.; Li, C.; Xie, A.; Li, S.; Zhang, M.; Shen, Y. Appl. Catal. B 2019, 245, 469. doi: 10.1016/j.apcatb.2019.01.011  doi: 10.1016/j.apcatb.2019.01.011

    39. [39]

      Wang, M.; Cui, Z.; Yang, M.; Lin, L.; Chen, X.; Wang, M.; Han, J. J. Colloid Interface Sci. 2019, 544, 1. doi: 10.1016/j.jcis.2019.02.080  doi: 10.1016/j.jcis.2019.02.080

    40. [40]

      Wang, H.; Lin, Q.; Yin, L.; Yang, Y.; Qiu, Y.; Lu, C.; Yang, H. Small 2019, 15, 1900011. doi: 10.1002/smll.201900011  doi: 10.1002/smll.201900011

    41. [41]

      Nie, N.; He, F.; Zhang, L.; Cheng, B. Appl. Surf. Sci. 2018, 457, 1096. doi: 10.1016/j.apsusc.2018.07.002  doi: 10.1016/j.apsusc.2018.07.002

    42. [42]

      Meng, A.; Cheng, B.; Tan, H.; Fan, J.; Su, C.; Yu, J. Appl. Catal. B 2021, 289, 120039. doi: 10.1016/j.apcatb.2021.120039  doi: 10.1016/j.apcatb.2021.120039

    43. [43]

      Xu, F.; Tan, H.; Fan, J.; Cheng, B.; Yu, J.; Xu, J. Solar RRL 2021, 5, 2000571. doi: 10.1002/solr.202000571  doi: 10.1002/solr.202000571

    44. [44]

      Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Small 2021, 17, 2103447. doi: 10.1002/smll.202103447  doi: 10.1002/smll.202103447

    45. [45]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317  doi: 10.1002/adma.202100317

    46. [46]

      Fei, X.; Tan, H., Cheng, B.; Zhu, B.; Zhang, L. Acta Phys. -Chim. Sin. 2021, 37, 2010027.  doi: 10.3866/PKU.WHXB202010027

    47. [47]

      Wang, W.; Zhao, W.; Zhang, H.; Dou, X.; Shi, H. Chin. J. Catal. 2021, 42, 97. doi: 10.1016/S1872-2067(20)63602-6  doi: 10.1016/S1872-2067(20)63602-6

    48. [48]

      Wageh, S.; Al-Ghamdi, A. A.; Jafer, R.; Li, X.; Zhang, P. Chin. J. Catal. 2021, 42, 667. doi: 10.1016/S1872-2067(20)63705-6  doi: 10.1016/S1872-2067(20)63705-6

    49. [49]

      Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim. Sin. 2021, 37, 2009030.  doi: 10.3866/PKU.WHXB202009030

    50. [50]

      Ren, Y.; Li, Y.; Wu, X.; Wang, J.; Zhang, G. Chin. J. Catal. 2021, 42, 69. doi: 10.1016/S1872-2067(20)63631-2  doi: 10.1016/S1872-2067(20)63631-2

    51. [51]

      Li, Z.; Wu, Z.; He, R.; Wan, L.; Zhang, S. J. Mater. Sci. Technol. 2020, 56, 151. doi: 10.1016/j.jmst.2020.02.061  doi: 10.1016/j.jmst.2020.02.061

    52. [52]

      Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Chin. J. Catal. 2021, 42, 56. doi: 10.1016/S1872-2067(20)63634-8  doi: 10.1016/S1872-2067(20)63634-8

    53. [53]

      Tasso Guaraldo, T.; Wenk, J.; Mattia, D. Adv. Sustain. Syst. 2021, 5, 2000208. doi: 10.1002/adsu.202000208  doi: 10.1002/adsu.202000208

    54. [54]

      Li, Q.; Zhao, W.; Zhai, Z.; Ren, K.; Wang, T.; Guan, H.; Shi, H. J. Mater. Sci. Technol. 2020, 56, 216. doi: 10.1016/j.jmst.2020.03.038  doi: 10.1016/j.jmst.2020.03.038

    55. [55]

      Wageh, S.; Al-Ghamdi, A. A.; Liu, L. Acta Phys. -Chim. Sin. 2021, 37, 2010024.  doi: 10.3866/PKU.WHXB202010024

    56. [56]

      Li, Q.; Yang, C. Mater. Lett. 2017, 199, 168. doi: 10.1016/j.matlet.2017.04.058  doi: 10.1016/j.matlet.2017.04.058

    57. [57]

      Wang, L.; Tan, H.; Zhang, L.; Cheng, B.; Yu, J. Chem. Eng. J. 2021, 411, 128501. doi: 10.1016/j.cej.2021.128501  doi: 10.1016/j.cej.2021.128501

    58. [58]

      Kim, S.; Moon, G.; Kim, G.; Kang, U.; Park, H.; Choi, W. J. Catal. 2017, 346, 92. doi: 10.1016/j.jcat.2016.11.027  doi: 10.1016/j.jcat.2016.11.027

    59. [59]

      Chen, X.; Zhang, W.; Zhang, L.; Feng, L.; Zhang, C.; Jiang, J.; Wang, H. ACS Appl. Mater. Interfaces 2021, 13, 25868. doi: 10.1021/acsami.1c02953  doi: 10.1021/acsami.1c02953

    60. [60]

      Feng, C.; Tang, L.; Deng, Y.; Wang, J.; Luo, J.; Liu, Y.; Ouyang, X.; Yang, H.; Yu, J.; Wang, J. Adv. Funct. Mater. 2020, 30, 2001922. doi: 10.1002/adfm.202001922  doi: 10.1002/adfm.202001922

    61. [61]

      Zhang, M.; Li, Y.; Chang, W.; Zhu, W.; Zhang, L.; Jin, R.; Xing, Y. Chin. J. Catal. 2022, 43, 526. doi: 10.1016/S1872-2067(21)63872-X  doi: 10.1016/S1872-2067(21)63872-X

    62. [62]

      Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11, 4613. doi: 10.1038/s41467-020-18350-7  doi: 10.1038/s41467-020-18350-7

    63. [63]

      Landge, V. K.; Sonawane, S. H.; Sivakumar, M.; Sonawane, S. S.; Uday Bhaskar Babu, G.; Boczkaj, G. Sustain. Energy Technol Assess. 2021, 45, 101194. doi: 10.1016/j.seta.2021.101194  doi: 10.1016/j.seta.2021.101194

    64. [64]

      Mei, Z.; Wang, G.; Yan, S.; Wang, J. Acta Phys. -Chim. Sin. 2021, 37, 2009097.  doi: 10.3866/PKU.WHXB202009097

    65. [65]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

  • 加载中
    1. [1]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    2. [2]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    3. [3]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    4. [4]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    5. [5]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    7. [7]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    8. [8]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    9. [9]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    10. [10]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    11. [11]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    12. [12]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    13. [13]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    14. [14]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    15. [15]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    18. [18]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(60)
  • Abstract views(1355)
  • HTML views(444)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return