Citation: Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects[J]. Acta Physico-Chimica Sinica, ;2023, 39(1): 211101. doi: 10.3866/PKU.WHXB202111011 shu

Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects

  • Corresponding author: Jingyu Sun, sunjy86@suda.edu.cn Zhongfan Liu, zfliu@pku.edu.cn
  • Received Date: 4 November 2021
    Revised Date: 27 November 2021
    Accepted Date: 29 November 2021
    Available Online: 6 December 2021

    Fund Project: the National Key R & D Program of China 2019YFA0708201the National Natural Science Foundation of China 61527814the National Natural Science Foundation of China 51702225the Beijing National Laboratory for Molecular Sciences BNLMS-CXTD-202001the Beijing Municipal Science & Technology Commission Z191100000819004

  • Utilizing a direct chemical vapor deposition approach to synthesize graphene on insulating substrates has received enormous attention to date in both scientific and technological realms. In contrast to the graphene growth on metal substrates, the catalytic inertness of insulators toward feedstock decomposition and the high energy barrier for carbon fragment migration on the insulating surface result in not only high density of grain boundaries but also a low growth rate. Thus-obtained graphene film is usually accompanied by massive defects and limited crystal quality, which adversely affect the physical integrity and electrical performance of the fabricated graphene-based device. In this respect, various strategies have been adopted to modify the direct growth processes of graphene, e.g., sacrificial metal catalysis approach, self-terminating confinement approach and near-equilibrium growth approach. Among these mentioned above, the gaseous-promotor-assisted growth methodology has proven to be a beneficial way in enhancing crystal quality and augmenting the growth rate of graphene. For the gaseous-promotor-assisted chemical vapor deposition route, the gaseous promotor can not only regulate the composition/content of active carbon species in the gas-phase reaction process but also promote the surface migration and growth reactions. In this contribution, we review the recent advances in gaseous-promotor-assisted direct growth of graphene with high crystallinity, optimized uniformity, and enhanced growth rate on insulating substrates. First of all, we provide a systematic description of the growth behavior of graphene on insulators, including both the surface and gas-phase reactions combined with elementary steps during the growth process. We then summarize developed strategies aiming to achieve the direct growth of high-quality graphene via the assistance of gaseous promotors, with special emphasis on the effects and mechanisms of the growth process. The types of promotors commonly used in the gaseous-promotor-assisted strategy can be divided into metallic and non-metallic vapor species. These gaseous promotors can play influence on the feedstock decomposition, graphene nucleation, and enhance the enlargement and merging of individual domains. The corresponding mechanisms of the strategy can be classified into three parts: (1) The existence of highly concentrated metallic vapor species can promote thermal decomposition of carbon feedstock, which is the key to the growth of high-quality graphene; (2) The introduction of oxygen-containing species can effectively reduce the nucleation density, etch the amorphous carbon, leading to a high-quality, uniform growth of graphene film. In addition, hydroxylation of substrate through oxygen-containing species weakens the binding energy between the graphene edge and surface of the substrate, facilitating carbon fragment migration to evolve uniform monolayer graphene film; (3) The appearance of silicon and fluorine species reduces the growth kinetic barrier for carbon feedstock migrating onto the graphene edge to form the honeycomb lattice, which ensures the ultrafast growth of graphene on insulating substrates. Finally, we describe existed challenges and present future perspectives on the direct growth of high-quality graphene on insulating substrates to stimulate more efforts devoted to direct graphene growth and ultimate applications. We hope this review can propel in-depth comprehension of the direct growth of graphene on insulators by gaseous-promotor-assisted strategy, and pave the way for the development and applications of graphene materials.
  • 加载中
    1. [1]

      Mayorov, A. S.; Gorbachev, R. V.; Morozov, S. V.; Britnell, L.; Jalil, R.; Ponomarenko, L. A.; Blake, P.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T.; et al. Nano Lett. 2011, 11, 2396. doi: 10.1021/nl200758b  doi: 10.1021/nl200758b

    2. [2]

      Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201. doi: 10.1038/nature04235  doi: 10.1038/nature04235

    3. [3]

      Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K. Science 2008, 320, 1308. doi: 10.1126/science.1156965  doi: 10.1126/science.1156965

    4. [4]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    5. [5]

