Citation: Liang Zhou, Yunfeng Li, Yongkang Zhang, Liewei Qiu, Yan Xing. A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation[J]. Acta Physico-Chimica Sinica, ;2022, 38(7): 211202. doi: 10.3866/PKU.WHXB202112027 shu

A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation

  • Corresponding author: Yunfeng Li, liyf377@nenu.edu.cn Liewei Qiu, 20190607@xpu.edu.cn
  • Received Date: 20 December 2021
    Revised Date: 9 January 2022
    Accepted Date: 17 January 2022
    Available Online: 20 January 2022

    Fund Project: the National Natural Science Foundation of China 22008185the National Natural Science Foundation of China 21872023Natural Science Basic Research Program of Shaanxi Province 2021JQ-669College Students' Innovative Training Plan Program of Xi'an Polytechnic University 202110709042Graduate Innovation Fund Project of Xi'an Polytechnic University chx2021020

  • With the rapid development of industrial technology, a large number of organic pollutants are routinely released into the environment, which has caused serious problems. Semiconductor photocatalysis is an environmentally-friendly and effective method to degrade and remove typical pollutants, and photocatalysts play a key role in the application of this technology. Therefore, various semiconductor materials have been tried and used in the field of pollutant removal. Graphite carbon nitride (g-C3N4) has attracted great interest because of its two-dimensional layered structure and good visible light response range. Owing to a narrow bandgap, adjustable band structure, and high physicochemical stability, g-C3N4 absorbs wavelengths up to 450 nm in the visible spectrum, leading to an opportunity for visible-light photocatalytic performance. Nevertheless, there are still some drawbacks that limit the photocatalytic efficiency of g-C3N4 in the removal of antibiotics and dyes under visible light, such as the rapid recombination of photoinduced charges and the weak oxidation capacity of holes. To advance this promising photocatalytic material, multiple methods have been tried to optimize the electronic band structure of g-C3N4, such as doping with various elements, morphology control, and functional group modification. Recently, a novel type of Step-scheme (S-scheme) heterojunction composed of two n-type semiconductor photocatalysts has been proposed, which can utilize a more positive valance band and a more negative conduction band. It was demonstrated that the formation of S-scheme heterojunctions is a valid way to increase photocatalytic activity of g-C3N4. Herein, novel 0D/2D Bi4V2O11/g-C3N4 S-scheme heterojunctions were prepared by a simple in situ solvothermal growth method. The Bi4V2O11/g-C3N4 composites displayed a high photocatalytic activity through the removal of oxytetracycline (OTC) and Reactive Red 2. In particular, the BVCN-50 composite showed the highest degradation efficiency for OTC of 74.1% and for Reactive Red 2 of 84.2% with ·O2- as the primary active species. This highly improved photocatalytic performance can be ascribed to the generation of S-scheme heterojunctions, which provides for a high redox capacity of the heterojunction system (strong oxidative ability of Bi4V2O11 and strong reductive capacity of g-C3N4) and facilitates the space separation of photo-generated charges. Moreover, the surface plasmon resonance effect of metallic Bi0 broadens the light utilization range of the heterojunction system. In addition, the possible degradation pathway and intermediates throughout the degradation process of OTC based on liquid chromatograph mass spectrometer (LC-MS) analysis were also studied. This work provides a novel tactic for the design and fabrication of g-C3N4-based S-scheme heterojunctions with enhanced photocatalytic performance.
  • 加载中
    1. [1]

      Bie, C.; Yu, H.; Cheng, B.; Ho, W.; Fan, J.; Yu, J. Adv. Mater. 2021, 33, 2003521. doi: 10.1002/adma.202003521  doi: 10.1002/adma.202003521

    2. [2]

      Yang, Y.; Tan, H.; Cheng, B.; Fan, J.; Yu, J.; Ho, W. Small Methods 2021, 5, 2001042. doi: 10.1002/smtd.202001042  doi: 10.1002/smtd.202001042

    3. [3]

