Citation: Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure[J]. Acta Physico-Chimica Sinica, ;2022, 38(7): 211100. doi: 10.3866/PKU.WHXB202111008 shu

Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure

  • Corresponding author: Liyong Tang, 1000003184@mail.ujs.edu.cn Hua Tang, huatang79@163.com
  • Contributed to this work equally.
  • Received Date: 4 November 2021
    Revised Date: 27 November 2021
    Accepted Date: 1 December 2021
    Available Online: 6 December 2021

    Fund Project: the National Natural Science Foundation of China 21975110the National Natural Science Foundation of China 21972058

  • Catalytic reduction of CO2 to CO has been considered promising for converting the greenhouse gas into chemical intermediates. Compared to other catalytic methods, photocatalytic CO2 reduction, which uses solar energy as the energy input, has attracted significant attention because it is a clean and inexhaustible resource. Therefore, using high-performance photocatalysts for effective CO2 reduction under mild reaction conditions is an active research hotspot. However, several current photocatalysts suffer from low solar energy conversion efficiency due to the extensive charge recombination and few active sites, leading to low CO2 reduction efficiency. Generally, constructing an S-scheme heterojunction can not only promote charge separation but also help maintain strong redox ability. Therefore, the S-scheme heterojunction is expected to help in achieving high conversion activity and CO2 reduction efficiency. Here, 2D tetragonal BiOBr0.5Cl0.5 nanosheets and hexagonal WO3 nanorods were prepared using a simple hydrothermal synthesis method, and the 2D/1D BiOBr0.5Cl0.5 nanosheets/WO3 nanorods (BiOBr0.5Cl0.5/WO3) S-scheme heterojunction with near infrared (NIR) light (> 780 nm) response were prepared via the electrostatic self-assembly method for the photocatalytic CO2 reduction. Following characterization and analysis, including diffuse reflectance spectra (DRS), Mott-Schottky plots, transient photocurrent response, time-resolution photoluminescence spectrum (TRPL), electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), and electron spin resonance (ESR) measurements, it can be demonstrated that an S-scheme carrier transfer route was formed between the 2D BiOBr0.5Cl0.5 nanosheets and 1D WO3 nanorods. Driven by the internal electric field, which was formed between the two semiconductors, electron migration was boosted, thus inhibiting the recombination of photogenerated carriers, while the stronger redox ability was maintained, thus providing good reduction efficiency over BiOBr0.5Cl0.5/WO3 composite in CO2 reduction. In addition, the 2D/1D nanosheet/nanorod structure allowed for enhanced interface contact with abundant active sites, which favored charge separation and increased photocatalytic activity. Furthermore, the amount of WO3 nanorods added during the preparation of the composites was altered, which led to the optimal amount of 5% (w, mass fraction) for the photocatalytic CO2 reduction. As a result, the BiOBr0.5Cl0.5/WO3 composite exhibited superior photocatalytic reduction performance with a CO yield of 16.68 μmol·g-1·h-1 in the presence of any precious metal cocatalyst or sacrificial agent, which was 1.7 and 9.8 times that of pure BiOBr0.5Cl0.5 and WO3, respectively. In addition, the BiOBr0.5Cl0.5/WO3 composite provided continuously increased CO yields with excellent selectivity under full-spectrum light irradiation, suggesting good photocatalytic stability. This work describes a novel idea for the construction of 2D/1D S-scheme heterojunction photocatalysts for efficient CO2 reduction.
  • 加载中
    1. [1]

      Li, Y. F.; Zhang, M.; Zhou, L.; Yang, S. J.; Wu, Z. S.; Ma, Y. H. Acta Phys. -Chim. Sin. 2021, 37, 2009030.  doi: 10.3866/PKU.WHXB202009030

    2. [2]

      Fei, X. G.; Tan, H. Y.; Cheng, B.; Zhu, B. C.; Zhang, L. Y. Acta Phys. -Chim. Sin. 2021, 37, 2010027.  doi: 10.3866/PKU.WHXB202010027

    3. [3]

      Wageh, S.; Al-Ghamdi, A. A.; Liu, L. J. Acta Phys. -Chim. Sin. 2021, 37, 2010024.  doi: 10.3866/PKU.WHXB202010024

