Citation: Jian Yang, Chen Lei, Xiang Liu, Jian Zhang, Yudie Sun, Cheng Zhang, Mingfu Ye, Kui Zhang. Versatile Performance of a Cationic Surfactant Derived from Carbon Quantum Dots[J]. Acta Physico-Chimica Sinica, ;2022, 38(12): 211103. doi: 10.3866/PKU.WHXB202111030 shu

Versatile Performance of a Cationic Surfactant Derived from Carbon Quantum Dots

  • Corresponding author: Xiang Liu, liuxiang@ahut.edu.cn Kui Zhang, zhangkui@mail.ustc.edu.cn
  • Received Date: 22 November 2021
    Revised Date: 6 December 2021
    Accepted Date: 7 December 2021
    Available Online: 10 December 2021

    Fund Project: the National Natural Science Foundation of China 22106005the National Natural Science Foundation of China 22004003the National Natural Science Foundation of China 21976002

  • Carbon quantum dots (CQDs) have attracted extensive interest due to their strong fluorescence as well as inexpensive and plentiful resources for manufacture. There are numerous published reports on the preparation of CQDs and direct applications based on their photoluminescence. Successive chemical modification of CQDs in an appropriate manner might expand the application scope of CQDs and transform them into practical fine chemicals. The various functional groups on the surface of CQDs allow for efficient chemical modification while imparting them with hydrophilicity. Covalent linking of hydrophobic hydrocarbon chains to CQDs would lead to the formation of novel surfactants. Here, a technique for preparing CQD-based cationic surfactants is depicted in detail. This was rare to be reported according to recent publishes. First, a mixture of ethylenediamine tetraacetic acid and ethylenediamine in the presence of hydrogen peroxide in an aqueous medium was pyrolyzed at 180 ℃ for 60 min. The resulting CQDs are represented as OX-CQDs. Then, the OX-CQDs were subjected to quaternization with 1-chlorododecane for obtaining the cationic surfactant (OX-CQDs-C12H25). The OX-CQDs-C12H25 surfactant effectively decreased the surface tension of water from 72.0 to 26.7 mN∙m−1 at the critical micelle concentration of 5.0 mg∙mL−1, thus demonstrating superior performance over several new Gemini cationic surfactants. The OX-CQDs-C12H25 surfactant also decreased the contact angles of water considerably. However, when longer alkyl chains such as -C14H29 or -C16H33 were attached to the CQDs, the corresponding surfactant was less effective in decreasing the surface tension of water. Calculations based on the Gibbs absorption isothermal equation revealed that two more -C12H25 chains were bonded with a carbon quantum dot averagely, implying that the as-prepared CQD-cationic surfactant belonged to the category of Gemini surfactants. Quaternization with 1-chlorododecane also led to a notable enhancement in the antibacterial activity for Escherichia coli as compared with that of unmodified CQDs. The antibacterial percentage approached 100% even the solution was diluted to 0.41 mg∙mL−1, which was much lower than the critical micelle concentration. The fluorescence quantum yield of OX-CQDs-C12H25 reached 6.44%. Experimental results revealed that hydrogen peroxide played a positive role in improving the surface activity and fluorescence quantum yield of OX-CQDs-C12H25. The surface activity, antibiosis, and fluorescence endowed the versatilities of OX-CQDs-C12H25. This novel, economical technique for synthesizing cationic surfactants eliminates the need for introducing hydrophilic groups. The hydrothermal approach for preparing CQDs satisfies the demand for green chemical synthesis. From this aspect, our technique provides efficient access to synthesizing cationic surfactants.
  • 加载中
    1. [1]

      Hu, C.; Mu, Y.; Li, M.; Qiu, J. Acta Phys. -Chim. Sin. 2019, 35, 572.  doi: 10.3866/PKU.WHXB201806060

    2. [2]

      Zhu, J.; Dong, Y.; Zhang, S.; Fan, Z. Acta Phys. -Chim. Sin. 2020, 36, 1903052.  doi: 10.3866/PKU.WHXB201903052

    3. [3]

      Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Chem. Commun. 2009, 5118. doi: 10.1039/b907612c  doi: 10.1039/b907612c

    4. [4]

      Peng, H.; Travas-Sejdic, J. Chem. Mater. 2009, 21, 5563. doi: 10.1021/cm901593y  doi: 10.1021/cm901593y