      Li, Y.; Zhou, M.; Cheng, B.; Shao, Y. J. Mater. Sci. Technol. 2020, 56, 1. doi: 10.1016/j.jmst.2020.04.028  doi: 10.1016/j.jmst.2020.04.028

    4. [4]

      Li, Y.; Gu, M.; Zhang, X.; Fan, J.; Lv, K.; Carabineiro, S.; Dong, F. J. Mater. Today 2020, 41, 270. doi: 10.1016/j.mattod.2020.09.004  doi: 10.1016/j.mattod.2020.09.004

    5. [5]

      Cheng, L.; Yue, X.; Wang, L.; Zhang, D.; Zhang, P.; Fan, J.; Xiang, Q. Adv. Mater. 2021, 33, 2105135. doi: 10.1002/adma.202105135  doi: 10.1002/adma.202105135

    6. [6]

      Li, Y.; Wang, H.; Zhang, X.; Wang, S.; Jin, S.; Xu, X.; Liu, W.; Zhao, Z.; Xie, Y. Angew. Chem. Int. Ed. 2021, 60, 2. doi: 10.1002/anie.202101090  doi: 10.1002/anie.202101090

    7. [7]

      Kuang, P.; Low, J.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 18. doi: 10.1016/j.jmst.2020.02.037  doi: 10.1016/j.jmst.2020.02.037

    8. [8]

      Jing, L.; Xu, Y.; Zhou, M.; Deng, J.; Wei, W.; Xie, M.; Song, Y.; Xu, H.; Li, H. J. Hazard. Mater. 2020, 396, 122659. doi: 10.1016/j.jhazmat.2020.122659  doi: 10.1016/j.jhazmat.2020.122659

    9. [9]

      Cheng, L.; Zhang, H.; Li, X.; Fan, J.; Xiang, Q. Small 2021, 17, 2005231. doi: 10.1002/smll.202005231  doi: 10.1002/smll.202005231

    10. [10]

      Li, Y.; Ouyang, S.; Xu, H.; Hou, W.; Zhao, M.; Chen, H.; Ye, J. Adv. Funct. Mater. 2019, 29, 1901024. doi: 10.1002/adfm.201901024  doi: 10.1002/adfm.201901024

    11. [11]

      Jiang, Z.; Zhang, X.; Chen, H.; Yang, P.; Jiang, S. Small 2020, 16, 2003910. doi: 10.1002/smll.202003910  doi: 10.1002/smll.202003910

    12. [12]

      Yi, J.; El-Alami, W.; Song, Y.; Li, H.; Ajayan, P.; Xu, H. Chem. Eng. J. 2020, 382, 122812. doi: 10.1016/j.cej.2019.122812  doi: 10.1016/j.cej.2019.122812

    13. [13]

      Chen, X.; Wang, J.; Chai, Y.; Zhang, Z.; Zhu, Y. Adv. Mater. 2021, 33, 2007479. doi: 10.1002/adma.202007479  doi: 10.1002/adma.202007479

    14. [14]

      Chen, X.; Shi, R.; Chen, Q.; Zhang, Z.; Jiang, W.; Zhu, Y.; Zhang, T. Nano Energy 2019, 59, 644. doi: 10.1016/j.nanoen.2019.03.010  doi: 10.1016/j.nanoen.2019.03.010

    15. [15]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317  doi: 10.1002/adma.202100317

    16. [16]

      Mo, Z.; Di, J.; Yan, P.; Lv, C.; Zhu, X.; Liu, D.; Song, Y.; Liu, C.; Yu, Q.; Li, H.; et al. Small 2020, 16, 2003914. doi: 10.1002/smll.202003914  doi: 10.1002/smll.202003914

    17. [17]

      Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim. Sin. 2021, 37, 2009030.  doi: 10.3866/PKU.WHXB202009030

    18. [18]

      Wang, J.; Lin, S.; Tian, N.; Ma, T.; Zhang, Y.; Huang, H. Adv. Funct. Mater. 2020, 31, 2008008. doi: 10.1002/adfm.202008008  doi: 10.1002/adfm.202008008