      Balandin, A. A. Nat. Mater. 2011, 10, 569. doi: 10.1038/nmat3064  doi: 10.1038/nmat3064

    6. [6]

      Dua, V.; Surwade, S. P.; Ammu, S.; Agnihotra, S. R.; Jain, S.; Roberts, K. E.; Park, S.; Ruoff, R. S.; Manohar, S. K. Angew. Chem. Int. Ed. 2010, 122, 2200. doi: 10.1002/ange.200905089  doi: 10.1002/ange.200905089

    7. [7]

      Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8, 3498. doi: 10.1021/nl802558y  doi: 10.1021/nl802558y

    8. [8]

      Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J. J.; Perez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galan, T.; et al. Nat. Photon. 2017, 11, 366. doi: 10.1038/nphoton.2017.75  doi: 10.1038/nphoton.2017.75

    9. [9]

      Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; et al. Nat. Nanotechnol. 2010, 5, 574. doi: 10.1038/nnano.2010.132  doi: 10.1038/nnano.2010.132

    10. [10]

      Romagnoli, M.; Sorianello, V.; Midrio, M.; Koppens, F. H. L.; Huyghebaert, C.; Neumaier, D.; Galli, P.; Templ, W.; D'Errico, A.; Ferrari, A. C. Nat. Rev. Mater. 2018, 3, 392. doi: 10.1038/s41578-018-0040-9  doi: 10.1038/s41578-018-0040-9

    11. [11]

      Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A. Nature 2010, 467, 190. doi: 10.1038/nature09379  doi: 10.1038/nature09379

    12. [12]

      Xu, M.; Fujita, D.; Hanagata, N. Small 2009, 5, 2638. doi: 10.1002/smll.200900976  doi: 10.1002/smll.200900976

    13. [13]

      Xing, F.; Liu, Z. B.; Deng, Z. C.; Kong, X. T.; Yan, X. Q.; Chen, X. D.; Ye, Q.; Zhang, C. P.; Chen, Y. S.; Tian, J. G. Sci. Rep. 2012, 2, 908. doi: 10.1038/srep00908  doi: 10.1038/srep00908

    14. [14]

      Zhao, J.; He, C.; Yang, R.; Shi, Z.; Cheng, M.; Yang, W.; Xie, G.; Wang, D.; Shi, D.; Zhang, G. Appl. Phys. Lett. 2012, 101, 063112. doi: 10.1063/1.4742331  doi: 10.1063/1.4742331

    15. [15]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    16. [16]

      Eda, G.; Fanchini, G.; Chhowalla, M. Nat. Nanotechnol. 2008, 3, 270. doi: 10.1038/nnano.2008.83  doi: 10.1038/nnano.2008.83

    17. [17]

      Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M. Carbon 2004, 42, 2929. doi: 10.1016/j.carbon.2004.07.003  doi: 10.1016/j.carbon.2004.07.003

    18. [18]

      Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; et al. Science 2006, 312, 1191. doi: 10.1126/science.1125925  doi: 10.1126/science.1125925

    19. [19]

      Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Science 2009, 324, 1312. doi: 10.1126/science.1171245  doi: 10.1126/science.1171245

    20. [20]

      Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Nano Lett. 2009, 9, 30. doi: 10.1021/nl801827v  doi: 10.1021/nl801827v

    21. [21]

      Li, X.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B.; Borysiak, M.; Cai, W.; Velamakanni, A.; Zhu, Y.; et al. Nano Lett. 2010, 10, 4328. doi: 10.1021/nl101629g  doi: 10.1021/nl101629g

    22. [22]

      Wu, T.; Zhang, X.; Yuan, Q.; Xue, J.; Lu, G.; Liu, Z.; Wang, H.; Wang, H.; Ding, F.; Yu, Q.; et al. Nat. Mater. 2016, 15, 43. doi: 10.1038/nmat4477  doi: 10.1038/nmat4477

    23. [23]

      Lin, L.; Li, J.; Ren, H.; Koh, A. L.; Kang, N.; Peng, H.; Xu, H. Q.; Liu, Z. F. ACS Nano 2016, 10, 2922. doi: 10.1021/acsnano.6b00041  doi: 10.1021/acsnano.6b00041

    24. [24]

