Enhanced Photocatalytic H2O2 Production over Inverse Opal ZnO@Polydopamine S-Scheme Heterojunctions
- Corresponding author: Liuyang Zhang, zhangliuyang@cug.edu.cn
Citation: Gaowei Han, Feiyan Xu, Bei Cheng, Youji Li, Jiaguo Yu, Liuyang Zhang. Enhanced Photocatalytic H2O2 Production over Inverse Opal ZnO@Polydopamine S-Scheme Heterojunctions[J]. Acta Physico-Chimica Sinica, ;2022, 38(7): 211203. doi: 10.3866/PKU.WHXB202112037
Wu, T.; He, Q.; Liu, Z.; Shao, B.; Liang, Q.; Pan, Y.; Huang, J.; Peng, Z.; Liu, Y.; Zhao, C.; et al. 2022, 424, 127177. doi: 10.1016/j.jhazmat.2021.127177
Lin, Y. J.; Khan, I.; Saha, S.; Wu, C. C.; Barman, S. R.; Kao, F. C.; Lin, Z. H. Nat. Commun. 2021, 12, 180. doi: 10.1038/s41467-020-20445-0
doi: 10.1038/s41467-020-20445-0
Chen, G.; Liu, J.; Li, Q.; Guan, P.; Yu, X.; Xing, L.; Zhang, J.; Che, R. Nano Res. 2019, 12, 2614. doi: 10.1007/s12274-019-2496-3
doi: 10.1007/s12274-019-2496-3
Nosaka, Y.; Nosaka, A. Y. Chem. Rev. 2017, 117, 11302. doi: 10.1021/acs.chemrev.7b00161
doi: 10.1021/acs.chemrev.7b00161
Mase, K.; Yoneda, M.; Yamada, Y.; Fukuzumi, S. Nat. Commun. 2016, 7, 11470. doi: 10.1038/ncomms11470
doi: 10.1038/ncomms11470
Disselkamp, R. S. Energy Fuels 2008, 22, 2771. doi: 10.1021/ef800050t
doi: 10.1021/ef800050t
Yi, Y.; Wang, L.; Li, G.; Guo, H. Catal. Sci. Technol. 2016, 6, 1593. doi: 10.1039/c5cy01567g
doi: 10.1039/c5cy01567g
Jia, X.; Sun, F.; Fei, Y.; Jin, M.; Zhang, F.; Xu, W.; Shi, N.; Lv, Z. 2018, 119, 218. doi: 10.1016/j.psep.2018.08.007
Song, W.; Yu, L.; Xie, X.; Hao, Z.; Sun, M.; Wen, H.; Li, Y. RSC Adv. 2017, 7, 25305. doi: 10.1039/c7ra02003a
doi: 10.1039/c7ra02003a
Nishimi, T.; Kamachi, T.; Kato, K.; Kato, T.; Yoshizawa, K. Eur. J. Org. Chem. 2011, 2011, 4113. doi: 10.1002/ejoc.201100300
doi: 10.1002/ejoc.201100300
Fellinger, T. -P.; Hasché, F.; Strasser, P.; Antonietti, M. J. Am. Chem. Soc. 2012, 134, 4072. doi: 10.1021/ja300038p
doi: 10.1021/ja300038p
Landon, P.; Collier, P. J.; Papworth, A. J.; Kiely, C. J.; Hutchings, G. J. Chem. Commun. 2002, 2058. doi: 10.1039/b205248m
doi: 10.1039/b205248m
Yang, Y.; Cheng, B.; Yu, J.; Wang, L.; Ho, W. Nano Res. 2021, doi: 10.1007/s12274-021-3733-0
doi: 10.1007/s12274-021-3733-0
Wei, Z.; Liu, M.; Zhang, Z.; Yao, W.; Tan, H.; Zhu, Y. Energy Environ. Sci. 2018, 11, 2581. doi: 10.1039/c8ee01316k
doi: 10.1039/c8ee01316k
Wang, L.; Zhang, J.; Zhang, Y.; Yu, H.; Qu, Y.; Yu, J. Small 2022, 18, 2104561. doi: 10.1002/smll.202104561
doi: 10.1002/smll.202104561
Hong, Y.; Cho, Y.; Go, E. M.; Sharma, P.; Cho, H.; Lee, B.; Lee, S. M.; Park, S. O.; Ko, M.; Kwak, S. K.; et al. Chem. Eng. J. 2021, 418, 129346. doi: 10.1016/j.cej.2021.129346
