Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production
- Corresponding author: Zhengxin Ding, zxding@fzu.edu.cn Wee-Jun Ong, weejun.ong@xmu.edu.my Sibo Wang, sibowang@fzu.edu.cn
Citation: Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2022, 38(7): 211102. doi: 10.3866/PKU.WHXB202111021
Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Nature 2006, 440, 295. doi: 10.1038/440295a
doi: 10.1038/440295a
Maeda, K.; Higashi, M.; Lu, D.; Abe, R.; Domen, K. J. Am. Chem. Soc. 2010, 132, 5858. doi: 10.1021/ja1009025
doi: 10.1021/ja1009025
Chen, A.; Yang, M.; Wang, S.; Qian, Q. Front. Nanotechnol. 2021, 3, 723120. doi: 10.3389/fnano.2021.723120
doi: 10.3389/fnano.2021.723120
Li, X.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2016, 45, 2603. doi: 10.1039/C5CS00838G
doi: 10.1039/C5CS00838G
Du, P.; Eisenberg, R. Energy Environ. Sci. 2012, 5, 6012. doi: 10.1039/C2EE03250C
doi: 10.1039/C2EE03250C
Dong, H.; Xiao, M.; Yu, S.; Wu, H.; Wang, Y.; Sun, J.; Chen, G.; Li, C. ACS Catal. 2020, 10, 458. doi: 10.1021/acscatal.9b04671
doi: 10.1021/acscatal.9b04671
Yu, J.; Zhang, T.; Wu, N. Solar RRL 2021, 5, 2100037. doi: 10.1002/solr.202100037
doi: 10.1002/solr.202100037
Tian, L.; Min, S.; Wang, F. Appl. Catal., B 2019, 259, 118029. doi: 10.1016/j.apcatb.2019.118029
doi: 10.1016/j.apcatb.2019.118029
Zuo, G.; Wang, Y.; Teo, W. L.; Xie, A.; Guo, Y.; Dai, ,Y.; Zhou, W.; Jana, D.; Xian, Q.; Dong, W.; et al. Angew. Chem. Int. Ed. 2020, 59, 11287. doi: 10.1002/anie.202002136
doi: 10.1002/anie.202002136
Liang, Z.; Shen, R.; Ng, Y. H.; Zhang, P.; Xiang, Q.; Li, X. J. Mater. Sci. Technol. 2020, 56, 89. doi: 10.1016/j.jmst.2020.04.032
doi: 10.1016/j.jmst.2020.04.032
Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Angew. Chem. Int. Ed. 2013, 52, 7372. doi: 10.1002/anie.201207199
doi: 10.1002/anie.201207199
Wen, J.; Li, X.; Liu, W.; Fang, Y.; Xie, J.; Xu, Y. Chin. J. Catal. 2015, 36, 2049. doi: 10.1016/S1872-2067(15)60999-8
doi: 10.1016/S1872-2067(15)60999-8
Yu, J.; Xu, L.; Ong, W. J.; Zhang, L. Acta Phys. -Chim. Sin. 2021, 37, 2012043.
doi: 10.3866/PKU.WHXB202012043
Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S. Z. Chem. Soc. Rev. 2014, 43, 7787. doi: 10.1039/C3CS60425J
doi: 10.1039/C3CS60425J
Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520. doi: 10.1039/C3CS60378D
doi: 10.1039/C3CS60378D
Peng, J.; Xu, J.; Wang, Z.; Ding, Z.; Wang, S. Phys. Chem. Chem. Phys. 2017, 19, 25919. doi: 10.1039/C7CP05147F
doi: 10.1039/C7CP05147F
Xia, Y.; Zhang, L.; Hu, B.; Yu, J.; Al-Ghamdi, A. A.; Wageh, S. Chem. Eng. J. 2021, 421, 127732. doi: 10.1016/j.cej.2020.127732
doi: 10.1016/j.cej.2020.127732
Bie, C.; Yu, H.; Cheng, B.; Ho, W.; Fan, J.; Yu, J. Adv. Mater. 2021, 33, 2003521. doi: 10.1002/adma.202003521
doi: 10.1002/adma.202003521
Xia, Y.; Yu, J. Chem 2020, 6, 1039. doi: 10.1016/j.chempr.2020.02.015
doi: 10.1016/j.chempr.2020.02.015
He, R.; Cao, S.; Yu, J. Acta Phys. -Chim. Sin. 2016, 32, 2841.
