Citation: Hang Zhou, Kun Jiao. Carbonene Materials Modified High-Performance Polymer Fibers: Preparation, Properties, and Applications[J]. Acta Physico-Chimica Sinica, ;2022, 38(9): 211104. doi: 10.3866/PKU.WHXB202111041 shu

Carbonene Materials Modified High-Performance Polymer Fibers: Preparation, Properties, and Applications

  • Corresponding author: Kun Jiao, jiaokun-cnc@pku.edu.cn
  • Received Date: 30 November 2021
    Revised Date: 7 January 2022
    Accepted Date: 10 January 2022
    Available Online: 20 January 2022

    Fund Project: the Ministry of Science and Technology of China 2016YFA0200100the Ministry of Science and Technology of China 2018YFA0703502the Beijing National Laboratory for Molecular Sciences BNLMS-CXTD-202001the National Natural Science Foundation of China 52021006the National Natural Science Foundation of China 51720105003the National Natural Science Foundation of China 21790052the National Natural Science Foundation of China 21974004

  • The development of high-performance polymer fibers is one of the main focus areas for the global polymer fiber industry. To ensure the advancement of important industries such as national aerospace, the performance of existing fibers should be improved, while new fibers that combine various properties and functions should also be developed. Carbonene materials, mainly comprising graphene and carbon nanotubes, exhibit excellent mechanical, electrical, thermal, and other properties; thus, they are considered ideal modifiers for high-performance polymer fibers. Herein, carbonene materials modified high-performance polymer fibers are reviewed to provide a comprehensive overview of their preparation, properties, and applications. Firstly, the preparation methods for these fibers, such as the dispersion of carbonene materials and polymer fiber modification methods, will be discussed. The dispersion methods employed for carbonene materials include mechanical mixing as well as covalent and non-covalent functionalization. Although mechanical mixing is relatively straightforward, functionalization typically provides better dispersion. To obtain well-dispersed carbonene materials, these methods should be combined. Polymer fiber modification methods include mixing, in situ polymerization, and coating. Although mixing can be performed during compounding of carbonene materials as well as a wide range of polymers, in situ polymerization generates stronger connections between carbonene materials and polymers, thus resulting in better properties compared to that obtained from mixing. Employing coating as a modification method offers the advantage of improving the surface properties as well as the possibility to introduce additional functionalities to the high-performance polymer fibers. Therefore, during preparation, the structure and function design of carbonene materials modified high-performance polymer fibers should be considered when the compounding method is selected. Subsequent discussions on the properties associated with these fibers will primarily focus on mechanical, electrical, and thermal properties. As carbonene materials can support loads and promote polymer crystallization and molecular chain orientation, it will contribute to improved mechanical properties. In addition, carbonene materials can develop conductive paths in the polymer fiber, thereby improving the electrical properties. These conductive networks further contribute to reducing segment motions in polymer molecular chains at a high temperature, thereby improving the thermal conductivity and thermostability of the materials. Through the addition of carbonene materials, new functions, such as UV resistance, resistance to photo-degradation, and improved surface affinity, can also be introduced. Finally, applications of carbonene materials modified high-performance polymer fibers will be addressed. These include potential applications as structural, heat-resistant, and wear-resistant materials that can be expected to exhibit superior performance when compared to conventional high-performance polymer fibers. Furthermore, additional functions that can be introduced to these modified fibers should make them ideally suited for applications in supercapacitors, sensors, electromagnetic shields, and artificial muscles. To conclude, existing challenges and potential future developments in carbonene materials modified high-performance polymer fibers will be discussed. The excellent properties associated with the modified fibers, as well as continuous development of materials and techniques should ensure their future applications in numerous fields.
  • 加载中
    1. [1]

      Zhu, M. F.; Zhou, Z. High Performance Fiber. China Railway Publishing House: Beijing, 2017, p. 1.

    2. [2]

      Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442 (7100), 282. doi: 10.1038/nature04969  doi: 10.1038/nature04969

    3. [3]

      Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Prog. Polym. Sci. 2010, 35 (3), 357. doi: 10.1016/j.progpolymsci.2009.09.003  doi: 10.1016/j.progpolymsci.2009.09.003

    4. [4]

      Berber, S.; Kwon, Y.-K.; Tománek, D. Phys. Rev. Lett. 2000, 84 (20), 4613. doi: 10.1103/PhysRevLett.84.4613  doi: 10.1103/PhysRevLett.84.4613

    5. [5]

      Ren, Y.; Ren, L.; Li, J.; Lv, R.; Wei, L.; An, D.; Maqbool, M.; Bai, S.; Wong, C.-P. Compos. Sci. Technol. 2020, 199, 108340. doi: 10.1016/j.compscitech.2020.108340  doi: 10.1016/j.compscitech.2020.108340

    6. [6]

      Fu, X.; Zhao, X.; Li, L.; Zhou, C.; Dong, X.; Wang, D.; Yang, G. Composites Part C 2020, 2, 100043. doi: 10.1016/j.jcomc.2020.100043  doi: 10.1016/j.jcomc.2020.100043

    7. [7]

      Li, S.; Zhang, J.; Liu, M.; Wang, R.; Wu, L. Polym. Bull. 2020, 78 (11), 6493. doi: 10.1007/s00289-020-03439-2  doi: 10.1007/s00289-020-03439-2

    8. [8]

      Lee, S.; Hong, J.-Y.; Jang, J. Polym. Int. 2013, 62 (6), 901. doi: 10.1002/pi.4370  doi: 10.1002/pi.4370

    9. [9]

      Liu, H.; Hou, L.; Peng, W.; Zhang, Q.; Zhang, X. J. Mater. Sci. 2012, 47 (23), 8052. doi: 10.1007/s10853-012-6695-5  doi: 10.1007/s10853-012-6695-5

    10. [10]

      Han, P.; Fan, J.; Jing, M.; Zhu, L.; Shen, X.; Pan, T. J. Compos. Mater. 2014, 48 (6), 659. doi: 10.1177/0021998313476526  doi: 10.1177/0021998313476526

    11. [11]

      Fim, F. de C.; Basso, N. R. S.; Graebin, A. P.; Azambuja, D. S.; Galland, G. B. J. Appl. Polym. Sci. 2013, 128 (5), 2630. doi: 10.1002/app.38317  doi: 10.1002/app.38317