doi: 10.1016/j.cej.2021.129346
Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. Science 2019, 366, 226. doi: 10.1126/science.aay1844
doi: 10.1126/science.aay1844
Yu, X.; Viengkeo, B.; He, Q.; Zhao, X.; Huang, Q.; Li, P.; Huang, W.; Li, Y. Adv. Sustain. Syst. 2021, 5, 2100184. doi: 10.1002/adsu.202100184
doi: 10.1002/adsu.202100184
Zhang, K.; Zhou, M.; Yang, K.; Yu, C.; Mu, P.; Yu, Z.; Lu, K.; Huang, W.; Dai, W. J. Hazard. Mater. 2022, 423, 127172. doi: 10.1016/j.jhazmat.2021.127172
doi: 10.1016/j.jhazmat.2021.127172
Liu, M.; Xia, H.; Yang, W.; Liu, X.; Xiang, J.; Wang, X.; Hu, L.; Lu, F. Appl. Catal. B 2022, 301, 120765. doi: 10.1016/j.apcatb.2021.120765
doi: 10.1016/j.apcatb.2021.120765
Moon, G. -H.; Kim, W.; Bokare, A. D.; Sung, N. -E.; Choi, W. Energy Environ. Sci. 2014, 7, 4023. doi: 10.1039/c4ee02757d
doi: 10.1039/c4ee02757d
Zhang, Y.; Xia, Y.; Wang, L.; Cheng, B.; Yu, J. Nanotechnology 2021, 32, 415402. doi: 10.1088/1361-6528/ac1221
doi: 10.1088/1361-6528/ac1221
Liu, Q.; Zhou, L.; Liu, L.; Li, J.; Wang, S.; Znad, H.; Liu, S. Compos. B Eng. 2020, 200, 108345. doi: 10.1016/j.compositesb.2020.108345
doi: 10.1016/j.compositesb.2020.108345
Liu, Y.; Han, J.; Qiu, W.; Gao, W. Appl. Surf. Sci. 2012, 263, 389. doi: 10.1016/j.apsusc.2012.09.067
doi: 10.1016/j.apsusc.2012.09.067
Fu, Y.; Liu, C.; Zhang, M.; Zhu, C.; Li, H.; Wang, H.; Song, Y.; Huang, H.; Liu, Y.; Kang, Z. Adv. Energy Mater. 2018, 8, 1802525. doi: 10.1002/aenm.201802525
doi: 10.1002/aenm.201802525
Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. ACS Catal. 2014, 4, 774. doi: 10.1021/cs401208c
doi: 10.1021/cs401208c
Liu, B.; Bie, C.; Zhang, Y.; Wang, L.; Li, Y.; Yu, J. Langmuir 2021, 37, 14114. doi: 10.1021/acs.langmuir.1c02360
doi: 10.1021/acs.langmuir.1c02360
Lee, J. H.; Cho, H.; Park, S. O.; Hwang, J. M.; Hong, Y.; Sharma, P.; Jeon, W. C.; Cho, Y.; Yang, C.; Kwak, S. K.; et al. Appl. Catal. B 2021, 284, 119690. doi: 10.1016/j.apcatb.2020.119690
doi: 10.1016/j.apcatb.2020.119690
Ghoreishian, S. M.; Ranjith, K. S.; Park, B.; Hwang, S. -K.; Hosseini, R.; Behjatmanesh-Ardakani, R.; Pourmortazavi, S. M.; Lee, H. U.; Son, B.; Mirsadeghi, S.; et al. Chem. Eng. J. 2021, 419, 129530. doi: 10.1016/j.cej.2021.129530
doi: 10.1016/j.cej.2021.129530
Wu, Y.; Gao, Z.; Feng, Y.; Cui, Q.; Du, C.; Yu, C.; Liang, L.; Zhao, W.; Feng, J.; Sun, J.; et al. Appl. Catal. B 2021, 298, 120572. doi: 10.1016/j.apcatb.2021.120572
doi: 10.1016/j.apcatb.2021.120572
Li, X.; Wang, X.; Xiao, G.; Zhu, Y. J. Colloid Interface Sci. 2021, 602, 799. doi: 10.1016/j.jcis.2021.06.068
doi: 10.1016/j.jcis.2021.06.068