    4. [4]

      Wang, Z. J.; Hong, J. J.; Ng, S. -F.; Liu, W.; Huang, J. J.; Chen, P. F.; Ong, W. -J. Acta Phys. -Chim. Sin. 2021, 37, 2011033.  doi: 10.3866/PKU.WHXB202011033

    5. [5]

      Liu, Q. Q.; He, X. D.; Peng, J. J.; Yu, X. H.; Tang, H.; Zhang, J. Chin. J. Catal. 2021, 42, 1478. doi: 10.1016/s1872-2067(20)63753-6  doi: 10.1016/s1872-2067(20)63753-6

    6. [6]

      Wang, Z. L.; Chen, Y. F.; Zhang, L. Y.; Cheng, B.; Yu, J. G.; Fan, J. J. J. Mater. Sci. Technol. 2020, 56, 143. doi: 10.1016/j.jmst.2020.02.062  doi: 10.1016/j.jmst.2020.02.062

    7. [7]

      Li, K. Y.; Chen, J.; Ao, Y. H.; Wang, P. F. Sep. Purif. Technol. 2021, 259, 118177. doi: 10.1016/j.seppur.2020.118177v  doi: 10.1016/j.seppur.2020.118177v

    8. [8]

      Mu, R. H.; Ao, Y. H.; Wu, T. F.; Wang, C.; Wang, P. F. J. Alloys Compd. 2020, 812, 151990. doi: 10.1016/j.jallcom.2019.151990  doi: 10.1016/j.jallcom.2019.151990

    9. [9]

      Zhang, Y.; Qin, H. N.; Li, B. L.; Wu, B. Chin. J. Struc. Chem. 2021, 40, 595. doi: 10.14102/j.cnki.0254-5861.2011-2989  doi: 10.14102/j.cnki.0254-5861.2011-2989

    10. [10]

      Che, H. N.; Gao, X.; Chen, J.; Hou, J.; Ao, Y. H.; Wang, P. F. Angew. Chem. Int. Ed. 2021, 60, 2. doi: 10.1002/anie.202111769  doi: 10.1002/anie.202111769

    11. [11]

      Liu, X. T.; Gu, S. N.; Zhao, Y. J.; Zhou, G. W.; Li, W. J. J. Mater. Sci. Technol. 2020, 56, 45. doi: 10.1016/j.jmst.2020.04.023  doi: 10.1016/j.jmst.2020.04.023

    12. [12]

      Zhang, J. Y.; Liao, H. G.; Sun, S. G. Chin. J. Struc. Chem. 2020, 39, 1019. doi: 10.14102/j.cnki.0254-5861.2011-2553  doi: 10.14102/j.cnki.0254-5861.2011-2553

    13. [13]

      Han, S. T.; Li, W. Y.; Xi, H. L.; Yuan, R. S.; Long, J. L.; Xu, C. J. Hazard. Mater. 2021, 423, 127012. doi: 10.1016/j.jhazmat.2021.127012v  doi: 10.1016/j.jhazmat.2021.127012v

    14. [14]

      Li, D. S.; Huang, Y.; Li, S. M.; Wang, C. H.; Li, Y. Y.; Zhang, X. T.; Liu, Y. C. Chin. J. Catal. 2021, 41, 154. doi: 10.1016/s1872-2067(19)63475-3  doi: 10.1016/s1872-2067(19)63475-3

    15. [15]

      Lu, Y.; Fan, D. Q.; Wang, Y. D.; Xu, H. L.; Lu, C. H.; Yang, X. F. ACS Nano 2021, 15, 10366. doi: 10.1021/acsnano.1c02578  doi: 10.1021/acsnano.1c02578

    16. [16]

      Sayed, M.; Zhu, B. C.; Kuang, P. Y.; Liu, X. Y.; Cheng, B.; Ghamdi, A. A. A.; Wageh, S.; Zhang, L. Y.; Yu, J. G. Adv. Sust. Syst. 2021, 2100264. doi: 10.1002/adsu.202100264  doi: 10.1002/adsu.202100264

    17. [17]