doi: 10.3866/PKU.WHXB201611021
Li, H.; Li, F.; Yu, J.; Cao, S. Acta Phys. -Chim. Sin. 2021, 37, 2010073. [
doi: 10.3866/PKU.WHXB202010073
Yu, J.; Zhao, X.; Chen, W.; Li, L.; Zhang, A. Acta Phys. -Chim. Sin. 2001, 17, 261.
doi: 10.3866/PKU.WHXB20010316
Wang, S.; Wang, X. Small 2015, 11, 3097. doi: 10.1002/smll.201500084
doi: 10.1002/smll.201500084
Lu, Y.; Yin, W.; Peng, K.; Wang, K.; Hu, Q.; Selloni, A.; Chen, F.; Liu, L.; Sui, M. Nat. Commun. 2018, 9, 2752. doi: 10.1038/s41467-018-05144-1
doi: 10.1038/s41467-018-05144-1
Lee, J.; Kim, H.; Lee, T.; Jang, W.; Lee, K. H.; Soon, A. Chem. Mater. 2019, 31, 9148. doi: 10.1021/acs.chemmater.9b03539
doi: 10.1021/acs.chemmater.9b03539
Yang, W.; Zhang, L.; Xie, J.; Zhang, X.; Liu, Q.; Yao, T.; Wei, S.; Zhang, Q.; Xie, Y. Angew. Chem. Int. Ed. 2016, 55, 6716. doi: 10.1002/anie.201602543
doi: 10.1002/anie.201602543
Zhang, G.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Angew. Chem. Int. Ed. 2020, 59, 8255. doi: 10.1002/anie.202000503
doi: 10.1002/anie.202000503
Zhang, S.; Liu, X.; Liu, C.; Luo, S.; Wang, L.; Cai, T.; Zeng, Y.; Yuan, J.; Dong, W.; Pei, Y.; et al. ACS Nano 2018, 12, 751. doi: 10.1021/acsnano.7b07974
doi: 10.1021/acsnano.7b07974
Gao, F.; Zhao, Y.; Zhang, L.; Wang, B.; Wang, Y.; Huang, X.; Wang, K.; Feng, W.; Liu, P. J. Mater. Chem. A 2018, 6, 18979. doi: 10.1039/C8TA06029K
doi: 10.1039/C8TA06029K
Peng, X.; Ye, L.; Ding, Y.; Yi, L.; Zhang, C.; Wen, Z. Appl. Catal. B 2020, 260, 118152. doi: 10.1016/j.apcatb.2019.118152
doi: 10.1016/j.apcatb.2019.118152
Ye, L.; Li, Z. Appl. Catal. B 2014, 160, 552. doi: 10.1016/j.apcatb.2014.06.012
doi: 10.1016/j.apcatb.2014.06.012
Zhong, W.; Gao, D.; Yu, H.; Fan, J.; Yu, J. Chem. Eng. J. 2021, 419, 129652. doi: 10.1016/j.cej.2021.129652
doi: 10.1016/j.cej.2021.129652
Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Adv. Mater. 2019, 31, 1807660. doi: 10.1002/adma.201807660
doi: 10.1002/adma.201807660
Hu, P.; Ngaw, C. K.; Yuan, Y.; Bassi, P. S.; Loo, S. C. J.; Tan, T. T. Y. Nano Energy 2016, 26, 577. doi: 10.1016/j.nanoen.2016.06.006
doi: 10.1016/j.nanoen.2016.06.006
Shen, R.; Xie, J.; Xiang, Q.; Chen, X.; Jiang, J.; Li, X. Chin. J. Catal. 2019, 40, 240. doi: 10.1016/S1872-2067(19)63294-8
doi: 10.1016/S1872-2067(19)63294-8
Wang, J.; Wu, N.; Liu, T.; Cao, S.; Yu, J. Acta Phys. -Chim. Sin. 2020, 36, 1907072.