    19. [19]

      Chen, P.; Lei, B.; Dong, X.; Wang, H.; Sheng, J.; Cui, W.; Li, J.; Sun, Y.; Wang, Z.; Dong, F. ACS Nano 2020, 14, 15841. doi: 10.1021/acsnano.0c07083  doi: 10.1021/acsnano.0c07083

    20. [20]

      Li, Z.; Huang, W.; Liu, J.; Lv, K.; Li, Q. ACS Catal. 2021, 11, 8510. doi: 10.1021/acscatal.1c02018  doi: 10.1021/acscatal.1c02018

    21. [21]

      Chen, Y.; Li, L.; Xu, Q.; Düren, T.; Fan, J.; Ma, D. Acta Phys. -Chim. Sin. 2021, 37, 2009080.  doi: 10.3866/PKU.WHXB202009080

    22. [22]

      Wu, B.; Zhang, L.; Jiang, B.; Li, Q.; Tian, C.; Xie, Y.; Li, W.; Fu, H. Angew. Chem. Int. Ed. 2021, 60, 4815. doi: 10.1002/anie.202013753  doi: 10.1002/anie.202013753

    23. [23]

      Li, Y.; Wang, S.; Chang, W.; Zhang, L.; Wu, Z.; Jin, R.; Xing, Y. Appl. Catal. B 2020, 274, 119116. doi: 10.1016/j.apcatb.2020.119116  doi: 10.1016/j.apcatb.2020.119116

    24. [24]

      Zhou, L.; Lei, J.; Wang, F.; Wang, L.; Hoffmann, M.; Liu, Y.; In, S.; Zhang, J. Appl. Catal. B 2021, 288, 119993. doi: 10.1016/j.apcatb.2021.119993  doi: 10.1016/j.apcatb.2021.119993

    25. [25]

      Deng, H.; Fei, X.; Yang, Y.; Fan, J.; Yu, J., Cheng, B.; Zhang, L. Chem. Eng. J. 2021, 409, 127377. doi: 10.1016/j.cej.2020.127377  doi: 10.1016/j.cej.2020.127377

    26. [26]

      Liang, Z.; Shen, R.; Ng, Y.; Zhang, P.; Xiang, Q.; Li, X. J. Mater. Sci. Technol. 2020, 56, 89. doi: 10.1016/j.jmst.2020.04.032  doi: 10.1016/j.jmst.2020.04.032

    27. [27]

      Wageh, S.; Al-Ghamdi, A.; Jafer, R.; Li, X.; Zhang, P. Chin. J. Catal. 2021, 42, 667. doi: 10.1016/S1872-2067(20)63705-6  doi: 10.1016/S1872-2067(20)63705-6

    28. [28]

      Xu, F.; Meng, K.; Cao, S.; Jiang, C.; Chen, T.; Xu, J.; Yu, J. ACS Catal. 2022, 12, 164. doi: 10.1021/acscatal.1c04903  doi: 10.1021/acscatal.1c04903

    29. [29]

      Peng, J.; Shen, J.; Yu, X.; Tang, H.; Zulfiqar; Liu, Q. Chin. J. Catal. 2021, 42, 87. doi: 10.1016/S1872-2067(20)63595-1  doi: 10.1016/S1872-2067(20)63595-1

    30. [30]

      Mei, Z.; Wang, G.; Yan, S.; Wang, J. Acta Phys. -Chim. Sin. 2021, 37, 2009097.  doi: 10.3866/PKU.WHXB202009097

    31. [31]

      Liang, X.; Zhao, J.; Wang, T.; Zhang, Z.; Qu, M.; Wang, C. ACS Appl. Mater. Interfaces 2021, 13, 33034. doi: 10.1021/acsami.1c07757  doi: 10.1021/acsami.1c07757

    32. [32]

      Chen, X.; Wang, J.; Chai, Y.; Zhang, Z.; Zhu, Y. Adv. Mater. 2021, 33, 2007479. doi: 10.1002/adma.202007479  doi: 10.1002/adma.202007479