Fuku, K.; Takioka, R.; Iwamura, K.; Todoroki, M.; Sayama, K.; Ikenaga, N. Appl. Catal. B 2020, 272, 119003. doi: 10.1016/j.apcatb.2020.119003
doi: 10.1016/j.apcatb.2020.119003
Sayed, M.; Zhu, B.; Kuang, P.; Liu, X.; Cheng, B.; Ghamdi, A. A. A.; Wageh, S.; Zhang, L.; Yu, J. Adv. Sustain. Syst. 2022, 6, 2100264. doi: 10.1002/adsu.202100264
doi: 10.1002/adsu.202100264
Chen, Y.; Wang, Y.; Fang, J.; Dai, B.; Kou, J.; Lu, C.; Zhao, Y. Chin. J. Catal. 2021, 42, 184. doi: 10.1016/S1872-2067(20)63588-4
doi: 10.1016/S1872-2067(20)63588-4
Huang, X.; Hu, Y.; Zhou, L.; Lei, J.; Wang, L.; Zhang, J. J. CO2 Util. 2021, 54, 101779. doi: 10.1016/j.jcou.2021.101779
doi: 10.1016/j.jcou.2021.101779
Temerov, F.; Pham, K.; Juuti, P.; Mäkelä, J. M.; Grachova, E. V.; Kumar, S.; Eslava, S.; Saarinen, J. J. ACS Appl. Mater. Interfaces 2020, 12, 41200. doi: 10.1021/acsami.0c08624
doi: 10.1021/acsami.0c08624
Zheng, X.; Zhang, Z.; Meng, S.; Wang, Y.; Li, D. Chem. Eng. J. 2020, 393, 124676. doi: 10.1016/j.cej.2020.124676
doi: 10.1016/j.cej.2020.124676
Zeng, Y.; Yang, T.; Li, C.; Xie, A.; Li, S.; Zhang, M.; Shen, Y. Appl. Catal. B 2019, 245, 469. doi: 10.1016/j.apcatb.2019.01.011
doi: 10.1016/j.apcatb.2019.01.011
Wang, M.; Cui, Z.; Yang, M.; Lin, L.; Chen, X.; Wang, M.; Han, J. J. Colloid Interface Sci. 2019, 544, 1. doi: 10.1016/j.jcis.2019.02.080
doi: 10.1016/j.jcis.2019.02.080
Wang, H.; Lin, Q.; Yin, L.; Yang, Y.; Qiu, Y.; Lu, C.; Yang, H. Small 2019, 15, 1900011. doi: 10.1002/smll.201900011
doi: 10.1002/smll.201900011
Nie, N.; He, F.; Zhang, L.; Cheng, B. Appl. Surf. Sci. 2018, 457, 1096. doi: 10.1016/j.apsusc.2018.07.002
doi: 10.1016/j.apsusc.2018.07.002
Meng, A.; Cheng, B.; Tan, H.; Fan, J.; Su, C.; Yu, J. Appl. Catal. B 2021, 289, 120039. doi: 10.1016/j.apcatb.2021.120039
doi: 10.1016/j.apcatb.2021.120039
Xu, F.; Tan, H.; Fan, J.; Cheng, B.; Yu, J.; Xu, J. Solar RRL 2021, 5, 2000571. doi: 10.1002/solr.202000571
doi: 10.1002/solr.202000571
Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Small 2021, 17, 2103447. doi: 10.1002/smll.202103447
doi: 10.1002/smll.202103447
Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317
doi: 10.1002/adma.202100317
Fei, X.; Tan, H., Cheng, B.; Zhu, B.; Zhang, L. Acta Phys. -Chim. Sin. 2021, 37, 2010027.
doi: 10.3866/PKU.WHXB202010027
Wang, W.; Zhao, W.; Zhang, H.; Dou, X.; Shi, H. Chin. J. Catal. 2021, 42, 97. doi: 10.1016/S1872-2067(20)63602-6
doi: 10.1016/S1872-2067(20)63602-6
Wageh, S.; Al-Ghamdi, A. A.; Jafer, R.; Li, X.; Zhang, P. Chin. J. Catal. 2021, 42, 667. doi: 10.1016/S1872-2067(20)63705-6
doi: 10.1016/S1872-2067(20)63705-6
Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim. Sin. 2021, 37, 2009030.