    12. [12]

      Wang, H.; Qiu, Z. Thermochim. Acta 2012, 527, 40. doi: 10.1016/j.tca.2011.10.004  doi: 10.1016/j.tca.2011.10.004

    13. [13]

      Morales-Zamudio, L.; Lozano, T.; Caballero-Briones, F.; Zamudio, M. A. M.; Angeles-San Martin, M. E.; de Lira-Gomez, P.; Martinez-Colunga, G.; Rodriguez-Gonzalez, F.; Neira, G.; Sanchez-Valdes, S. Mater. Chem. Phys. 2021, 261, 124180. doi: 10.1016/j.matchemphys.2020.124180  doi: 10.1016/j.matchemphys.2020.124180

    14. [14]

      Bansal, S. A.; Singh, S.; Srivastava, A.; Singh, A. P.; Kumar, S. Polymer 2021, 213, 123195. doi: 10.1016/j.polymer.2020.123195  doi: 10.1016/j.polymer.2020.123195

    15. [15]

      Kim, H.; Kobayashi, S.; AbdurRahim, M. A.; Zhang, M. J.; Khusainova, A.; Hillmyer, M. A.; Abdala, A. A.; Macosko, C. W. Polymer 2011, 52 (8), 1837. doi: 10.1016/j.polymer.2011.02.017  doi: 10.1016/j.polymer.2011.02.017

    16. [16]

      Song, P.; Cao, Z.; Cai, Y.; Zhao, L.; Fang, Z.; Fu, S. Polymer 2011, 52 (18), 4001. doi: 10.1016/j.polymer.2011.06.045  doi: 10.1016/j.polymer.2011.06.045

    17. [17]

      Yu, W.; Zhang, X.; Gao, X.; Liu, H.; Zhang, X. J. Mater. Sci. 2020, 55 (21), 8940. doi: 10.1007/s10853-020-04652-0  doi: 10.1007/s10853-020-04652-0

    18. [18]

      Li, J.; Chen, X.; Li, X.; Cao, H.; Yu, H.; Huang, Y. Polym. Int. 2006, 55 (4), 456. doi: 10.1002/pi.1998  doi: 10.1002/pi.1998

    19. [19]

      Bahrami, H.; Ramazani S. A., A.; Kheradmand, A.; Shafiee, M.; Baniasadi, H. Adv. Polym. Technol. 2015, 34 (4), 21508. doi: 10.1002/adv.21508  doi: 10.1002/adv.21508

    20. [20]

      Li, C.; Li, Z.; Cao, L.; Cheng, B. Ind. Eng. Chem. Res. 2016, 55 (41), 10860. doi: 10.1021/acs.iecr.6b01706  doi: 10.1021/acs.iecr.6b01706

    21. [21]

      El Achaby, M.; Qaiss, A. Mater. Des. 2013, 44, 81. doi: 10.1016/j.matdes.2012.07.065  doi: 10.1016/j.matdes.2012.07.065

    22. [22]

      Tai, Z.; Chen, Y.; An, Y.; Yan, X.; Xue, Q. Tribol. Lett. 2012, 46 (1), 55. doi: 10.1007/s11249-012-9919-6  doi: 10.1007/s11249-012-9919-6

    23. [23]

      Korayem, A. H.; Barati, M. R.; Chen, S. J.; Simon, G. P.; Zhao, X. L.; Duan, W. H. Powder Technol. 2015, 284, 541. doi: 10.1016/j.powtec.2015.07.023  doi: 10.1016/j.powtec.2015.07.023

    24. [24]

      Yuan, W.; Che, J.; Chan-Park, M. B. Chem. Mater. 2011, 23 (18), 4149. doi: 10.1021/cm200909x  doi: 10.1021/cm200909x

    25. [25]

      Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Langmuir 2008, 24 (19), 10560. doi: 10.1021/la801744a  doi: 10.1021/la801744a

    26. [26]

      Tang, L.-C.; Wan, Y.-J.; Yan, D.; Pei, Y.-B.; Zhao, L.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q. Carbon 2013, 60, 16. doi: 10.1016/j.carbon.2013.03.050  doi: 10.1016/j.carbon.2013.03.050

    27. [27]

      Jing, G.; Ye, Z.; Li, C.; Cui, J.; Wang, S.; Cheng, X. New Carbon Mater. 2019, 34 (6), 569. doi: 10.1016/S1872-5805(19)60032-6  doi: 10.1016/S1872-5805(19)60032-6

    28. [28]

      Jargalsaikhan, B.; Bor, A.; Lee, J.; Choi, H. Adv. Powder Technol. 2020, 31 (5), 1957. doi: 10.1016/j.apt.2020.02.031  doi: 10.1016/j.apt.2020.02.031

    29. [29]

      Krause, B.; Villmow, T.; Boldt, R.; Mende, M.; Petzold, G.; Pötschke, P. Compos. Sci. Technol. 2011, 71 (8), 1145. doi: 10.1016/j.compscitech.2011.04.004  doi: 10.1016/j.compscitech.2011.04.004

    30. [30]

      Zhou, L.; Zhang, H.; Zhang, H.; Zhang, Z. Particuology 2013, 11 (4), 441. doi: 10.1016/j.partic.2013.01.001  doi: 10.1016/j.partic.2013.01.001

    31. [31]

      Janowska, I.; Chizari, K.; Ersen, O.; Zafeiratos, S.; Soubane, D.; Costa, V. D.; Speisser, V.; Boeglin, C.; Houllé, M.; Bégin, D.; et al. Nano Res. 2010, 3 (2), 126. doi: 10.1007/s12274-010-1017-1  doi: 10.1007/s12274-010-1017-1

    32. [32]

      Zhang, S.-P.; Liu, B.; Li, C.-Y.; Chen, W.; Yao, Z.-J.; Yao, D.-T.; Yu, R.-B.; Song, H.-O. Chin. Chem. Lett. 2014, 25 (2), 355. doi: 10.1016/j.cclet.2013.11.018  doi: 10.1016/j.cclet.2013.11.018

    33. [33]

      Zhang, Q.; Li, Q.-L.; Xiang, S.; Wang, Y.; Wang, C.; Jiang, W.; Zhou, H.; Yang, Y.-W.; Tang, J. Polymer 2014, 55 (23), 6044. doi: 10.1016/j.polymer.2014.09.049  doi: 10.1016/j.polymer.2014.09.049