    5. [5]

      Yang, S.; Wang, X.; Wang, H.; Lu, F.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J.; Liu, Y.; Chen, M.; et al. J. Phys. Chem. C 2009, 113, 18110. doi: 10.1021/jp9085969  doi: 10.1021/jp9085969

    6. [6]

      Yang, S.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M. J.; Liu, Y.; Qi, G.; Sun, Y. J. Am. Chem. Soc. 2009, 131, 11308. doi: 10.1021/ja904843x  doi: 10.1021/ja904843x

    7. [7]

      Park, S. J.; Park, J. Y.; Chung, J. W.; Yang, H. K.; Moon, B. K.; Yi, S. S. Chem. Eng. J. 2020, 383, 123200. doi: 10.1016/j.cej.2019.123200  doi: 10.1016/j.cej.2019.123200

    8. [8]

      Jiang, L.; Ding, H.; Xu, M.; Hu, X.; Li, S.; Zhang, M.; Zhang, Q.; Wang, Q.; Lu, S.; Tian, Y.; Bi, H. Small 2020, 16, 2000680. doi: 10.1002/smll.202000680  doi: 10.1002/smll.202000680

    9. [9]

      Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Angew. Chem. Int. Edit. 2015, 54, 5360. doi: 10.1002/anie.201501193  doi: 10.1002/anie.201501193

    10. [10]

      He, J.; He, Y.; Chen, Y.; Zhang, X.; Hu, C.; Zhuang, J.; Lei, B.; Liu, Y. Chem. Eng. J. 2018, 347, 505. doi: 10.1016/j.cej.2018.04.110  doi: 10.1016/j.cej.2018.04.110

    11. [11]

      Wang, S.; Chen, Z.; Cole, I.; Li, Q. Carbon 2015, 82, 304. doi: 10.1016/j.carbon.2014.10.075  doi: 10.1016/j.carbon.2014.10.075

    12. [12]

      Pan, D.; Zhang, J.; Li, Z.; Wu, C.; Yan, X.; Wu, M. Chem. Commun. 2010, 46, 3681. doi: 10.1039/C000114G  doi: 10.1039/C000114G

    13. [13]

      Yang, Z.; Wang, M.; Yong, A. M.; Wong, S. Y.; Zhang, X.; Tan, H.; Chang, A. Y.; Li, X.; Wang, J. Chem. Commun. 2011, 47, 11615. doi: 10.1039/c1cc14860e  doi: 10.1039/c1cc14860e

    14. [14]

      Ghosh, S.; Ghosal, K.; Mohammad, S. A.; Sarkar, K. Chem. Eng. J. 2019, 373, 468. doi: 10.1016/j.cej.2019.05.023  doi: 10.1016/j.cej.2019.05.023

    15. [15]

      Zhao, S.; Wu, S.; Jia, Q.; Huang, L.; Lan, M.; Wang, P.; Zhang, W. Chem. Eng. J. 2020, 388, 124212. doi: 10.1016/j.cej.2020.124212  doi: 10.1016/j.cej.2020.124212

    16. [16]

      Dong, Y.; Shao, J.; Chen, C.; Li, H.; Wang, R.; Chi, Y.; Lin, X.; Chen, G. Carbon 2012, 50, 4738. doi: 10.1016/j.carbon.2012.06.002  doi: 10.1016/j.carbon.2012.06.002

    17. [17]

      Wu, P.; Xiong, Y.; Lei, C.; Li, Y.; Liu, X.; Zhang, C.; Sun, Y.; Zhang, J.; Lee, C.; Zhang, K. Dyes Pigments 2021, 195, 109750. doi: 10.1016/j.dyepig.2021.109750  doi: 10.1016/j.dyepig.2021.109750

    18. [18]

      Jiang, X.; Huang, J.; Chen, T.; Zhao, Q.; Xu, F.; Zhang, X. Int. J. Biol. Macromol. 2020, 153, 412. doi: 10.1016/j.ijbiomac.2020.03.026  doi: 10.1016/j.ijbiomac.2020.03.026

    19. [19]

      Zhang, W.; Wu, B.; Li, Z.; Wang, Y.; Zhou, J.; Li, Y. Spectrochim. Acta A 2020, 229, 117931. doi: 10.1016/j.saa.2019.117931  doi: 10.1016/j.saa.2019.117931