      Pang, J.; Mendes, R. G.; Wrobel, P. S.; Wlodarski, M. D.; Ta, H. Q.; Zhao, L.; Giebeler, L.; Trzebicka, B.; Gemming, T.; Fu, L.; et al. ACS Nano 2017, 11, 1946. doi: 10.1021/acsnano.6b08069  doi: 10.1021/acsnano.6b08069

    25. [25]

      Chen, J.; Guo, Y.; Jiang, L.; Xu, Z.; Huang, L.; Xue, Y.; Geng, D.; Wu, B.; Hu, W.; Yu, G.; Liu, Y. Adv. Mater. 2014, 26, 1348. doi: 10.1002/adma.201304872  doi: 10.1002/adma.201304872

    26. [26]

      Chen, Z.; Liu, Z.; Wei, T.; Yang, S.; Dou, Z.; Wang, Y.; Ci, H.; Chang, H.; Qi, Y.; Yan, J.; et al. Adv. Mater. 2019, 31, 1807345. doi: 10.1002/adma.201807345  doi: 10.1002/adma.201807345

    27. [27]

      Chen, Z.; Gao, P.; Liu, Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004.  doi: 10.3866/PKU.WHXB201907004

    28. [28]

      Yang, W.; Chen, G.; Shi, Z.; Liu, C. C.; Zhang, L.; Xie, G.; Cheng, M.; Wang, D.; Yang, R.; Shi, D.; et al. Nat. Mater. 2013, 12, 792. doi: 10.1038/nmat3695  doi: 10.1038/nmat3695

    29. [29]

      Chen, L.; Wang, H.; Tang, S.; He, L.; Wang, H. S.; Wang, X.; Xie, H.; Wu, T.; Xia, H.; Li, T.; et al. Nanoscale 2017, 9, 11475. doi: 10.1039/c7nr02578e  doi: 10.1039/c7nr02578e

    30. [30]

      Sun, J.; Gao, T.; Song, X.; Zhao, Y.; Lin, Y.; Wang, H.; Ma, D.; Chen, Y.; Xiang, W.; Wang, J.; et al. J. Am. Chem. Soc. 2014, 136, 6574. doi: 10.1021/ja5022602  doi: 10.1021/ja5022602

    31. [31]

      Chen, J.; Guo, Y.; Wen, Y.; Huang, L.; Xue, Y.; Geng, D.; Wu, B.; Luo, B.; Yu, G.; Liu, Y. Adv. Mater. 2013, 25, 992. doi: 10.1002/adma.201202973  doi: 10.1002/adma.201202973

    32. [32]

      Chen, Z.; Qi, Y.; Chen, X.; Zhang, Y.; Liu, Z. F. Adv. Mater. 2019, 31, 1803639. doi: 10.1002/adma.201803639  doi: 10.1002/adma.201803639

    33. [33]

      Chen, X. D.; Chen, Z.; Jiang, W. S.; Zhang, C.; Sun, J.; Wang, H.; Xin, W.; Lin, L.; Priydarshi, M. K.; Yang, H.; et al. Adv. Mater. 2017, 29, 1603428. doi: 10.1002/adma.201603428  doi: 10.1002/adma.201603428

    34. [34]

      Sun, J.; Chen, Z.; Yuan, L.; Chen, Y.; Ning, J.; Liu, S.; Ma, D.; Song, X.; Priydarshi, M. K.; Bachmatiuk, A.; et al. ACS Nano 2016, 10, 11136. doi: 10.1021/acsnano.6b06066  doi: 10.1021/acsnano.6b06066

    35. [35]

      Sun, J.; Chen, Y.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z.; Chen, Z.; Song, X.; Gao, Y.; Rummeli, M. H.; et al. Nano Lett. 2015, 15, 5846. doi: 10.1021/acs.nanolett.5b01936  doi: 10.1021/acs.nanolett.5b01936

    36. [36]

      Ruemmeli, M. H.; Bachmatiuk, A.; Scott, A.; Boerrnert, F.; Warner, J. H.; Hoffman, V.; Lin, J. -H.; Cuniberti, G.; Buechner, B. ACS Nano 2010, 4, 4206. doi: 10.1021/nn100971s  doi: 10.1021/nn100971s

    37. [37]

      Miyasaka, Y.; Nakamura, A.; Temmyo, J. Jpn. J. Appl. Phys. 2011, 50, 04DH12. doi: 10.1143/jjap.50.04dh12  doi: 10.1143/jjap.50.04dh12