    34. [34]

      Peng, K.; Wang, K.; Hsu, K.; Liu, Y. J. Polym. Sci. Part A: Polym. Chem. 2014, 52 (11), 1588. doi: 10.1002/pola.27154  doi: 10.1002/pola.27154

    35. [35]

      Lee, D.; Choi, M.-C.; Ha, C.-S. J. Polym. Sci. A: Polym. Chem. 2012, 50 (8), 1611. doi: 10.1002/pola.25932  doi: 10.1002/pola.25932

    36. [36]

      Lee, C.-H.; Yun, J.-M.; Lee, S.; Jo, S. M.; Yoo, S. J.; Cho, E. A.; Khil, M.-S.; Joh, H.-I. Mater. Res. Bull. 2014, 59, 145. doi: 10.1016/j.materresbull.2014.07.015  doi: 10.1016/j.materresbull.2014.07.015

    37. [37]

      Xing, M.; Fang, W.; Yang, X.; Tian, B.; Zhang, J. Chem. Commun. 2014, 50 (50), 6637. doi: 10.1039/C4CC01341G  doi: 10.1039/C4CC01341G

    38. [38]

      Hadad, C.; Ke, X.; Carraro, M.; Sartorel, A.; Bittencourt, C.; Van Tendeloo, G.; Bonchio, M.; Quintana, M.; Prato, M. Chem. Commun. 2014, 50 (7), 885. doi: 10.1039/C3CC47056C  doi: 10.1039/C3CC47056C

    39. [39]

      Daukiya, L.; Mattioli, C.; Aubel, D.; Hajjar-Garreau, S.; Vonau, F.; Denys, E.; Reiter, G.; Fransson, J.; Perrin, E.; Bocquet, M.-L.; et al. ACS Nano 2017, 11 (1), 627. doi: 10.1021/acsnano.6b06913  doi: 10.1021/acsnano.6b06913

    40. [40]

      Giofrè, S.; Tiecco, M.; Celesti, C.; Patanè, S.; Triolo, C.; Gulino, A.; Spitaleri, L.; Scalese, S.; Scuderi, M.; Iannazzo, D. Nanomaterials 2020, 10 (12), 2549. doi: 10.3390/nano10122549  doi: 10.3390/nano10122549

    41. [41]

      Liras, M.; García, O.; Quijada-Garrido, I.; Ellis, G.; Salavagione, H. J. J. Mater. Chem. C 2014, 2 (9), 1723. doi: 10.1039/c3tc32136c  doi: 10.1039/c3tc32136c

    42. [42]

      Zhang, J.; Wang, W.; Peng, H.; Qian, J.; Ou, E.; Xu, W. J. Iran Chem. Soc. 2017, 14 (1), 89. doi: 10.1007/s13738-016-0960-5  doi: 10.1007/s13738-016-0960-5

    43. [43]

      Zhang, J.; Hu, K.; Ouyang, Q.; Gui, Q.; Chen, X. Front. Mater. Sci. 2020, 14 (2), 198. doi: 10.1007/s11706-020-0501-0  doi: 10.1007/s11706-020-0501-0

    44. [44]

      Seo, J.-M.; Baek, J.-B. Chem. Commun. 2014, 50 (93), 14651. doi: 10.1039/C4CC07173E  doi: 10.1039/C4CC07173E

    45. [45]

      Englert, J. M.; Dotzer, C.; Yang, G.; Schmid, M.; Papp, C.; Gottfried, J. M.; Steinrück, H.-P.; Spiecker, E.; Hauke, F.; Hirsch, A. Nat. Chem. 2011, 3 (4), 279. doi: 10.1038/nchem.1010  doi: 10.1038/nchem.1010

    46. [46]

      Dasler, D.; Schäfer, R. A.; Minameyer, M. B.; Hitzenberger, J. F.; Hauke, F.; Drewello, T.; Hirsch, A. J. Am. Chem. Soc. 2017, 139 (34), 11760. doi: 10.1021/jacs.7b04122  doi: 10.1021/jacs.7b04122

    47. [47]

      Englert, J. M.; Vecera, P.; Knirsch, K. C.; Schäfer, R. A.; Hauke, F.; Hirsch, A. ACS Nano 2013, 7 (6), 5472. doi: 10.1021/nn401481h  doi: 10.1021/nn401481h

    48. [48]

      Wepasnick, K. A.; Smith, B. A.; Schrote, K. E.; Wilson, H. K.; Diegelmann, S. R.; Fairbrother, D. H. Carbon 2011, 49 (1), 24. doi: 10.1016/j.carbon.2010.08.034  doi: 10.1016/j.carbon.2010.08.034

    49. [49]

      Yan, X.; Tay, B. K.; Yang, Y. J. Phys. Chem. B 2006, 110 (51), 25844. doi: 10.1021/jp065434g  doi: 10.1021/jp065434g

    50. [50]

      Bourlinos, A. B.; Georgakilas, V.; Tzitzios, V.; Boukos, N.; Herrera, R.; Giannelis, E. P. Small 2006, 2 (10), 1188. doi: 10.1002/smll.200600221  doi: 10.1002/smll.200600221

    51. [51]

      Chen, Y.; Haddon, R. C.; Fang, S.; Rao, A. M.; Eklund, P. C.; Lee, W. H.; Dickey, E. C.; Grulke, E. A.; Pendergrass, J. C.; Chavan, A.; et al. J. Mater. Res. 1998, 13 (9), 2423. doi: 10.1557/JMR.1998.0337  doi: 10.1557/JMR.1998.0337

    52. [52]

      Li, Y.; Duan, Q.; Li, Y.; Hu, Z.; Li, J.; Song, Y.; Huang, Y. RSC Adv. 2016, 6 (89), 86245. doi: 10.1039/C6RA16541A  doi: 10.1039/C6RA16541A

    53. [53]

      Paiva, M. C.; Zhou, B.; Fernando, K. A. S.; Lin, Y.; Kennedy, J. M.; Sun, Y.-P. Carbon 2004, 42 (14), 2849. doi: 10.1016/j.carbon.2004.06.031  doi: 10.1016/j.carbon.2004.06.031