      Wang, L. B.; Cheng, B.; Zhang, L. Y.; Yu, J. G. Small 2021, 17, 2103447. doi: 10.1002/smll.202103447  doi: 10.1002/smll.202103447

    18. [18]

      Lin, H.; Ma, Z. Y.; Zhao, J. W.; Liu, Y.; Chen, J. Q.; Wang, J. H.; Wu, K. F.; Jia, H. P.; Zhang, X. M.; Cao, X. H.; et al. Angew. Chem. Int. Ed. 2021, 60, 1235. doi: 10.1002/anie.202009267  doi: 10.1002/anie.202009267

    19. [19]

      Zhang, L.; Xiao, W. P.; Zhang, Y.; Han, F. Y.; Yang, X. F. Compos. Commun. 2021, 26, 100792. doi: 10.1016/j.coco.2021.100792.  doi: 10.1016/j.coco.2021.100792

    20. [20]

      Wang, J. F.; Chen, J.; Wang, P. F.; Hou, J.; Wang, C.; Ao, Y. H. Appl. Catal. B Environ. 2018, 239, 578. doi: 10.1016/j.apcatb.2018.08.048  doi: 10.1016/j.apcatb.2018.08.048

    21. [21]

      Zhou, S. Q.; Wang, Y.; Zhou, K.; Ba, D. Y.; Ao, Y. H.; Wang, P. F. Chin. Chem. Lett. 2021, 32, 2179. doi: 10.1016/j.cclet.2020.12.002  doi: 10.1016/j.cclet.2020.12.002

    22. [22]

      Wageh, S.; Al-Ghamdi, A. A.; Rashida, J.; Li, X.; Zhang, P. Chin. J. Catal. 2021, 42, 667. doi: 10.1016/S1872-2067(20)63705-6  doi: 10.1016/S1872-2067(20)63705-6

    23. [23]

      Fan, D. Q.; Lu, Y.; Zhang, H.; Xu, H. L.; Lu, C. H.; Tang, Y. C.; Yang, X. F. Appl. Catal. B Environ. 2021, 295, 120285. doi: 10.1016/j.apcatb.2021.120285  doi: 10.1016/j.apcatb.2021.120285

    24. [24]

      Liu, L. Z.; Hu, T. P.; Dai, K.; Zhang, J. F.; Liang, C. H. Chin. J. Catal. 2021, 42, 46. doi: 10.1016/s1872-2067(20)63560-4  doi: 10.1016/s1872-2067(20)63560-4

    25. [25]

      Wang, R.; Shen, J.; Sun, K. H.; Tang, H.; Liu, Q. Q. Appl. Surf. Sci. 2019, 493, 1142. doi: 10.1016/j.apsusc.2019.07.121  doi: 10.1016/j.apsusc.2019.07.121

    26. [26]

      Lu, Y.; Zhang, H.; Fan, D. Q.; Chen, Z. P.; Yang, X. F. J. Hazard. Mater. 2021, 423, 127128. doi: 10.1016/j.jhazmat.2021.127128  doi: 10.1016/j.jhazmat.2021.127128

    27. [27]

      Liu, X.; Zhao, Y. X.; Yang, X. F.; Liu, Q. Q.; Yu, X. H.; Li, Y. Y.; Tang, H.; Zhang, T. R. Appl. Catal. B Environ. 2020, 275, 119144. doi: 10.1016/j.apcatb.2020.119144  doi: 10.1016/j.apcatb.2020.119144

    28. [28]

      Yan, S. W.; Song, H. J.; Li, Y.; Yang, J.; Jia, X. H.; Wang, S. Z.; Yang, X. F. Appl. Catal. B Environ. 2022, 301, 120820. doi: 10.1016/j.apcatb.2021.120820  doi: 10.1016/j.apcatb.2021.120820

    29. [29]

      Xie, Q.; He, W. N.; Liu, S. W.; Li, C. H.; Zhang, J. F.; Wong, P. K. Chin. J. Catal. 2020, 41, 140. doi: 10.1016/s1872-2067(19)63481-9  doi: 10.1016/s1872-2067(19)63481-9

    30. [30]

      Wang, L.; Zhu, C. L.; Yin, L. S.; Huang, W. Acta Phys. -Chim. Sin. 2020, 36, 1907001.  doi: 10.3866/PKU.WHXB201907001