    38. [38]

      Jiang, B.; Zhao, Q. Y.; Zhang, Z. P.; Liu, B. Z.; Shan, J. Y.; Zhao, L.; Rümmeli, M. H.; Gao, X.; Zhang, Y. F.; Yu, T. J.; et al. Nano Res. 2020, 13, 1564. doi: 10.1007/s12274-020-2771-3  doi: 10.1007/s12274-020-2771-3

    39. [39]

      Yan, Z.; Peng, Z.; Sun, Z.; Yao, J.; Zhu, Y.; Liu, Z.; Ajayan, P. M.; Tour, J. M. ACS Nano 2011, 5, 8187. doi: 10.1021/nn202829y  doi: 10.1021/nn202829y

    40. [40]

      Su, C. Y.; Lu, A. Y.; Wu, C. Y.; Li, Y. T.; Liu, K. K.; Zhang, W.; Lin, S. Y.; Juang, Z. Y.; Zhong, Y. L.; Chen, F. R.; et al. Nano Lett. 2011, 11, 3612. doi: 10.1021/nl201362n  doi: 10.1021/nl201362n

    41. [41]

      Teng, P. Y.; Lu, C. C.; Akiyama-Hasegawa, K.; Lin, Y. C.; Yeh, C. H.; Suenaga, K.; Chiu, P. W. Nano Lett. 2012, 12, 1379. doi: 10.1021/nl204024k  doi: 10.1021/nl204024k

    42. [42]

      Murakami, K.; Tanaka, S.; Hirukawa, A.; Hiyama, T.; Kuwajima, T.; Kano, E.; Takeguchi, M.; Fujita, J. I. Appl. Phys. Lett. 2015, 106, 093112. doi: 10.1063/1.4914114  doi: 10.1063/1.4914114

    43. [43]

      Sun, J. Y.; Chen, Y. B.; Cai, X.; Ma, B. J.; Chen, Z. L.; Priydarshi, M. K.; Chen, K.; Gao, T.; Song, X. J.; Ji, Q. Q.; et al. Nano Res. 2015, 8, 3496. doi: 10.1007/s12274-015-0849-0  doi: 10.1007/s12274-015-0849-0

    44. [44]

      Zhang, L. C.; Shi, Z. W.; Wang, Y.; Yang, R.; Shi, D. X.; Zhang, G. Y. Nano Res. 2011, 4, 315. doi: 10.1007/s12274-010-0086-5  doi: 10.1007/s12274-010-0086-5

    45. [45]

      Qi, Y.; Deng, B.; Guo, X.; Chen, S.; Gao, J.; Li, T.; Dou, Z.; Ci, H.; Sun, J.; Chen, Z.; et al. Adv. Mater. 2018, 30, 1704839. doi: 10.1002/adma.201704839  doi: 10.1002/adma.201704839

    46. [46]

      Monaghan, S.; Greer, J. C.; Elliott, S. D. J. Appl. Phys. 2005, 97, 114911. doi: 10.1063/1.1926399  doi: 10.1063/1.1926399

    47. [47]

      Li, X.; Cai, W.; Colombo, L.; Ruoff, R. S. Nano Lett. 2009, 9, 4268. doi: 10.1021/nl902515k  doi: 10.1021/nl902515k

    48. [48]

      Lin, L.; Deng, B.; Sun, J.; Peng, H.; Liu, Z. Chem. Rev. 2018, 118, 9281. doi: 10.1021/acs.chemrev.8b00325  doi: 10.1021/acs.chemrev.8b00325

    49. [49]

      Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z. F. Nat. Rev. Methods Primers 2021, 1, 5. doi: 10.1038/s43586-020-00005-y  doi: 10.1038/s43586-020-00005-y

    50. [50]

      Fanton, M. A.; Robinson, J. A.; Puls, C.; Liu, Y.; Hollander, M. J.; Weiland, B. E.; Labella, M.; Trumbull, K.; Kasarda, R.; Howsare, C.; et al. ACS Nano 2011, 5, 8062. doi: 10.1021/nn202643t  doi: 10.1021/nn202643t

    51. [51]

      Chen, X. D.; Chen, Z. L.; Sun, J. Y.; Zhang, Y. F.; Liu, Z. F. Acta Phys. -Chim. Sin. 2016, 32, 14.  doi: 10.3866/PKU.WHXB201511133