    54. [54]

      Mata, D.; Amaral, M.; Fernandes, A. J. S.; Colaço, B.; Gama, A.; Paiva, M. C.; Gomes, P. S.; Silva, R. F.; Fernandes, M. H. Nanoscale 2015, 7 (20), 9238. doi: 10.1039/C5NR01829C  doi: 10.1039/C5NR01829C

    55. [55]

      Gobbo, P.; Biesinger, M. C.; Workentin, M. S. Chem. Commun. 2013, 49 (27), 2831. doi: 10.1039/c3cc00050h  doi: 10.1039/c3cc00050h

    56. [56]

      Qi, X.; Pu, K.-Y.; Li, H.; Zhou, X.; Wu, S.; Fan, Q.-L.; Liu, B.; Boey, F.; Huang, W.; Zhang, H. Angew. Chem. Int. Ed. 2010, 49 (49), 9426. doi: 10.1002/anie.201004497  doi: 10.1002/anie.201004497

    57. [57]

      Mao, L.; Li, Y.; Chi, C.; On Chan, H. S.; Wu, J. Nano Energy 2014, 6, 119. doi: 10.1016/j.nanoen.2014.03.018  doi: 10.1016/j.nanoen.2014.03.018

    58. [58]

      Sampath, S.; Basuray, A. N.; Hartlieb, K. J.; Aytun, T.; Stupp, S. I.; Stoddart, J. F. Adv. Mater. 2013, 25 (19), 2740. doi: 10.1002/adma.201205157  doi: 10.1002/adma.201205157

    59. [59]

      Parviz, D.; Das, S.; Ahmed, H. S. T.; Irin, F.; Bhattacharia, S.; Green, M. J. ACS Nano 2012, 6 (10), 8857. doi: 10.1021/nn302784m  doi: 10.1021/nn302784m

    60. [60]

      Yoon, W.; Lee, Y.; Jang, H.; Jang, M.; Kim, J. S.; Lee, H. S.; Im, S.; Boo, D. W.; Park, J.; Ju, S.-Y. Carbon 2015, 81, 629. doi: 10.1016/j.carbon.2014.09.097  doi: 10.1016/j.carbon.2014.09.097

    61. [61]

      Geng, J.; Jung, H.-T. J. Phys. Chem. C 2010, 114 (18), 8227. doi: 10.1021/jp1008779  doi: 10.1021/jp1008779

    62. [62]

      Das, S.; Irin, F.; Tanvir Ahmed, H. S.; Cortinas, A. B.; Wajid, A. S.; Parviz, D.; Jankowski, A. F.; Kato, M.; Green, M. J. Polymer 2012, 53 (12), 2485. doi: 10.1016/j.polymer.2012.03.012  doi: 10.1016/j.polymer.2012.03.012

    63. [63]

      Ghosh, A.; Rao, K. V.; Voggu, R.; George, S. J. Chem. Phys. Lett. 2010, 488 (4–6), 19. doi: 10.1016/j.cplett.2010.02.021  doi: 10.1016/j.cplett.2010.02.021

    64. [64]

      Wojcik, A.; Kamat, P. V. ACS Nano 2010, 4 (11), 6697. doi: 10.1021/nn102185q  doi: 10.1021/nn102185q

    65. [65]

      Chang, H.; Wang, G.; Yang, A.; Tao, X.; Liu, X.; Shen, Y.; Zheng, Z. Adv. Funct. Mater. 2010, 20 (17), 2893. doi: 10.1002/adfm.201000900  doi: 10.1002/adfm.201000900

    66. [66]

      Green, A. A.; Hersam, M. C. Nano Lett. 2009, 9 (12), 4031. doi: 10.1021/nl902200b  doi: 10.1021/nl902200b

    67. [67]

      Ayán-Varela, M.; Paredes, J. I.; Guardia, L.; Villar-Rodil, S.; Munuera, J. M.; Díaz-González, M.; Fernández-Sánchez, C.; Martínez-Alonso, A.; Tascón, J. M. D. ACS Appl. Mater. Interfaces 2015, 7 (19), 10293. doi: 10.1021/acsami.5b00910  doi: 10.1021/acsami.5b00910

    68. [68]

      Park, S.; An, J.; Piner, R. D.; Jung, I.; Yang, D.; Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S. Chem. Mater. 2008, 20 (21), 6592. doi: 10.1021/cm801932u  doi: 10.1021/cm801932u

    69. [69]

      Kou, L.; Gao, C. Nanoscale 2011, 3 (2), 519. doi: 10.1039/C0NR00609B  doi: 10.1039/C0NR00609B

    70. [70]

      Alam, F.; Choosri, M.; Gupta, T. K.; Varadarajan, K. M.; Choi, D.; Kumar, S. Mater. Sci. Eng. B 2019, 241, 82. doi: 10.1016/j.mseb.2019.02.011  doi: 10.1016/j.mseb.2019.02.011

    71. [71]

      Ruan, S.; Gao, P.; Yu, T. X. Polymer 2006, 47 (5), 1604. doi: 10.1016/j.polymer.2006.01.020  doi: 10.1016/j.polymer.2006.01.020

    72. [72]

      Oh, H.; Kim, Y.; Kim, J. Org. Electron. 2020, 85, e105877. doi: 10.1016/j.orgel.2020.105877  doi: 10.1016/j.orgel.2020.105877

    73. [73]

      Das, S.; Wajid, A. S.; Shelburne, J. L.; Liao, Y.-C.; Green, M. J. ACS Appl. Mater. Interfaces 2011, 3 (6), 1844. doi: 10.1021/am1011436  doi: 10.1021/am1011436

    74. [74]

      Kumar, S.; Dang, T. D.; Arnold, F. E.; Bhattacharyya, A. R.; Min, B. G.; Zhang, X.; Vaia, R. A.; Park, C.; Adams, W. W.; Hauge, R. H.; et al. Macromolecules 2002, 35 (24), 9039. doi: 10.1021/ma0205055  doi: 10.1021/ma0205055

    75. [75]

      Kim, H.-S.; Myung, S. J.; Jung, R.; Jin, H.-J. Mol. Cryst. Liq. Cryst. 2008, 492 (1), 20. doi: 10.1080/15421400802333279  doi: 10.1080/15421400802333279