doi: 10.3866/PKU.WHXB201907072
Guan, B. Y.; Yu, L.; Wang, X.; Song, S.; Lou, X. W. Adv. Mater. 2017, 6, 1605051. doi: 10.1002/adma.201605051
doi: 10.1002/adma.201605051
Li, S.; Xu, P.; Aslam, M. K.; Chen, C.; Rashid, A.; Wang, G.; Zhang, L.; Mao, B. Energy Storage Mater. 2020, 27, 51. doi: 10.1016/j.ensm.2020.01.017
doi: 10.1016/j.ensm.2020.01.017
Zhao, Q.; Sun, J.; Li, S.; Huang, C.; Yao, W.; Chen, W.; Zeng, T.; Wu, Q.; Xu, Q. ACS Catal. 2018, 12, 11863. doi: 10.1021/acscatal.8b03737
doi: 10.1021/acscatal.8b03737
Wang, S.; Guan, B. Y.; Wang, X.; Lou, X. W. J. Am. Chem. Soc. 2018, 140, 15145. doi: 10.1021/jacs.8b07721
doi: 10.1021/jacs.8b07721
Wang, S.; Wang, Y.; Zhang, S.; Zang, S.; Lou, X. W. Adv. Mater. 2019, 31, 1970291. doi: 10.1002/adma.201970291
doi: 10.1002/adma.201970291
Lin, X.; Xie, Z.; Su, B.; Zheng, M.; Dai, W.; Hou, Y.; Ding, Z.; Lin, W.; Fang, Y.; Wang, S. Nanoscale 2021, 13, 18070. doi: 10.1039/D1NR04812K
doi: 10.1039/D1NR04812K
Zheng, D.; Cao, X.; Wang, X. Angew. Chem. Int. Ed. 2016, 55, 11512. doi: 10.1002/anie.201606102
doi: 10.1002/anie.201606102
Sun, J.; Zhang, J.; Zhang, M.; Antonietti, M.; Fu, X.; Wang, X. Nat. Commun. 2012, 3, 1139. doi: 10.1038/ncomms2152
doi: 10.1038/ncomms2152
In, S. -I.; Vaughn Ii, D. D.; Schaak, R. E. Angew. Chem. Int. Ed. 2012, 51, 3915. doi: 10.1002/anie.201108936
Shi, H.; Li, Y.; Wang, X.; Yu, H.; Yu, J. Appl. Catal. B 2021, 297, 120414. doi: 10.1016/j.apcatb.2021.120414
doi: 10.1016/j.apcatb.2021.120414
Liu, T.; Zhang, L.; You, W.; Yu, J. Small 2018, 14, 1702407. doi: 10.1002/smll.201702407
doi: 10.1002/smll.201702407
Wang, S.; Guan, B. Y.; Wang, X.; Lou, X. W. J. Am. Chem. Soc. 2018, 140, 15145. doi: 10.1021/jacs.8b07721
doi: 10.1021/jacs.8b07721
Wang, S.; Wang, Y.; Zhang, S. L.; Zang, S.; Lou, X. W. Adv. Mater. 2019, 31, 1903404. doi: 10.1002/adma.201903404
doi: 10.1002/adma.201903404
Shen, L.; Yu, L.; Wu, H. B.; Yu, X. Y.; Zhang, X.; Lou, X. W. Nat. Commun. 2015, 6, 6694. doi: 10.1038/ncomms7694
doi: 10.1038/ncomms7694
Wang, S.; Guan, B. Y.; Lou, X. W. J. Am. Chem. Soc. 2018, 140, 5037. doi: 10.1021/jacs.8b02200
doi: 10.1021/jacs.8b02200
Wang, P.; Li, C.; Dong, S.; Ge, X.; Zhang, P.; Miao, X.; Wang, R.; Zhang, Z.; Yin, L. Adv. Energy Mater. 2019, 9, 1900788. doi: 10.1002/aenm.201900788
doi: 10.1002/aenm.201900788
Qiu, B.; Zhu, Q.; Du, M.; Fan, L.; Xing, M.; Zhang, J. Angew. Chem. Int. Ed. 2017, 56, 2684. doi: 10.1002/anie.201612551
doi: 10.1002/anie.201612551
Wang, H.; Zhang, H.; Wang, J.; Gao, Y.; Fa, F.; Wu, K.; Zong, X.; Li, C. Angew. Chem. Int. Ed. 2021, 60, 7376. doi: 10.1002/anie.202014623