    33. [33]

      Liu, D.; Chen, S.; Li, R.; Peng, T. Acta Phys. -Chim. Sin. 2021, 37, 2010017.  doi: 10.3866/PKU.WHXB202010017

    34. [34]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    35. [35]

      Zhou, L.; Li, Y.; Yang, S.; Zhang, M.; Wu, Z.; Jin, R.; Xing, Y. Chem. Eng. J. 2021, 420, 130361. doi: 10.1016/j.cej.2021.130361  doi: 10.1016/j.cej.2021.130361

    36. [36]

      Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012  doi: 10.1002/anie.201916012

    37. [37]

      Xie, Q.; He, W.; Liu, S.; Li, C.; Zhang, J.; Wong, P. Chin. J. Catal. 2020, 41, 140. doi: S1872-2067(19)63481-9

    38. [38]

      Li, Q.; Zhao, W.; Zhai, Z.; Ren, K.; Wang, T.; Guan, H.; Shi, H. J. Mater. Sci. Technol. 2020, 56, 216. doi: 10.1016/j.jmst.2020.03.038  doi: 10.1016/j.jmst.2020.03.038

    39. [39]

      Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Small 2021, 17, 2103447. doi: 10.1002/smll.202103447  doi: 10.1002/smll.202103447

    40. [40]

      Liu, Y.; Hao, X.; Hu, H.; Jin, Z. Acta Phys. -Chim. Sin. 2021, 37, 2008030.  doi: 10.3866/PKU.WHXB202008030

    41. [41]

      Li, X.; Liu, J.; Huang, J.; He, C.; Feng, Z.; Chen, Z.; Wan, L.; Deng, F. Acta Phys. -Chim. Sin. 2021, 37, 2010030.  doi: 10.3866/PKU.WHXB202010030

    42. [42]

      Liu, L.; Hu, T.; Dai, K.; Zhang, J., Liang, C. Chin. J. Catal. 2021, 42, 46. doi: 10.1016/S1872-2067(20)63560-4  doi: 10.1016/S1872-2067(20)63560-4

    43. [43]

      He, R.; Chen, R.; Luo, J.; Zhang, S.; Xu, D. Acta Phys. -Chim. Sin. 2021, 37, 2011022.  doi: 10.3866/PKU.WHXB202011022

    44. [44]

      Wang, K.; Li, Y.; Zhang, G.; Li, J.; Wu, X. Appl. Catal. B 2019, 240, 39. doi: 10.1016/j.apcatb.2018.08.063  doi: 10.1016/j.apcatb.2018.08.063

    45. [45]

      Lv, C.; Chen, G.; Sun, J.; Zhou, Y.; Fan, S.; Zhang, C. Appl. Catal. B 2015, 179, 54. doi: 10.1016/j.apcatb.2015.05.022  doi: 10.1016/j.apcatb.2015.05.022

    46. [46]

      Lv, T.; Li, D.; Hong, Y.; Luo, B.; Xu, D.; Chen, M.; Shi, W. Dalton Trans. 2017, 46, 12675. doi: 10.1039/c7dt02151h  doi: 10.1039/c7dt02151h

    47. [47]

      Wen, X.; Lu, Q.; Lv, X.; Sun, J.; Guo, J.; Fei, Z.; Niu, C. J. Hazard. Mater. 2020, 385, 121508. doi: 10.1016/j.jhazmat.2019.121508  doi: 10.1016/j.jhazmat.2019.121508

    48. [48]

      Lv, C.; Chen, G.; Zhou, X.; Zhang, C.; Wang, Z.; Zhao, B.; Li, D. ACS Appl. Mater. Interfaces 2017, 9, 23748. doi: 10.1021/acsami.7b05302  doi: 10.1021/acsami.7b05302

    49. [49]

      Zhu, B.; Tan, H.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. J. Materiomics 2021, 7, 988. doi: 10.1016/j.jmat.2021.02.015  doi: 10.1016/j.jmat.2021.02.015

    50. [50]