    76. [76]

      Zhou, C.; Wang, S.; Zhang, Y.; Zhuang, Q.; Han, Z. Polymer 2008, 49 (10), 2520. doi: 10.1016/j.polymer.2008.04.003  doi: 10.1016/j.polymer.2008.04.003

    77. [77]

      Li, N.; Hu, Z.; Huang, Y. Polym. Compos. 2018, 39 (8), 2969. doi: 10.1002/pc.24299  doi: 10.1002/pc.24299

    78. [78]

      Wang, C.; Lan, Y.; Yu, W.; Li, X.; Qian, Y.; Liu, H. Appl. Surf. Sci. 2016, 362, 11. doi: 10.1016/j.apsusc.2015.11.201  doi: 10.1016/j.apsusc.2015.11.201

    79. [79]

      Hu, N.; Wei, L.; Wang, Y.; Gao, R.; Chai, J.; Yang, Z.; Kong, E. S.-W.; Zhang, Y. J. Nanosci. Nanotech. 2012, 12 (1), 173. doi: 10.1166/jnn.2012.5144  doi: 10.1166/jnn.2012.5144

    80. [80]

      Liu, Z.; Zhou, H.; Huang, Z.; Wang, W.; Zeng, F.; Kuang, Y. J. Mater. Chem. A 2013, 1 (10), 3454. doi: 10.1039/c3ta01162c  doi: 10.1039/c3ta01162c

    81. [81]

      Li, Z.; Slater, T. J. A.; Ma, X.; Yu, Y.; Young, R. J.; Burnett, T. L. Carbon 2019, 142, 99. doi: 10.1016/j.carbon.2018.10.043  doi: 10.1016/j.carbon.2018.10.043

    82. [82]

      Chatterjee, S.; Nüesch, F. A.; Chu, B. T. T. Chem. Phys. Lett. 2013, 557, 92. doi: 10.1016/j.cplett.2012.11.091  doi: 10.1016/j.cplett.2012.11.091

    83. [83]

      Salavagione, H. J.; Martínez, G. Macromolecules 2011, 44 (8), 2685. doi: 10.1021/ma102932c  doi: 10.1021/ma102932c

    84. [84]

      Cao, C.; Peng, J.; Liang, X.; Saiz, E.; Wolf, S. E.; Wagner, H. D.; Jiang, L.; Cheng, Q. Composites Part A 2021, 140, 106161. doi: 10.1016/j.compositesa.2020.106161  doi: 10.1016/j.compositesa.2020.106161

    85. [85]

      Xiang, C.; Lu, W.; Zhu, Y.; Sun, Z.; Yan, Z.; Hwang, C.-C.; Tour, J. M. ACS Appl. Mater. Interfaces 2012, 4 (1), 131. doi: 10.1021/am201153b  doi: 10.1021/am201153b

    86. [86]

      Hao, X. Y.; Hua, X. Y.; Lu, J.; Gai, G. S.; Kong, X. M. Adv. Mater. Res. 2012, 454, 67. doi: 10.4028/www.scientific.net/AMR.454.67  doi: 10.4028/www.scientific.net/AMR.454.67

    87. [87]

      Gong, X.; Liu, Y.; Wang, Y.; Xie, Z.; Dong, Q.; Dong, M.; Liu, H.; Shao, Q.; Lu, N.; Murugadoss, V.; et al. Polymer 2019, 168, 131. doi: 10.1016/j.polymer.2019.02.021  doi: 10.1016/j.polymer.2019.02.021

    88. [88]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321 (5887), 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    89. [89]

      Ruiz-Vargas, C. S.; Zhuang, H. L.; Huang, P. Y.; van der Zande, A. M.; Garg, S.; McEuen, P. L.; Muller, D. A.; Hennig, R. G.; Park, J. Nano Lett. 2011, 11 (6), 2259. doi: 10.1021/nl200429f  doi: 10.1021/nl200429f

    90. [90]

      Nicholl, R. J. T.; Conley, H. J.; Lavrik, N. V.; Vlassiouk, I.; Puzyrev, Y. S.; Sreenivas, V. P.; Pantelides, S. T.; Bolotin, K. I. Nat. Commun. 2015, 6 (1), 8789. doi: 10.1038/ncomms9789  doi: 10.1038/ncomms9789

    91. [91]

      Zandiatashbar, A.; Lee, G.-H.; An, S. J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu, C. R.; Hone, J.; Koratkar, N. Nat. Commun. 2014, 5 (1), 3186. doi: 10.1038/ncomms4186  doi: 10.1038/ncomms4186

    92. [92]

      Zhang, Y. Y.; Gu, Y. T. Comput. Mater. Sci. 2013, 71, 197. doi: 10.1016/j.commatsci.2013.01.032  doi: 10.1016/j.commatsci.2013.01.032

    93. [93]

      Salvetat, J.-P.; Briggs, G.; Bonard, J.-M.; Bacsa, R.; Kulik, A.; Stöckli, T.; Burnham, N.; Forró, L. Phys. Rev. Lett. 1999, 82 (5), 944. doi: 10.1103/PhysRevLett.82.944  doi: 10.1103/PhysRevLett.82.944

    94. [94]

      Robertson, D. H.; Brenner, D. W.; Mintmire, J. W. Phys. Rev. B 1992, 45 (21), 12592. doi: 10.1103/PhysRevB.45.12592  doi: 10.1103/PhysRevB.45.12592

    95. [95]

      Lu, J. P. Phys. Rev. Lett. 1997, 79 (7), 1297. doi: 10.1103/PhysRevLett.79.1297  doi: 10.1103/PhysRevLett.79.1297

    96. [96]

      Cornwell, C. F.; Wille, L. T. Solid State Commun. 1997, 101 (8), 555. Doi: 10.1016/S0038-1098(96)00742-9  doi: 10.1016/S0038-1098(96)00742-9

    97. [97]

      Gu, J.; Li, N.; Tian, L.; Lv, Z.; Zhang, Q. RSC Adv. 2015, 5 (46), 36334. doi: 10.1039/C5RA03284A  doi: 10.1039/C5RA03284A

    98. [98]

      Wu, X.; Li, H.; Cheng, K.; Qiu, H.; Yang, J. Nanoscale 2019, 11 (17), 8219. doi: 10.1039/C9NR02117E  doi: 10.1039/C9NR02117E

