Citation: Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance[J]. Acta Physico-Chimica Sinica, ;2023, 39(2): 211103. doi: 10.3866/PKU.WHXB202111037 shu

Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance

  • Corresponding author: Yixiao Zhang, yxzhang2019@sjtu.edu.cn Liwei Chen, lwchen2018@sjtu.edu.cn
  • Received Date: 29 November 2021
    Revised Date: 28 December 2021
    Accepted Date: 30 December 2021
    Available Online: 15 January 2022

    Fund Project: the National Natural Science Foundation of China 21991153the National Natural Science Foundation of China 21991150

  • Fuel cells are essential energy conversion devices for future renewable energy structures. Mainstream proton exchange membrane fuel cells (PEMFCs) generally exhibit satisfactory performance despite requiring noble metal catalysts to be stable in acidic environments. Alkaline polymer electrolyte fuel cells (APEFCs), in contrast, offer the benefit of employing non-noble metal catalysts in fuel cells, but their overall performance and especially their long-term stability require further improvement. A critical component within APEFCs is the membrane electrode assembly (MEA), which comprises a hydroxide ion conductive polymer membrane, a cathode, and an anode (including a catalyst layer and a gas diffusion layer). MEA is where electrochemical reactions occur; thus, it plays a crucial role in determining fuel cell performance. Herein, the fabrication of a cone-shaped array on the surface of an alkaline polymer electrolyte membrane for improving the overall device performance is presented. The cone array was prepared using a sacrificial anodic aluminum oxide (AAO) template, and the array side of the polymer electrolyte was used as the cathode to construct the MEA, denoted as A-MEA. The control sample with no cone arrays on the polymer electrolyte surface is denoted as P-MEA. The Pt loadings on both the anode and cathode sides were approximately 0.2 mg∙cm−2. APEFCs with A-MEA and P-MEA were separately assembled and tested in an 850e Fuel Cell Test System at a cell temperature of 80 ℃. Fully humidified hydrogen and oxygen were both supplied at a flow rate of 1000 mL·min−1. The back pressure for both the anode and the cathode was 0.2 MPa. As a result, the APEFC with A-MEA exhibited a higher peak power density than that of the APEFC with P-MEA (1.48 vs. 1.04 W∙cm−2). The enhanced electrochemical performance of the APEFC with A-MEA was ascribed to the array-structured cathode, which improved the hydrophilicity of the polymer electrolyte membrane and increased the utilization efficiency of the catalyst. The hydrophilicity of the polymer electrolyte membrane with cone arrays was confirmed using contact angle measurements. The contact angles of the membranes with and without cone arrays were ~0° and 70.8°, respectively. The hydrophilic membrane promotes the electrode reaction at the cathode side. The electrochemically active surface area (ECSA) was also measured using cyclic voltammetry (CV) between 0.08 and 1 V (vs. reversible hydrogen electrode, RHE) at a scan rate of 20 mV∙s-1, using fully humidified H2 and N2. A flow rate of 1000 mL∙min−1 and back pressure of 0 MPa were employed. Results revealed that the ECSA of the cathode without the array was smaller than that of the array-structured cathode (21.17 vs. 24.89 m2∙g−1), indicating that the array structure improved the catalyst utilization efficiency compared to that of the control sample. This study provides an effective strategy for the structural design and optimization of the MEAs in APEFCs.
  • 加载中
    1. [1]

      Stern, P. C.; Sovacool, B. K.; Dietz, T. Nat. Clim. Change 2016, 6 (6), 547. doi: 10.1038/NCLIMATE3027  doi: 10.1038/NCLIMATE3027

    2. [2]

      Schrag, D. P. Elements 2007, 3 (3), 171. doi: 10.2113/gselements.3.3.171  doi: 10.2113/gselements.3.3.171

    3. [3]

      Schultz, M. G.; Diehl, T.; Brasseur, G. P.; Zittel, W. Science 2003, 302 (5645), 624. doi: 10.1126/science.1089527  doi: 10.1126/science.1089527

    4. [4]

      Liang, J.; Liu, X.; Li, Q. Acta Phys. -Chim. Sin. 2021, 37 (9), 2010072.  doi: 10.3866/PKU.WHXB202010072