    31. [31]

      Sayed, M.; Xu, F. Y.; Kuang, P. Y.; Low, J. X.; Wang, S. Y.; Zhang, L. Y.; Yu, J. G. Nat. Commun. 2021, 12, 4936. doi: 10.1038/s41467-021-26467-6  doi: 10.1038/s41467-021-26467-6

    32. [32]

      Prasad, C.; Tang, H.; Liu, Q. Q.; Bahadur, I.; Karlapudi, S.; Jiang, Y. J. Int. J. Hydrog. Energy 2020, 45, 337. doi: 10.1016/j.ijhydene.2019.07.070  doi: 10.1016/j.ijhydene.2019.07.070

    33. [33]

      Kuang, P. Y.; Wang, Y. R.; Zhu, B. C.; Xia, F. J.; Tung, C. W.; Wu, J. S.; Chen, H. M.; Yu, J. G. Adv. Mater. 2021, 33, 2008599. doi: 10.1002/adma.202008599  doi: 10.1002/adma.202008599

    34. [34]

      Bie, C. B.; Yu, H. G.; Cheng, B.; Ho, W. K.; Fan, J. J.; Yu, J. G. Adv. Mater. 2021, 33, 2003521. doi: 10.1002/adma.202003521  doi: 10.1002/adma.202003521

    35. [35]

      Tao, J. N.; Yu, X. H.; Liu, Q. Q.; Liu, G. W.; Tang, H. J. Colloid Interface Sci. 2021, 585, 470. doi: 10.1016/j.jcis.2020.10.028  doi: 10.1016/j.jcis.2020.10.028

    36. [36]

      Wang, R.; Shen, J.; Zhang, W. J.; Liu, Q. Q.; Zhang, M. Y.; Zulfiqar; Tang, H. Ceram. Int. 2020, 46, 23. doi: 10.1016/j.ceramint.2019.08.226  doi: 10.1016/j.ceramint.2019.08.226

    37. [37]

      Wu, J.; Xie, Y.; Ling, Y.; Si, J. C.; Li, X.; Wang, J. L.; Ye, H.; Zhao, J. S.; Li, S. Q.; Zhao, Q. D.; et al. Chem. Eng. J. 2020, 400, 125944. doi: 10.1016/j.cej.2020.125944  doi: 10.1016/j.cej.2020.125944

    38. [38]

      Zhang, Z. Y.; Chi, M. F.; Veith, G. M.; Zhang, P. F.; Lutterman, D. A.; Rosenthal, J.; Overbury, S. T.; Dai, S.; Zhu, H. Y. ACS Catal. 2016, 6, 6255. doi: 10.1021/acscatal.6b01297  doi: 10.1021/acscatal.6b01297

    39. [39]

      Han, L. L.; Song, S. J.; Liu, M. J.; Yao, S. Y.; Liang, Z. X.; Cheng, H.; Ren, Z. H.; Liu, W.; Lin, R. Q.; Qi, G. C.; et al. J. Am. Chem. Soc. 2020, 142, 12563. doi: 10.1021/jacs.9b12111  doi: 10.1021/jacs.9b12111

    40. [40]

      Jia, X. M.; Han, Q. F.; Wang, X.; Zhu, J. W. Photochem. Photobiol. 2018, 94, 942. doi: 10.1111/php.12943  doi: 10.1111/php.12943

    41. [41]

      Wilczewska, P.; Bielicka-Giełdoń, A.; Borzyszkowska, A. F.; Ryl, J.; Klimczuk, T.; Siedlecka, E. M. J. Photochem. Photobiol. A Chem. 2019, 382, 111932. doi: 10.1016/j.jphotochem.2019.111932  doi: 10.1016/j.jphotochem.2019.111932

    42. [42]

      Liu, Y. Y.; Son, W. J.; Lu, J. B.; Huang, B. B.; Dai, Y.; Whangbo, M. H. Chem. Eur. J. 2011, 17, 9342. doi: 10.1002/chem.201100952  doi: 10.1002/chem.201100952

    43. [43]