    99. [99]

      Ogata, S.; Shibutani, Y. Phys. Rev. B 2003, 68 (16), 165409. doi: 10.1103/PhysRevB.68.165409  doi: 10.1103/PhysRevB.68.165409

    100. [100]

      Dumitrică, T.; Belytschko, T.; Yakobson, B. I. J. Chem. Phys. 2003, 118 (21), 9485. doi: 10.1063/1.1577540  doi: 10.1063/1.1577540

    101. [101]

      Samsonidze, G. G.; Samsonidze, G. G.; Yakobson, B. I. Phys. Rev. Lett. 2002, 88 (6), 065501. doi: 10.1103/PhysRevLett.88.065501  doi: 10.1103/PhysRevLett.88.065501

    102. [102]

      Treacy, M. M. J.; Ebbesen, T. W. Microsc. Microanal. 1997, 3 (S2), 393. doi: 10.1017/S1431927600008850  doi: 10.1017/S1431927600008850

    103. [103]

      Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Science 1997, 277 (5334), 1971. doi: 10.1126/science.277.5334.1971  doi: 10.1126/science.277.5334.1971

    104. [104]

      Yu, M.-F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Phys. Rev. Lett. 2000, 84 (24), 5552. Doi: 10.1103/PhysRevLett.84.5552  doi: 10.1103/PhysRevLett.84.5552

    105. [105]

      Krishnan, A.; Dujardin, E.; Ebbesen, T. W.; Yianilos, P. N.; Treacy, M. M. J. Phys. Rev. B 1998, 58 (20), 14013. doi: 10.1103/PhysRevB.58.14013  doi: 10.1103/PhysRevB.58.14013

    106. [106]

      Wagner, H. D.; Lourie, O.; Feldman, Y.; Tenne, R. Appl. Phys. Lett. 1998, 72 (2), 188. doi: 10.1063/1.120680  doi: 10.1063/1.120680

    107. [107]

      Marom, G.; Daniel Wagner, H. J. Mater. Sci. 2017, 52 (14), 8357. doi: 10.1007/s10853-017-1113-7  doi: 10.1007/s10853-017-1113-7

    108. [108]

      Young, R. J.; Liu, M.; Kinloch, I. A.; Li, S.; Zhao, X.; Vallés, C.; Papageorgiou, D. G. Compos. Sci. Technol. 2018, 154, 110. doi: 10.1016/j.compscitech.2017.11.007  doi: 10.1016/j.compscitech.2017.11.007

    109. [109]

      Gong, L.; Kinloch, I. A.; Young, R. J.; Riaz, I.; Jalil, R.; Novoselov, K. S. Adv. Mater. 2010, 22 (24), 2694. doi: 10.1002/adma.200904264  doi: 10.1002/adma.200904264

    110. [110]

      Chao, H.; Riggleman, R. A. Polymer 2013, 54 (19), 5222. doi: 10.1016/j.polymer.2013.07.018  doi: 10.1016/j.polymer.2013.07.018

    111. [111]

      Lu, C.-T.; Weerasinghe, A.; Maroudas, D.; Ramasubramaniam, A. Sci. Rep. 2016, 6 (1), 31735. doi: 10.1038/srep31735  doi: 10.1038/srep31735

    112. [112]

      Slipenyuk, A.; Kuprin, V.; Milman, Y.; Spowart, J. E.; Miracle, D. B. Mater. Sci. Eng. A 2004, 381 (1–2), 165. doi: 10.1016/j.msea.2004.04.040  doi: 10.1016/j.msea.2004.04.040

    113. [113]

      Bai, J. B.; Allaoui, A. Composites Part A 2003, 34 (8), 689. doi: 10.1016/S1359-835X(03)00140-4  doi: 10.1016/S1359-835X(03)00140-4

    114. [114]

      Wu, S.; Ladani, R. B.; Zhang, J.; Bafekrpour, E.; Ghorbani, K.; Mouritz, A. P.; Kinloch, A. J.; Wang, C. H. Carbon 2015, 94, 607. doi: 10.1016/j.carbon.2015.07.026  doi: 10.1016/j.carbon.2015.07.026

    115. [115]

      Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R.; et al. Nat. Nanotech. 2008, 3 (6), 327. doi: 10.1038/nnano.2008.96  doi: 10.1038/nnano.2008.96

    116. [116]

      Liu, Y.; Wu, H.; Chen, G. Polym. Compos. 2016, 37 (4), 1190. doi: 10.1002/pc.23283  doi: 10.1002/pc.23283

    117. [117]

      Fisher, F. Compos. Sci. Technol. 2003, 63 (11), 1689. doi: 10.1016/S0266-3538(03)00069-1  doi: 10.1016/S0266-3538(03)00069-1

    118. [118]

      Bradshaw, R. Compos. Sci. Technol. 2003, 63 (11), 1705. doi: 10.1016/S0266-3538(03)00070-8  doi: 10.1016/S0266-3538(03)00070-8

    119. [119]

      Xu, J.-Z.; Chen, T.; Yang, C.-L.; Li, Z.-M.; Mao, Y.-M.; Zeng, B.-Q.; Hsiao, B. S. Macromolecules 2010, 43 (11), 5000. doi: 10.1021/ma100304n  doi: 10.1021/ma100304n

    120. [120]

      Lee, G.-W.; Jagannathan, S.; Chae, H. G.; Minus, M. L.; Kumar, S. Polymer 2008, 49 (7), 1831. doi: 10.1016/j.polymer.2008.02.029  doi: 10.1016/j.polymer.2008.02.029

    121. [121]

      Sandler, J. K. W.; Pegel, S.; Cadek, M.; Gojny, F.; van Es, M.; Lohmar, J.; Blau, W. J.; Schulte, K.; Windle, A. H.; Shaffer, M. S. P. Polymer 2004, 45 (6), 2001. doi: 10.1016/j.polymer.2004.01.023  doi: 10.1016/j.polymer.2004.01.023

    122. [122]

      Probst, O.; Moore, E. M.; Resasco, D. E.; Grady, B. P. Polymer 2004, 45 (13), 4437. doi: 10.1016/j.polymer.2004.04.031  doi: 10.1016/j.polymer.2004.04.031

    123. [123]