    5. [5]

      Wang, J.; Ding, W.; Wei, Z. Acta Phys. -Chim. Sin. 2021, 37 (9), 2009094.  doi: 10.3866/PKU.WHXB202009094

    6. [6]

      Ralph, T. R.; Hogarth, M. P. Platin Met. Rev. 2002, 46 (3), 117. doi: 10.3390/books978-3-03842-659-2  doi: 10.3390/books978-3-03842-659-2

    7. [7]

      Hickner, M. A.; Herring, A. M.; Coughlin, E. B. J. Polym. Sci. Part Polym. Phys. 2013, 51 (24), 1727. doi: 10.1002/polb.23395  doi: 10.1002/polb.23395

    8. [8]

      Mehta, V.; Cooper, J. S. J. Power Sources 2003, 114 (1), 32. doi: 10.1016/S0378-7753(02)00542-6  doi: 10.1016/S0378-7753(02)00542-6

    9. [9]

      Han, A.; Yan, X.; Chen, J.; Cheng, X.; Zhang, J. Acta Phys. -Chim. Sin. 2022, 38 (3), 1912052.  doi: 10.3866/PKU.WHXB201912052

    10. [10]

      Ding, L.; Tang, T.; Hu, J. Acta Phys. -Chim. Sin. 2021, 37 (9), 2010048.  doi: 10.3866/PKU.WHXB202010048

    11. [11]

      Wang, Y.; Li, L.; Hu, L.; Zhuang, L.; Lu, J.; Xu, B. Electrochem. Commun. 2003, 5 (8), 662. doi: 10.1016/S1388-2481(03)00148-6  doi: 10.1016/S1388-2481(03)00148-6

    12. [12]

      Xue, Y.; Wang, X.; Zhang, X.; Fang, J.; Xu, Z.; Zhang, Y.; Liu, X.; Liu, M.; Zhu, W.; Zhuang, Z. Acta Phys. -Chim. Sin. 2021, 37 (9), 2009103.  doi: 10.3866/PKU.WHXB202009103

    13. [13]

      Huang, G.; Mandal, M.; Peng, X.; Yang-Neyerlin, A. C.; Pivovar, B. S.; Mustain, W. E.; Kohl, P. A. J. Electrochem. Soc. 2019, 166 (10), F637. doi: 10.1149/2.1301910jes  doi: 10.1149/2.1301910jes

    14. [14]

      Hou, H. Acta Phys. -Chim. Sin. 2014, 30 (8), 1393.  doi: 10.3866/PKU.WHXB201406171

    15. [15]

      Li, N.; Leng, Y.; Hickner, M. A.; Wang, C. J. Am. Chem. Soc. 2013, 135, 10124. doi: 10.1021/ja403671u  doi: 10.1021/ja403671u

    16. [16]

      Wang, L.; Brink, J. J.; Varcoe, J. R. Chem. Commun. 2017, 53, 11771. doi: 10.1039/c7cc06392j  doi: 10.1039/c7cc06392j

    17. [17]

      Chen, S.; Peng, H.; Hu, M.; Wang, G.; Xiao, L.; Lu, J.; Zhuang, L. ACS Appl. Energy Mater. 2021, 4 (5), 4297. doi: 10.1021/acsaem.1c00433  doi: 10.1021/acsaem.1c00433

    18. [18]

      Peng, H.; Li, Q.; Hu, M.; Xiao, L.; Lu, J.; Zhuang, L. J. Power Sources 2018, 390, 165. doi: 10.1016/j.jpowsour.2018.04.047  doi: 10.1016/j.jpowsour.2018.04.047

    19. [19]

      Klingele, M.; Britton, B.; Breitwieser, M.; Vierrath, S.; Zengerle, R.; Holdcroft, S.; Thiele, S. Electrochem. Commun. 2016, 70, 65. doi: 10.1016/j.elecom.2016.06.017  doi: 10.1016/j.elecom.2016.06.017

    20. [20]

      Kim, K. H; Lee, K. Y.; Kim, H. J.; Cho, E. Lee, S. Y.; Lim T. H.; Yoon, S. P.; Hwang I. C.; Jang, J. H. Int. J. Hydrogen Energy 2010, 35 (5), 2119. doi: 10.1016/j.ijhydene.2009.11.058  doi: 10.1016/j.ijhydene.2009.11.058