      Bao, Y. P.; Lee, W. J.; Guan, C. T.; Liang, Y. N.; Lim T. T.; Hu, X. J. Mater. Chem. B 2021, 9, 3079. doi: 10.1016/j.seppur.2021.119203  doi: 10.1016/j.seppur.2021.119203

    44. [44]

      Sanaa, S. K.; Vladimir, U.; Yulia, K.; Ella, M.; Inna, P.; Yoel, S. Catal. Commun. 2011, 12, 1136. doi: 10.1016/j.catcom.2011.03.014  doi: 10.1016/j.catcom.2011.03.014

    45. [45]

      Zhang, B.; Ji, G. B.; Liu, Y. S.; Gondal, M. A.; Chang, X. F. Catal. Commun. 2013, 36, 25. doi: 10.1016/j.catcom.2013.02.021  doi: 10.1016/j.catcom.2013.02.021

    46. [46]

      Li, Y.; Zheng, X. N.; Yang, J.; Zhao, Z. H.; Cui, S. H. J. Taiwan Inst. Chem. E 2021, 119, 213. doi: 10.1016/j.jtice.2021.02.014  doi: 10.1016/j.jtice.2021.02.014

    47. [47]

      Zhang, M.; Cheng, J.; Xuan, X. X.; Zhou, J. H.; Cen, K. F. Chem. Eur. J. 2017, 322, 22. doi: 10.1016/j.cej.2017.03.126  doi: 10.1016/j.cej.2017.03.126

    48. [48]

      Pan, Y. X.; You, Y.; Xin, S.; Li, Y. T.; Fu, G. T.; Cui, Z. M.; Men, Y. L.; Cao, F. F.; Yu, S. H.; Goodenough, J. B. J. Am. Chem. Soc. 2017, 139, 4123. doi: 10.1021/jacs.7b00266  doi: 10.1021/jacs.7b00266

    49. [49]

      Gu, S. S.; Marianov, A. N.; Xu, H. M.; Jiang, Y. J. J. Mater. Sci. Technol. 2021, 80, 20. doi: 10.1016/j.jmst.2020.09.053  doi: 10.1016/j.jmst.2020.09.053

    50. [50]

      Tang, H.; Xia, Z. H.; Chen, R.; Liu, Q. Q.; Zhou, T. H. Chem. Asian J. 2020, 15, 3456. doi: 10.1002/asia.202000912  doi: 10.1002/asia.202000912

    51. [51]

      Hong, X. Y.; Yu, X. H.; Wang, L. L.; Liu, Q. Q.; Sun, J. F.; Tang, H. Inorg. Chem. 2021, 60, 12506. doi: 10.1021/acs.inorgchem.1c01716  doi: 10.1021/acs.inorgchem.1c01716

    52. [52]

      Tahir, M.; Tahir, B. J. Mater. Sci. Technol. 2022, 106, 195. doi: 10.1016/j.jmst.2021.08.019  doi: 10.1016/j.jmst.2021.08.019

    53. [53]

      Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, M. J. Angew. Chem. Int. Ed. 2021, 133, 1521. doi: 10.1002/ange.201914949  doi: 10.1002/ange.201914949

    54. [54]

      Dehkordi, A. B.; Ziarati, A.; Ghasemi, J. B.; Badiei, A. Sol. Energy 2020, 205, 465. doi: 10.1016/j.solener.2020.05.071  doi: 10.1016/j.solener.2020.05.071

    55. [55]

      Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    56. [56]

      Liu, Q. Q.; He, X. D.; Tao, J. N.; Tang, H.; Liu, Z. Q. ChemNanoMat. 2021, 7, 44. doi: 10.1002/cnma.202000536  doi: 10.1002/cnma.202000536

    57. [57]

      Peng, J. J.; Shen, J.; Yu, X. H.; Tang, H.; Zulfiqar; Liu, Q. Q. Chin. J. Catal. 2021, 42, 87. doi: 10.1016/S1872-2067(20)63595-1  doi: 10.1016/S1872-2067(20)63595-1

    58. [58]

      Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Nat. Commun. 2020, 11, 4613. doi: 10.1038/s41467-020-18350-7  doi: 10.1038/s41467-020-18350-7

    59. [59]