      Anand, K. A.; Jose, T. S.; Agarwal, U. S.; Sreekumar, T. V.; Banwari, B.; Joseph, R. Inter. J. Polym. Mater. 2010, 59 (6), 438. doi: 10.1080/00914030903538587  doi: 10.1080/00914030903538587

    124. [124]

      Haggenmueller, R.; Fischer, J. E.; Winey, K. I. Macromolecules 2006, 39 (8), 2964. doi: 10.1021/ma0527698  doi: 10.1021/ma0527698

    125. [125]

      Yeh, J.-T.; Lai, Y.-C.; Liu, H.; Shu, Y.-C.; Huang, C.-Y.; Huang, K.-S.; Chen, K.-N. Polym. Int. 2011, 60 (1), 59. doi: 10.1002/pi.2911  doi: 10.1002/pi.2911

    126. [126]

      Liu, Y.; Kumar, S. ACS Appl. Mater. Interfaces 2014, 6 (9), 6069. doi: 10.1021/am405136s  doi: 10.1021/am405136s

    127. [127]

      Barber, A. H.; Cohen, S. R.; Wagner, H. D. Appl. Phys. Lett. 2003, 82 (23), 4140. doi: 10.1063/1.1579568  doi: 10.1063/1.1579568

    128. [128]

      Hu, Z. X.; Meng, S.; Lu, Q. X.; Xiang, H. X.; Chen, Z. Y.; Wei, P. L.; Zhu, M. F. Mater. Sci. Forum 2017, 898, 2246. doi: 10.4028/www.scientific.net/MSF.898.2246  doi: 10.4028/www.scientific.net/MSF.898.2246

    129. [129]

      Qian, P.; Zhang, Y.; Mao, H.; Wang, H.; Shi, H. SN Appl. Sci. 2019, 1 (5), 443. doi: 10.1007/s42452-019-0466-8  doi: 10.1007/s42452-019-0466-8

    130. [130]

      Colonna, S.; Pérez-Camargo, R. A.; Chen, H.; Liu, G.; Wang, D.; Müller, A. J.; Saracco, G.; Fina, A. Macromolecules 2017, 50 (23), 9380. doi: 10.1021/acs.macromol.7b01865  doi: 10.1021/acs.macromol.7b01865

    131. [131]

      Roberts, A. D.; Kelly, P.; Bain, J.; Morrison, J. J.; Wimpenny, I.; Barrow, M.; Woodward, R. T.; Gresil, M.; Blanford, C.; Hay, S.; et al. Chem. Commun. 2019, 55 (78), 11703. doi: 10.1039/C9CC04548A  doi: 10.1039/C9CC04548A

    132. [132]

      Mao, Z.; Li, T.; Zhang, K.; Li, D.; Zhou, C.; Ren, M.; Gu, Y.; Wang, B. Adv. Theory Simul. 2020, 3 (10), 2000135. doi: 10.1002/adts.202000135  doi: 10.1002/adts.202000135

    133. [133]

      Zhu, J.; Yuan, L.; Guan, Q.; Liang, G.; Gu, A. Chem. Eng. J. 2017, 310, 134. doi: 10.1016/j.cej.2016.10.099  doi: 10.1016/j.cej.2016.10.099

    134. [134]

      Hu, Z.; Shao, Q.; Moloney, M. G.; Xu, X.; Zhang, D.; Li, J.; Zhang, C.; Huang, Y. Macromolecules 2017, 50 (4), 1422. doi: 10.1021/acs.macromol.6b02694  doi: 10.1021/acs.macromol.6b02694

    135. [135]

      Jeong, Y. G.; Baik, D. H.; Jang, J. W.; Min, B. G.; Yoon, K. H. Macromol. Res. 2014, 22 (3), 279. doi: 10.1007/s13233-014-2043-8  doi: 10.1007/s13233-014-2043-8

    136. [136]

      Siochi, E. J.; Working, D. C.; Park, C.; Lillehei, P. T.; Rouse, J. H.; Topping, C. C.; Bhattacharyya, A. R.; Kumar, S. Composites Part B 2004, 35 (5), 439. doi: 10.1016/j.compositesb.2003.09.007  doi: 10.1016/j.compositesb.2003.09.007

    137. [137]

      Dong, J.; Yin, C.; Zhao, X.; Li, Y.; Zhang, Q. Polymer 2013, 54 (23), 6415. doi: 10.1016/j.polymer.2013.09.035  doi: 10.1016/j.polymer.2013.09.035

    138. [138]

      Taloub, N.; Liu, L.; Rahoui, N.; Hegazy, M.; Huang, Y. Polym. Test. 2019, 75, 344. doi: 10.1016/j.polymertesting.2019.02.016  doi: 10.1016/j.polymertesting.2019.02.016

    139. [139]

      Hu, N.; Masuda, Z.; Yan, C.; Yamamoto, G.; Fukunaga, H.; Hashida, T. Nanotechnology 2008, 19 (21), 215701. doi: 10.1088/0957-4484/19/21/215701  doi: 10.1088/0957-4484/19/21/215701

    140. [140]

      Mutlay, İ.; Tudoran, L. B. Fullerenes, Nanotubes, Carbon Nanostruct. 2014, 22 (5), 413. doi: 10.1080/1536383X.2012.684186  doi: 10.1080/1536383X.2012.684186

    141. [141]

      Last, B. J.; Thouless, D. J. Phys. Rev. Lett. 1971, 27 (25), 1719. doi: 10.1103/PhysRevLett.27.1719  doi: 10.1103/PhysRevLett.27.1719

    142. [142]

      Tian, G.; Zhang, H.; liu, J.; Qi, S.; Wu, D. Polym. Sci. Ser. A 2014, 56 (4), 505. doi: 10.1134/S0965545X14040154  doi: 10.1134/S0965545X14040154

    143. [143]

      Liu, M.; Du, Y.; Miao, Y.-E.; Ding, Q.; He, S.; Tjiu, W. W.; Pan, J.; Liu, T. Nanoscale 2015, 7 (3), 1037. doi: 10.1039/C4NR06117A  doi: 10.1039/C4NR06117A

    144. [144]

      Wang, K.; Liu, M.; Song, C.; Shen, L.; Chen, P.; Xu, S. Mater. Des. 2018, 148, 167. doi: 10.1016/j.matdes.2018.03.069  doi: 10.1016/j.matdes.2018.03.069