doi: 10.3866/PKU.WHXB202009030
Ren, Y.; Li, Y.; Wu, X.; Wang, J.; Zhang, G. Chin. J. Catal. 2021, 42, 69. doi: 10.1016/S1872-2067(20)63631-2
doi: 10.1016/S1872-2067(20)63631-2
Li, Z.; Wu, Z.; He, R.; Wan, L.; Zhang, S. J. Mater. Sci. Technol. 2020, 56, 151. doi: 10.1016/j.jmst.2020.02.061
doi: 10.1016/j.jmst.2020.02.061
Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Chin. J. Catal. 2021, 42, 56. doi: 10.1016/S1872-2067(20)63634-8
doi: 10.1016/S1872-2067(20)63634-8
Tasso Guaraldo, T.; Wenk, J.; Mattia, D. Adv. Sustain. Syst. 2021, 5, 2000208. doi: 10.1002/adsu.202000208
doi: 10.1002/adsu.202000208
Li, Q.; Zhao, W.; Zhai, Z.; Ren, K.; Wang, T.; Guan, H.; Shi, H. J. Mater. Sci. Technol. 2020, 56, 216. doi: 10.1016/j.jmst.2020.03.038
doi: 10.1016/j.jmst.2020.03.038
Wageh, S.; Al-Ghamdi, A. A.; Liu, L. Acta Phys. -Chim. Sin. 2021, 37, 2010024.
doi: 10.3866/PKU.WHXB202010024
Li, Q.; Yang, C. Mater. Lett. 2017, 199, 168. doi: 10.1016/j.matlet.2017.04.058
doi: 10.1016/j.matlet.2017.04.058
Wang, L.; Tan, H.; Zhang, L.; Cheng, B.; Yu, J. Chem. Eng. J. 2021, 411, 128501. doi: 10.1016/j.cej.2021.128501
doi: 10.1016/j.cej.2021.128501
Kim, S.; Moon, G.; Kim, G.; Kang, U.; Park, H.; Choi, W. J. Catal. 2017, 346, 92. doi: 10.1016/j.jcat.2016.11.027
doi: 10.1016/j.jcat.2016.11.027
Chen, X.; Zhang, W.; Zhang, L.; Feng, L.; Zhang, C.; Jiang, J.; Wang, H. ACS Appl. Mater. Interfaces 2021, 13, 25868. doi: 10.1021/acsami.1c02953
doi: 10.1021/acsami.1c02953
Feng, C.; Tang, L.; Deng, Y.; Wang, J.; Luo, J.; Liu, Y.; Ouyang, X.; Yang, H.; Yu, J.; Wang, J. Adv. Funct. Mater. 2020, 30, 2001922. doi: 10.1002/adfm.202001922
doi: 10.1002/adfm.202001922
Zhang, M.; Li, Y.; Chang, W.; Zhu, W.; Zhang, L.; Jin, R.; Xing, Y. Chin. J. Catal. 2022, 43, 526. doi: 10.1016/S1872-2067(21)63872-X
doi: 10.1016/S1872-2067(21)63872-X
Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11, 4613. doi: 10.1038/s41467-020-18350-7
doi: 10.1038/s41467-020-18350-7
Landge, V. K.; Sonawane, S. H.; Sivakumar, M.; Sonawane, S. S.; Uday Bhaskar Babu, G.; Boczkaj, G. Sustain. Energy Technol Assess. 2021, 45, 101194. doi: 10.1016/j.seta.2021.101194
doi: 10.1016/j.seta.2021.101194
Mei, Z.; Wang, G.; Yan, S.; Wang, J. Acta Phys. -Chim. Sin. 2021, 37, 2009097.
doi: 10.3866/PKU.WHXB202009097
Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668
doi: 10.1002/adma.202107668
Jieqiong Qin , Zhi Yang , Jiaxin Ma , Liangzhu Zhang , Feifei Xing , Hongtao Zhang , Shuxia Tian , Shuanghao Zheng , Zhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845
Xingmin Chen , Yunyun Wu , Yao Tang , Peishen Li , Shuai Gao , Qiang Wang , Wen Liu , Sihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Jing Wang , Zhongliao Wang , Jinfeng Zhang , Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
Xiaodan Wang , Yingnan Liu , Zhibin Liu , Zhongjian Li , Tao Zhang , Yi Cheng , Lecheng Lei , Bin Yang , Yang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021