    52. [52]

      Li, G.; Huang, S. H.; Li, Z. Y. Phys. Chem. Chem. Phys. 2015, 17, 22832. doi: 10.1039/c5cp02301g  doi: 10.1039/c5cp02301g

    53. [53]

      Zhang, J.; Lin, L.; Sun, L.; Huang, Y.; Koh, A. L.; Dang, W.; Yin, J.; Wang, M.; Tan, C.; Li, T.; et al. Adv. Mater. 2017, 29, 1700639. doi: 10.1002/adma.201700639  doi: 10.1002/adma.201700639

    54. [54]

      Lin, L.; Zhang, J.; Su, H.; Li, J.; Sun, L.; Wang, Z.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y.; et al. Nat. Commun. 2019, 10, 1912. doi: 10.1038/s41467-019-09565-4  doi: 10.1038/s41467-019-09565-4

    55. [55]

      Jia, K.; Zhang, J.; Lin, L.; Li, Z.; Gao, J.; Sun, L.; Xue, R.; Li, J.; Kang, N.; Luo, Z.; et al. J. Am. Chem. Soc. 2019, 141, 7670. doi: 10.1021/jacs.9b02068  doi: 10.1021/jacs.9b02068

    56. [56]

      Shan, J.; Fang, S.; Wang, W.; Zhao, W.; Zhang, R.; Liu, B.; Lin, L.; Jiang, B.; Ci, H.; Liu, R.; et al. Natl. Sci. Rev. 2021. doi: 10.1093/nsr/nwab169  doi: 10.1093/nsr/nwab169

    57. [57]

      Shemella, P.; Nayak, S. K. Appl. Phys. Lett. 2009, 94, 032101. doi: 10.1063/1.3070238  doi: 10.1063/1.3070238

    58. [58]

      Chen, Z.; Chang, H.; Cheng, T.; Wei, T.; Wang, R.; Yang, S.; Dou, Z.; Liu, B.; Zhang, S.; Xie, Y.; et al. Adv. Funct. Mater. 2020, 30, 2070209. doi: 10.1002/adfm.202070209  doi: 10.1002/adfm.202070209

    59. [59]

      Kohler, C.; Hajnal, Z.; Deak, P.; Frauenheim, T.; Suhai, S. Phys. Rev. B 2001, 64, 085333. doi: 10.1103/PhysRevB.64.085333  doi: 10.1103/PhysRevB.64.085333

    60. [60]

      Yazyev, O. V. Phys. Rev. Lett. 2008, 101, 037203. doi: 10.1103/PhysRevLett.101.037203  doi: 10.1103/PhysRevLett.101.037203

    61. [61]

      Hao, Y.; Bharathi, M. S.; Wang, L.; Liu, Y.; Chen, H.; Nie, S.; Wang, X.; Chou, H.; Tan, C.; Fallahazad, B.; et al. Science 2013, 342, 720. doi: 10.1126/science.1243879  doi: 10.1126/science.1243879

    62. [62]

      Guo, W.; Jing, F.; Xiao, J.; Zhou, C.; Lin, Y.; Wang, S. Adv. Mater. 2016, 28, 3152. doi: 10.1002/adma.201503705  doi: 10.1002/adma.201503705

    63. [63]

      Chen, J.; Wen, Y.; Guo, Y.; Wu, B.; Huang, L.; Xue, Y.; Geng, D.; Wang, D.; Yu, G.; Liu, Y. J. Am. Chem. Soc. 2011, 133, 17548. doi: 10.1021/ja2063633  doi: 10.1021/ja2063633

    64. [64]

      Wei, S.; Ma, L. P.; Chen, M. L.; Liu, Z.; Ma, W.; Sun, D. M.; Cheng, H. M.; Ren, W. Carbon 2019, 148, 241. doi: 10.1016/j.carbon.2019.03.083  doi: 10.1016/j.carbon.2019.03.083

    65. [65]

      Tang, S.; Wang, H.; Wang, H. S.; Sun, Q.; Zhang, X.; Cong, C.; Xie, H.; Liu, X.; Zhou, X.; Huang, F.; et al. Nat. Commun. 2015, 6, 6499. doi: 10.1038/ncomms7499  doi: 10.1038/ncomms7499

    66. [66]