      Girish, K. S.; Koteswara, R. K. S. R. Appl. Surf. Sci. 2015, 355, 939. doi: 10.1016/j.apsusc.2015.07.003  doi: 10.1016/j.apsusc.2015.07.003

    60. [60]

      Wang, L. L.; Tang, G. G.; Liu, S.; Dong, H. L.; Liu, Q. Q.; Sun, J. F.; Tang, H. Chem. Eng. J. 2022, 428, 131338. doi: 10.1016/j.cej.2021.131338  doi: 10.1016/j.cej.2021.131338

    61. [61]

      Xia, Y.; Tian, Z. H.; Heil, T.; Meng, A.; Cheng, B.; Cao, S. W.; Yu, J. G.; Antonietti, M. Joule 2019, 3, 2792. doi: 10.1016/j.joule.2019.08.011  doi: 10.1016/j.joule.2019.08.011

    62. [62]

      Ye, L.; Wen, Z. H. Int. J. Hydrog. Energy 2019, 44, 3751. doi: 10.1016/j.ijhydene.2018.12.093  doi: 10.1016/j.ijhydene.2018.12.093

    63. [63]

      Gao, M. C.; Yang, J. X.; Sun, T.; Zhang, Z. Z.; Zhang, D. F.; Huang, H. J.; Lin, H. X.; Fang, Y.; Wang, X. X. Appl. Catal. B Environ. 2019, 243, 734. doi: 10.1016/j.apcatb.2018.11.020  doi: 10.1016/j.apcatb.2018.11.020

    64. [64]

      Tang, M. L.; Ao, Y. H.; Wang, P. F.; Wang, C. J. Hazard. Mater. 2020, 387, 121713. doi: 10.1016/j.jhazmat.2019.121713  doi: 10.1016/j.jhazmat.2019.121713

    65. [65]

      Wang, S. L.; Zhu, Y.; Luo, X.; Huang, Y.; Chai, J. W.; Wong, T. I.; Xu, G. Q. Adv. Funct. Mater. 2018, 28, 1705357. doi: 10.1002/adfm.201705357  doi: 10.1002/adfm.201705357

    66. [66]

      Fu, J. W.; Xu, Q. L.; Low, J. X.; Jiang, C. J.; Yu, J. G. Appl. Catal. B Environ. 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011  doi: 10.1016/j.apcatb.2018.11.011

    67. [67]

      Liu, Q. Q.; Huang, J. X.; Tang, H.; Yu, X. H.; Shen, J. J. Mater. Sci. Technol. 2020, 56, 196. doi: 10.1016/j.jmst.2020.04.026  doi: 10.1016/j.jmst.2020.04.026

    68. [68]

      Manthiram, K.; Alivisatos, A. P. J. Am. Chem. Soc. 2012, 134, 3995. doi: 10.1021/ja211363w  doi: 10.1021/ja211363w

    69. [69]

      An, Z.; Zhou, T. H. Chin. J. Struc. Chem. 2019, 38, 644. doi: 10.14102/j.cnki.0254-5861.2011-2112  doi: 10.14102/j.cnki.0254-5861.2011-2112

    70. [70]

      Ma, B. R.; Xin, S. S.; Xin, Y. J.; Ma, X. M.; Zhang, C. L.; Gao, M. C.; Ma, F.; Ma, Y. M. Sep. Purif. Technol. 2021, 268, 1383. doi: 10.1016/j.seppur.2021.118699  doi: 10.1016/j.seppur.2021.118699

    71. [71]

      Sun, H. G.; Tian, Z. X.; Zhou, G. L.; Zhang, J. M.; Li, P. Appl. Surf. Sci. 2019, 469, 125. doi: 10.1016/j.apsusc.2018.11.006  doi: 10.1016/j.apsusc.2018.11.006

  • 加载中
    1. [1]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    2. [2]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    6. [6]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    7. [7]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    8. [8]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    9. [9]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    10. [10]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    11. [11]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    12. [12]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    13. [13]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    14. [14]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    15. [15]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    16. [16]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    17. [17]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    18. [18]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    19. [19]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    20. [20]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

Metrics
  • PDF Downloads(32)
  • Abstract views(918)
  • HTML views(270)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return