    20. [20]

      Wang, Y.; Zhang, C.; Chen, X.; Yang, B.; Yang, L.; Jiang, C.; Zhang, Z. Nanoscale 2016, 8, 5977. doi: 10.1039/C6NR00430J  doi: 10.1039/C6NR00430J

    21. [21]

      Chen, X.; Sun, C.; Liu, Y.; Yu, L.; Zhang, K.; Asiri, A. M.; Marwani, H. M.; Tan, H.; Ai, Y.; Wang, X.; Wang, S. Chem. Eng. J. 2020, 379, 122360. doi: 10.1016/j.cej.2019.122360  doi: 10.1016/j.cej.2019.122360

    22. [22]

      Kuai, Y.; Fang, R.; Zhang, C.; Liu, X.; Ma, L. Mater. Res. Bull. 2018, 104, 119. doi: 10.1016/j.materresbull.2018.03.008  doi: 10.1016/j.materresbull.2018.03.008

    23. [23]

      Liu, C.; Zhang, P.; Zhai, X.; Tian, F.; Li, W.; Yang, J.; Liu, Y.; Wang, H.; Wang, W.; Liu, W. Biomaterials 2012, 33, 3604. doi: 10.1016/j.biomaterials.2012.01.052  doi: 10.1016/j.biomaterials.2012.01.052

    24. [24]

      Han, G.; Zhao, J.; Zhang, R.; Tian, X.; Liu, Z.; Wang, A.; Liu, R.; Liu, B.; Han, M. Y.; Gao, X.; Zhang, Z. Angew. Chem. Int. Edit. 2019, 58, 7087. doi: 10.1002/anie.201903005  doi: 10.1002/anie.201903005

    25. [25]

      Xiong, Y.; Schneider, J.; Ushakova, E. V.; Rogach, A. L. Nano Today 2018, 23, 124. doi: 10.1016/j.nantod.2018.10.010  doi: 10.1016/j.nantod.2018.10.010

    26. [26]

      Wang, L.; Zhu, S.; Wang, H.; Qu, S.; Zhang, Y.; Zhang, J.; Chen, Q.; Xu, H.; Han, W.; Yang, B.; Sun, H. ACS Nano 2014, 8, 2541. doi: 10.1021/nn500368m  doi: 10.1021/nn500368m

    27. [27]

      Xiong, Y.; Schneider, J.; Reckmeier, C. J.; Huang, H.; Kasák, P.; Rogach, A. L. Nanoscale 2017, 9, 11730. doi: 10.1039/C7NR03648E  doi: 10.1039/C7NR03648E

    28. [28]

      Jiang, L.; Ding, H.; Lu, S.; Geng, T.; Xiao, G.; Zou, B.; Bi, H. Angew. Chem. Int. Edit. 2020, 59, 9986. doi: 10.1002/anie.201913800  doi: 10.1002/anie.201913800

    29. [29]

      Wu, S.; Zhou, R.; Chen, H.; Zhang, J.; Wu, P. Nanoscale 2020, 12, 5543. doi: 10.1039/C9NR10986B  doi: 10.1039/C9NR10986B

    30. [30]

      Shao, J.; Zhu, S.; Liu, H.; Song, Y.; Tao, S.; Yang, B. Adv. Sci. 2017, 4, 1700395. doi: 10.1002/advs.201700395  doi: 10.1002/advs.201700395

    31. [31]

      Barman, M. K.; Jana, B.; Bhattacharyya, S.; Patra, A. J. Phys. Chem. C 2014, 118, 20034. doi: 10.1021/jp507080c  doi: 10.1021/jp507080c

    32. [32]

      Ma, Z.; Ming, H.; Huang, H.; Liu, Y.; Kang, Z. New J. Chem. 2012, 36, 861. doi: 10.1039/c2nj20942j  doi: 10.1039/c2nj20942j

    33. [33]

      Fang, R.; Zhang, C.; Kuai, Y.; Liu, X.; Zhang, C. J. Lumin. 2019, 209, 404. doi: 10.1016/j.jlumin.2019.01.067  doi: 10.1016/j.jlumin.2019.01.067

    34. [34]