      Zhu, J.; Xu, H.; Zou, G.; Zhang, W.; Chai, R.; Choi, J.; Wu, J.; Liu, H.; Shen, G.; Fan, H. J. Am. Chem. Soc. 2019, 141, 5392. doi: 10.1021/jacs.9b00047  doi: 10.1021/jacs.9b00047

    67. [67]

      Peng, Z.; Yan, Z.; Sun, Z.; Tour, J. M. ACS Nano 2011, 5, 8241. doi: 10.1021/nn202923y  doi: 10.1021/nn202923y

    68. [68]

      Kim, H.; Song, I.; Park, C.; Son, M.; Hong, M.; Kim, Y.; Kim, J. S.; Shin, H. J.; Baik, J.; Choi, H. C. ACS Nano 2013, 7, 6575. doi: 10.1021/nn402847w  doi: 10.1021/nn402847w

    69. [69]

      Liu, N.; Zhang, J.; Qiu, Y. F.; Yang, J.; Hu, P. A. Sci. China Chem. 2016, 59, 707. doi: 10.1007/s11426-015-0536-8  doi: 10.1007/s11426-015-0536-8

    70. [70]

      Yang, C.; Wu, T. R.; Wang, H. M.; Zhang, X. F.; Shi, Z. Y.; Xie, X. M. Appl. Phys. Lett. 2017, 111, 043107. doi: 10.1063/1.4995559  doi: 10.1063/1.4995559

    71. [71]

      Zhou, L.; Wei, S.; Ge, C.; Zhao, C.; Guo, B.; Zhang, J.; Zhao, J. Nanomaterials 2019, 9, 964. doi: 10.3390/nano9070964  doi: 10.3390/nano9070964

    72. [72]

      Song, I.; Park, Y.; Cho, H.; Choi, H. C. Angew. Chem. Int. Ed. 2018, 57, 15374. doi: 10.1002/anie.201805923  doi: 10.1002/anie.201805923

    73. [73]

      Chen, Y. Z.; Medina, H.; Lin, H. C.; Tsai, H. W.; Su, T. Y.; Chueh, Y. L. Nanoscale 2015, 7, 1678. doi: 10.1039/c4nr04627g  doi: 10.1039/c4nr04627g

    74. [74]

      Tan, L.; Zeng, M.; Wu, Q.; Chen, L.; Wang, J.; Zhang, T.; Eckert, J.; Rummeli, M. H.; Fu, L. Small 2015, 11, 1840. doi: 10.1002/smll.201402427  doi: 10.1002/smll.201402427

    75. [75]

      Yang, J.; Jiang, Q. Q.; Chen, Z. H.; Hu, P. A.; Li, J. J.; Gu, C. Z.; Yu, G. Diam. Relat. Mater. 2019, 91, 112. doi: 10.1016/j.diamond.2018.11.009  doi: 10.1016/j.diamond.2018.11.009

    76. [76]

      Li, Q. C.; Zhao, Z. F.; Yan, B. M.; Song, X. J.; Zhang, Z. P.; Li, J.; Wu, X. S.; Bian, Z. Q.; Zou, X. L.; Zhang, Y. F.; et al. Adv. Mater. 2017, 29, 1701325. doi: 10.1002/adma.201701325  doi: 10.1002/adma.201701325

    77. [77]

      Zhang, J.; Jia, K.; Lin, L.; Zhao, W.; Quang, H. T.; Sun, L.; Li, T.; Li, Z.; Liu, X.; Zheng, L.; et al. Angew. Chem. Int. Ed. 2019, 58, 14446. doi: 10.1002/anie.201905672  doi: 10.1002/anie.201905672

    78. [78]

      Zhang, Y. H.; Sui, Y. P.; Chen, Z. Y.; Kang, H.; Li, J.; Wang, S.; Zhao, S. W.; Yu, G. H.; Peng, S. G.; Jin, Z.; Liu, X. Y.; et al. Carbon 2021, 185, 82. doi: 10.1016/j.carbon.2021.09.016  doi: 10.1016/j.carbon.2021.09.016

    79. [79]

      Liu, B. Z.; Wang, H. H.; Gu, W.; Zhou, L.; Chen, Z. L.; Nie, Y. F.; Tan, C. W.; Ci, H. N.; Wei, N.; Cui, L. Z.; et al. Nano Res. 2021, 14, 260. doi: 10.1007/s12274-020-3080-6  doi: 10.1007/s12274-020-3080-6