    21. [21]

      Debe, M. K. Nature 2012, 486 (7401), 43. doi: 10.1038/nature11115  doi: 10.1038/nature11115

    22. [22]

      Gottesfeld, S.; Dekel, D. R.; Page, M.; Page, M.; Bae, C. Yan, Y.; Zelenay, P.; Kim, Y. J. Power Sources 2018, 375, 170. doi: 10.1016/j.jpowsour.2017.08.010  doi: 10.1016/j.jpowsour.2017.08.010

    23. [23]

      Zhang, J.; Wang, Y.; Zhang, J.; Xu, L. Acta Phys. -Chim. Sin. 2015, 31 (12), 2316.  doi: 10.3866/PKU.WHXB20151022

    24. [24]

      Liu, C. Y.; Sung, C. C. J. Power Sources 2012, 220, 348. doi: 10.1016/j.jpowsour.2012.07.090  doi: 10.1016/j.jpowsour.2012.07.090

    25. [25]

      Moreira, J.; Ocampo, A. L.; Sebastian, P. J.; Smit, M. A.; Salazar, M. D.; Angel, P. D.; Montoya, J. A.; Pérez, R.; Martínez, L. Int. J. Hydrogen Energy 2003, 28 (6), 625. doi: 10.1016/S0360-3199(02)00143-X  doi: 10.1016/S0360-3199(02)00143-X

    26. [26]

      Lobato, J.; Rodrigo, M. A.; Linares, J. J.; Scott, K. J. Power Sources 2002, 157 (2006), 284. doi: 10.1016/j.jpowsour.2005.07.040  doi: 10.1016/j.jpowsour.2005.07.040

    27. [27]

      Chen, M.; Wang, M.; Yang, Z.; Wang, X. Appl. Surf. Sci. 2017, 406, 69. doi: 10.1016/j.apsusc.2017.01.296  doi: 10.1016/j.apsusc.2017.01.296

    28. [28]

      Wang, G.; Zou, L.; Huang, Q.; Zou, Z. Yang, H. J. Mater. Chem. A 2019, 7 (16), 9447. doi: 10.1039/c8ta12382a  doi: 10.1039/c8ta12382a

    29. [29]

      Zhang, W.; Minett, A. I.; Gao, M.; Zhao, J.; Razal, J. M.; Wallace, G. G.; Romeo, T.; Chen, J. Adv. Energy Mater. 2011, 1 (4), 671. doi: 10.1002/aenm.201100092  doi: 10.1002/aenm.201100092

    30. [30]

      Zhang, C.; Yu, H.; Li, Y.; Gao, Y.; Zhao, Y.; Song, W.; Shao, Z.; Yi, B. ChemSusChem 2013, 6 (4), 659. doi: 10.1002/cssc.201200828  doi: 10.1002/cssc.201200828

    31. [31]

      Ning, F.; Bai, C.; Qin, J.; Song, Y.; Zhang, T.; Chen, J.; Wei, J.; Lu, G.; Wang, H.; Li, Y.; et al. J. Mater. Chem. A 2020, 8 (11), 5489. doi: 10.1039/c9ta13666e  doi: 10.1039/c9ta13666e

    32. [32]

      Dekel, D. R.; Rasion I, G.; Page, M.; Brandon, S. J. Power Sources 2018, 375, 191. doi: 10.1016/j.jpowsour.2017.07.012  doi: 10.1016/j.jpowsour.2017.07.012

    33. [33]

      Sheng, W.; Zhuang, Z.; Gao, M.; Zheng, J.; Chen, J.; Yan, Y. Nat. Commun. 2015, 6 (1), 1. doi: 10.1038/ncomms6848  doi: 10.1038/ncomms6848

    34. [34]

      Essalik, A.; Amouzegar, K.; Savadogo, O. J. Appl. Electrochem. 1995, 25, 404. doi: 10.1007/BF00249660  doi: 10.1007/BF00249660

  • 加载中
    1. [1]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    7. [7]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    11. [11]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    12. [12]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    15. [15]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    19. [19]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(20)
  • Abstract views(1012)
  • HTML views(209)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return