      Lei, C.; Fang, R.; Zhang, C.; Liu, X.; Zhang, C. Polym. Degrad. Stabil. 2019, 163, 7. doi: 10.1016/j.polymdegradstab.2019.01.013  doi: 10.1016/j.polymdegradstab.2019.01.013

    35. [35]

      Ding, H.; Yu, S.; Wei, J.; Xiong, H. ACS Nano 2016, 10, 484. doi: 10.1021/acsnano.5b05406  doi: 10.1021/acsnano.5b05406

    36. [36]

      Wang, C.; Shi, H.; Yang, M.; Yan, Y.; Liu, E.; Ji, Z.; Fan, J. Mater. Res. Bull. 2020, 124, 110730. doi: 10.1016/j.materresbull.2019.110730  doi: 10.1016/j.materresbull.2019.110730

    37. [37]

      Dou, Q.; Fang, X.; Jiang, S.; Chee, P. L.; Lee, T.; Loh, X. J. RSC Adv. 2015, 5, 46817. doi: 10.1039/C5RA07968C  doi: 10.1039/C5RA07968C

    38. [38]

      Akram, M.; Yousuf, S.; Sarwar, T.; Kabir-Ud-Din. Colloid Surf. A-Physicochem. Eng. Asp. 2014, 441, 281. doi: 10.1016/j.colsurfa.2013.09.007  doi: 10.1016/j.colsurfa.2013.09.007

    39. [39]

      Senra, T. D. A.; Khoukh, A.; Desbrières, J. Carbohyd. Polym. 2017, 156, 182. doi: 10.1016/j.carbpol.2016.09.025  doi: 10.1016/j.carbpol.2016.09.025

    40. [40]

      Bernardez, L. A. Colloid Surf. A-Physicochem. Eng. Asp. 2008, 324, 71. doi: 10.1016/j.colsurfa.2008.03.027  doi: 10.1016/j.colsurfa.2008.03.027

    41. [41]

      Yang, J.; Gao, G.; Zhang, X.; Ma, Y.; Chen, X.; Wu, F. Carbon 2019, 146, 827. doi: 10.1016/j.carbon.2019.02.040  doi: 10.1016/j.carbon.2019.02.040

    42. [42]

      Wang, Y.; Jiang, Y.; Geng, T.; Ju, H.; Duan, S. Colloid Surf. A-Physicochem. Eng. Asp. 2019, 563, 1. doi: 10.1016/j.colsurfa.2018.11.061  doi: 10.1016/j.colsurfa.2018.11.061

    43. [43]

      Zhi, L.; Li, Q.; Li, Y.; Song, Y. Colloid Surf. A-Physicochem. Eng. Asp. 2013, 436, 684. doi: 10.1016/j.colsurfa.2013.08.009  doi: 10.1016/j.colsurfa.2013.08.009

    44. [44]

      Abe, M.; Tsubone, K.; Koike, T.; Tsuchiya, K.; Ohkubo, T.; Sakai, H. Langmuir 2006, 22, 8293. doi: 10.1021/la060156y  doi: 10.1021/la060156y

    45. [45]

      Xie, Y.; Li, J.; Li, Z.; Sun, T.; Wang, Y.; Qu, G. RSC Adv. 2018, 8, 36015. doi: 10.1039/C8RA06900J  doi: 10.1039/C8RA06900J

    46. [46]

      Wang, W.; Zeng, Z.; Zeng, G.; Zhang, C.; Xiao, R.; Zhou, C.; Xiong, W.; Yang, Y.; Lei, L.; Liu, Y.; et al. Chem. Eng. J. 2019, 378, 122132. doi: 10.1016/j.cej.2019.122132  doi: 10.1016/j.cej.2019.122132

  • 加载中
    1. [1]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    2. [2]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    3. [3]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    4. [4]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    5. [5]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    6. [6]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    7. [7]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    8. [8]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    9. [9]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    10. [10]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    11. [11]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    12. [12]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    13. [13]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    14. [14]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    15. [15]

      Fengkai ZouBorui SuHan LengNini XinShichao JiangDan WeiMei YangYouhua WangHongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523

    16. [16]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    17. [17]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    18. [18]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    19. [19]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    20. [20]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

Metrics
  • PDF Downloads(22)
  • Abstract views(557)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return