doi: 10.1002/anie.202014623
Wang, J.; Zhang, Y.; Wang, X.; Su, W. Appl. Catal. B 2020, 268, 118444. doi: 10.1016/j.apcatb.2019.118444
doi: 10.1016/j.apcatb.2019.118444
Yuan, L.; Weng, B.; Colmenares, J. C.; Sun, Y.; Xu, Y. Small 2017, 13, 1702253. doi: 10.1002/smll.201702253
doi: 10.1002/smll.201702253
Su, B.; Huang, L.; Xiong, Z.; Yang, Y.; Hou, Y.; Ding, Z.; Wang, S. J. Mater. Chem. A 2019, 7, 26877. doi: 10.1039/C9TA10470D
doi: 10.1039/C9TA10470D
Xiong, Z.; Huang, L.; Peng, J.; Hou, Y.; Ding, Z.; Wang, S. ChemCatChem 2019, 11, 5513. doi: 10.1002/cctc.201901379
doi: 10.1002/cctc.201901379
Li, A.; Chang, X.; Huang, Z.; Li, C.; Wei, Y.; Zhang, L.; Wang, T.; Gong, J. Angew. Chem. Int. Ed. 2016, 55, 1. doi: 10.1002/anie.201510990
doi: 10.1002/anie.201510990
Li, H.; Shang, J.; Ai, Z.; Zhang, L. J. Am. Chem. Soc. 2015, 137, 6393. doi: 10.1021/jacs.5b03105
doi: 10.1021/jacs.5b03105
Jiao, X.; Chen, Z.; Li, X.; Sun, Y.; Gao, S.; Yan, W.; Wang, C.; Zhang, Q.; Lin, Y.; Luo, Y.; et al. J. Am. Chem. Soc. 2017, 139, 7586. doi: 10.1021/jacs.7b02290
doi: 10.1021/jacs.7b02290
Zhang, Z.; Huang, Y.; Liu, K.; Guo, L.; Yuan, Q.; Dong, B. Adv. Mater. 2015, 27, 5906. doi: 10.1002/adma.201502203
doi: 10.1002/adma.201502203
Wang, L.; Zhu, Bi.; Cheng, B.; Zhang, J.; Zhang, L.; Yu, J. Chin. J. Catal. 2021, 42, 1648. doi: 10.1016/S1872-2067(21)63805-6
doi: 10.1016/S1872-2067(21)63805-6
Gao, Y.; Chen, F.; Chen, Z.; Shi, H. J. Mater. Sci. Technol. 2020, 56, 227. doi: 10.1016/j.jmst.2020.02.050
doi: 10.1016/j.jmst.2020.02.050
Han, X.; Chen, Q.; Zhang, H.; Ni, Y.; Zhang, L. Chem. Eng. J. 2019, 368, 513. doi: 10.1016/j.cej.2019.02.138
doi: 10.1016/j.cej.2019.02.138
Hojamberdiev, M.; Cai, Y.; Vequizo, J. J. M.; Khan, M. M.; Vargas, R.; Yubuta, K.; Yamakata, A.; Teshimaf, K.; Hasegawaa, M. Green Chem. 2018, 20, 3845. doi: 10.1039/C8GC01746H
doi: 10.1039/C8GC01746H
Vattikuti, S. V. P.; Police, A. K. R.; Shim, J.; Byon, C. Sci. Rep. 2018, 8, 4194. doi: 10.1038/s41598-018-22622-0
doi: 10.1038/s41598-018-22622-0
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Lihua Ma , Song Guo , Zhi-Ming Zhang , Jin-Zhong Wang , Tong-Bu Lu , Xian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Jing-Jing Zhang , Lujun Lou , Rui Lv , Jiahui Chen , Yinlong Li , Guangwei Wu , Lingchao Cai , Steven H. Liang , Zhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Hao Deng , Yuxin Hui , Chao Zhang , Qi Zhou , Qiang Li , Hao Du , Derek Hao , Guoxiang Yang , Qi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252