      Fei, X.; Tan, H.; Cheng, B.; Zhu, B.; Zhang, L. Acta Phys. -Chim. Sin. 2021, 37, 2010027.  doi: 10.3866/PKU.WHXB202010027

    51. [51]

      Rosa, F.; Papac, J.; Garcia-Ballesteros, S.; Kovačić, M.; Katančić, Z.; Kušić, H.; Božić, A. Adv. Sustain. Syst. 2021, 5, 2100119. doi: 10.1002/adsu.202100119  doi: 10.1002/adsu.202100119

    52. [52]

      Zhou, X.; Shao, C.; Li, X.; Wang, X.; Guo, X.; Liu, Y. J. Hazard. Mater. 2018, 344, 113. doi: 10.1016/j.jhazmat.2017.10.006  doi: 10.1016/j.jhazmat.2017.10.006

    53. [53]

      Zhang, M.; Li, Y.; Chang, W.; Zhu, W.; Zhang, L.; Jin, R.; Xing, Y. Chin. J. Catal. 2022, 43, 526. doi: 10.1016/S1872-2067(21)63872-X  doi: 10.1016/S1872-2067(21)63872-X

    54. [54]

      Liu, B.; Bie, C.; Zhang, Y.; Wang, L.; Li, Y.; Yu, J. Langmuir 2021, 37, 14114. doi: 10.1021/acs.langmuir.1c02360  doi: 10.1021/acs.langmuir.1c02360

    55. [55]

      Wang, W.; Zhao, W.; Zhang, H.; Dou, X.; Shi, H. Chin. J. Catal. 2021, 42, 97. doi: 10.1016/S1872-2067(20)63602-6  doi: 10.1016/S1872-2067(20)63602-6

    56. [56]

      Guaraldo, T.; Wenk, J.; Mattia, D. Adv. Sustain. Syst. 2021, 5, 2000208. doi: 10.1002/adsu.202000208  doi: 10.1002/adsu.202000208

    57. [57]

      Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, R.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2021, 37, 2010059.  doi: 10.3866/PKU.WHXB202010059

    58. [58]

      Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Chin. J. Catal. 2021, 42, 56. doi: 10.1016/S1872-2067(20)63634-8  doi: 10.1016/S1872-2067(20)63634-8

    59. [59]

      Ren, Y.; Li, Y.; Wu, X.; Wang, J.; Zhang, G. Chin. J. Catal. 2021, 42, 69. doi: 10.1016/S1872-2067(20)63631-2  doi: 10.1016/S1872-2067(20)63631-2

    60. [60]

      Sayed, M.; Zhu, B.; Kuang, P.; Liu, X.; Cheng, B.; Ghamdi, A.; Wageh, S.; Zhang, L.; Yu, J. Adv. Sustain. Syst. 2021, doi: 10.1002/adsu.202100264  doi: 10.1002/adsu.202100264

    61. [61]

      Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y. H.; Zhang, P.; Li, X. Sci. China Mater. 2020, 63, 2153. doi: 10.1007/s40843-020-1456-x  doi: 10.1007/s40843-020-1456-x

    62. [62]

      Qin, D.; Xia, Y.; Li, Q.; Yang, C.; Qin, Y.; Lv, K. J. Mater. Sci. Technol. 2020, 56, 206. doi: 10.1016/j.jmst.2020.03.034  doi: 10.1016/j.jmst.2020.03.034

    63. [63]

      Li, Q.; Xia, Y.; Yang, C.; Lv, K.; Lei, M.; Li, M. Chem. Eng. J. 2018, 349, 287. doi: 10.1016/j.cej.2018.05.094  doi: 10.1016/j.cej.2018.05.094

    64. [64]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    3. [3]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    4. [4]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    7. [7]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    8. [8]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    9. [9]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    10. [10]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    11. [11]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    12. [12]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    13. [13]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    14. [14]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    15. [15]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    16. [16]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    19. [19]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    20. [20]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

Metrics
  • PDF Downloads(58)
  • Abstract views(1185)
  • HTML views(340)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return