    145. [145]

      Du, F.; Fischer, J. E.; Winey, K. I. J. Polym. Sci. B-Polym. Phys. 2003, 41 (24), 3333. Doi: 10.1002/polb.10701  doi: 10.1002/polb.10701

    146. [146]

      Pötschke, P.; Brünig, H.; Janke, A.; Fischer, D.; Jehnichen, D. Polymer 2005, 46 (23), 10355. doi: 10.1016/j.polymer.2005.07.106  doi: 10.1016/j.polymer.2005.07.106

    147. [147]

      Joseph, J.; Koroth, A. K.; John, D. A.; Sidpara, A. M.; Paul, J. J. Appl. Polym. Sci. 2019, 136 (29), 47792. doi: 10.1002/app.47792  doi: 10.1002/app.47792

    148. [148]

      Yuan, B.; Bao, C.; Qian, X.; Jiang, S.; Wen, P.; Xing, W.; Song, L.; Liew, K. M.; Hu, Y. Ind. Eng. Chem. Res. 2014, 53 (3), 1143. doi: 10.1021/ie403438k  doi: 10.1021/ie403438k

    149. [149]

      Zhang, T.; Ma, T.; Zhang, J. C.; Gao, P. G.; Zhang, H.; Shen, F. C. Adv. Mater. Res. 2013, 627, 761. doi: 10.4028/www.scientific.net/AMR.627.761  doi: 10.4028/www.scientific.net/AMR.627.761

    150. [150]

      Hu, Z.; Hou, K.; Gao, J.; Zhu, G.; Zhou, Z.; Xiang, H.; Qiu, T.; Zhu, M. Composites Part A 2020, 129, 105716. doi: 10.1016/j.compositesa.2019.105716.  doi: 10.1016/j.compositesa.2019.105716

    151. [151]

      Ruan, F.; Bao, L. Fibers Polym. 2014, 15 (4), 723. doi: 10.1007/s12221-014-0723-9.  doi: 10.1007/s12221-014-0723-9

    152. [152]

      Cai, H.; Yan, F.; Xue, Q. Mater. Sci. Eng. A 2004, 364 (1–2), 94. doi: 10.1016/S0921-5093(03)00669-5  doi: 10.1016/S0921-5093(03)00669-5

    153. [153]

      Duan, G.; Wang, Y.; Yu, J.; Zhu, J.; Hu, Z. Appl. Nanosci. 2019, 9 (8), 1743. doi: 10.1007/s13204-019-00955-0  doi: 10.1007/s13204-019-00955-0

    154. [154]

      Jiang, Q.; Wang, X.; Zhu, Y.; Hui, D.; Qiu, Y. Composites Part B 2014, 56, 408. doi: 10.1016/j.compositesb.2013.08.064  doi: 10.1016/j.compositesb.2013.08.064

    155. [155]

      Chen, W. X.; Li, F.; Han, G.; Xia, J. B.; Wang, L. Y.; Tu, J. P.; Xu, Z. D. Tribol. Lett. 2003, 15 (3), 27. doi: 10.1023/A:1024869305259  doi: 10.1023/A:1024869305259

    156. [156]

      Wang, X.; Wu, J.; Zhou, L.; Wei, X.; Wang, W. Proc. Inst. Mech. Eng. Part J 2018, 232 (11), 1428. doi: 10.1177/1350650117754000  doi: 10.1177/1350650117754000

    157. [157]

      Patel, A.; Loufakis, D.; Flouda, P.; George, I.; Shelton, C.; Harris, J.; Oka, S.; Lutkenhaus, J. L. ACS Appl. Energy Mater. 2020, 3 (12), 11763. doi: 10.1021/acsaem.0c01926  doi: 10.1021/acsaem.0c01926

    158. [158]

      Flouda, P.; Feng, X.; Boyd, J. G.; Thomas, E. L.; Lagoudas, D. C.; Lutkenhaus, J. L. Batteries Supercaps 2019, 2 (5), 464. doi: 10.1002/batt.201800137  doi: 10.1002/batt.201800137

    159. [159]

      Reddy, S. K.; Kumar, S.; Varadarajan, K. M.; Marpu, P. R.; Gupta, T. K.; Choosri, M. Mater. Sci. Eng. C 2018, 92, 957. doi: 10.1016/j.msec.2018.07.029  doi: 10.1016/j.msec.2018.07.029

    160. [160]

      Jiang, Y.; He, Q.; Cai, J.; Shen, D.; Hu, X.; Zhang, D. ACS Appl. Mater. Interfaces 2020, 12 (52), 58317. doi: 10.1021/acsami.0c19484  doi: 10.1021/acsami.0c19484

    161. [161]

      Yu, Z.; Dai, T.; Yuan, S.; Zou, H.; Liu, P. ACS Appl. Mater. Interfaces 2020, 12 (27), 30990. doi: 10.1021/acsami.0c07122  doi: 10.1021/acsami.0c07122

    162. [162]

      Li, Y.; Pei, X.; Shen, B.; Zhai, W.; Zhang, L.; Zheng, W. RSC Adv. 2015, 5 (31), 24342. doi: 10.1039/C4RA16421K  doi: 10.1039/C4RA16421K

    163. [163]

      Tang, J.; Ye, F.; Xie, Y.; Liu, P. High Perform. Polym. 2020, 32 (10), 1140. doi: 10.1177/0954008320933322  doi: 10.1177/0954008320933322

    164. [164]

      Tenison, N.; Baena, J. C.; Yu, J.; Peng, Z. X. Key Eng. Mater. 2017, 739, 81. doi: 10.4028/www.scientific.net/KEM.739.81  doi: 10.4028/www.scientific.net/KEM.739.81

    165. [165]

      Gupta, T. K.; Choosri, M.; Varadarajan, K. M.; Kumar, S. J. Mater. Sci. 2018, 53 (11), 7939. doi: 10.1007/s10853-018-2072-3  doi: 10.1007/s10853-018-2072-3

  • 加载中
    1. [1]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    2. [2]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    3. [3]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    4. [4]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    6. [6]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    7. [7]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    10. [10]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    11. [11]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    12. [12]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    15. [15]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(17)
  • Abstract views(823)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return