    80. [80]

      Ma, T.; Liu, Z.; Wen, J.; Gao, Y.; Ren, X.; Chen, H.; Jin, C.; Ma, X. L.; Xu, N.; Cheng, H. -M.; et al. Nat. Commun. 2017, 8, 14486. doi: 10.1038/ncomms14486  doi: 10.1038/ncomms14486

    81. [81]

      Xie, H. H.; Cui, K. J.; Cui, L. Z.; Liu, B. Z.; Yu, Y.; Tan, C. W.; Zhang, Y. Y.; Zhang, Y. F.; Liu, Z. F. Small 2020, 16, 1905485. doi: 10.1002/smll.201905485  doi: 10.1002/smll.201905485

    82. [82]

      Wang, H.; Xue, X.; Jiang, Q.; Wang, Y.; Geng, D.; Cai, L.; Wang, L.; Xu, Z.; Yu, G. J. Am. Chem. Soc. 2019, 141, 11004. doi: 10.1021/jacs.9b05705  doi: 10.1021/jacs.9b05705

    83. [83]

      Lee, J. H.; Kim, M. S.; Lim, J. Y.; Jung, S. H.; Kang, S. G.; Shin, H. J.; Choi, J. Y.; Hwang, S. W.; Whang, D. Appl. Phys. Lett. 2016, 109, 053102. doi: 10.1063/1.4960293  doi: 10.1063/1.4960293

    84. [84]

      Xie, Y.; Cheng, T.; Liu, C.; Chen, K.; Cheng, Y.; Chen, Z.; Qiu, L.; Cui, G.; Yu, Y.; Cui, L.; et al. ACS Nano 2019, 13, 10272. doi: 10.1021/acsnano.9b03596  doi: 10.1021/acsnano.9b03596

    85. [85]

      Chen, H.; Zhang, J.; Liu, X.; Liu, Z. F. Acta Phys. -Chim. Sin. 2022, 38, 2101053.  doi: 10.3866/PKU.WHXB202101053

    86. [86]

      Bachmatiuk, A.; Borrnert, F.; Grobosch, M.; Schaffel, F.; Wolff, U.; Scott, A.; Zaka, M.; Warner, J. H.; Klingeler, R.; Knupfer, M.; et al. ACS Nano 2009, 3, 4098. doi: 10.1021/nn9009278  doi: 10.1021/nn9009278

    87. [87]

      Hong, G.; Wu, Q. -H.; Ren, J.; Lee, S. T. Appl. Phys. Lett 2012, 100, 231604. doi: 10.1063/1.4726114  doi: 10.1063/1.4726114

    88. [88]

      Sun, J.; Zhang, Y.; Liu, Z. F. ChemNanoMat 2016, 2, 9. doi: 10.1002/cnma.201500160  doi: 10.1002/cnma.201500160

    89. [89]

      Saito, K.; Ogino, T. J. Phys. Chem. C 2014, 118, 5523. doi: 10.1021/jp408126e  doi: 10.1021/jp408126e

    90. [90]

      Medina, H.; Lin, Y. C.; Jin, C.; Lu, C. C.; Yeh, C. H.; Huang, K. P.; Suenaga, K.; Robertson, J.; Chiu, P. W. Adv. Funct. Mater. 2012, 22, 2123. doi: 10.1002/adfm.201102423  doi: 10.1002/adfm.201102423

    91. [91]

      Cheng, T.; Sun, L.; Liu, Z.; Ding, F.; Liu, Z. F. Acta Phys. -Chim. Sin. 2022, 38, 2012006.  doi: 10.3866/PKU.WHXB202012006

    92. [92]

      Chang, C.; Chen, W.; Chen, Y.; Chen, Y.; Chen, Y.; Ding, F.; Fan, C.; Jin Fan, H.; Fan, Z.; Gong, C.; et al. Acta Phys. -Chim. Sin. 2021, 37, 2108017.  doi: 10.3866/PKU.WHXB202108017

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    3. [3]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    4. [4]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    9. [9]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    10. [10]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    11. [11]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    14. [14]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    15. [15]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    16. [16]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    17. [17]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

Metrics
  • PDF Downloads(0)
  • Abstract views(283)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return