Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure
- Corresponding author: Liyong Tang, 1000003184@mail.ujs.edu.cn Hua Tang, huatang79@163.com † Contributed to this work equally.
Citation: Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure[J]. Acta Physico-Chimica Sinica, ;2022, 38(7): 211100. doi: 10.3866/PKU.WHXB202111008
Li, Y. F.; Zhang, M.; Zhou, L.; Yang, S. J.; Wu, Z. S.; Ma, Y. H. Acta Phys. -Chim. Sin. 2021, 37, 2009030.
doi: 10.3866/PKU.WHXB202009030
Fei, X. G.; Tan, H. Y.; Cheng, B.; Zhu, B. C.; Zhang, L. Y. Acta Phys. -Chim. Sin. 2021, 37, 2010027.
doi: 10.3866/PKU.WHXB202010027
Wageh, S.; Al-Ghamdi, A. A.; Liu, L. J. Acta Phys. -Chim. Sin. 2021, 37, 2010024.
doi: 10.3866/PKU.WHXB202010024
Wang, Z. J.; Hong, J. J.; Ng, S. -F.; Liu, W.; Huang, J. J.; Chen, P. F.; Ong, W. -J. Acta Phys. -Chim. Sin. 2021, 37, 2011033.
doi: 10.3866/PKU.WHXB202011033
Liu, Q. Q.; He, X. D.; Peng, J. J.; Yu, X. H.; Tang, H.; Zhang, J. Chin. J. Catal. 2021, 42, 1478. doi: 10.1016/s1872-2067(20)63753-6
doi: 10.1016/s1872-2067(20)63753-6
Wang, Z. L.; Chen, Y. F.; Zhang, L. Y.; Cheng, B.; Yu, J. G.; Fan, J. J. J. Mater. Sci. Technol. 2020, 56, 143. doi: 10.1016/j.jmst.2020.02.062
doi: 10.1016/j.jmst.2020.02.062
Li, K. Y.; Chen, J.; Ao, Y. H.; Wang, P. F. Sep. Purif. Technol. 2021, 259, 118177. doi: 10.1016/j.seppur.2020.118177v
doi: 10.1016/j.seppur.2020.118177v
Mu, R. H.; Ao, Y. H.; Wu, T. F.; Wang, C.; Wang, P. F. J. Alloys Compd. 2020, 812, 151990. doi: 10.1016/j.jallcom.2019.151990
doi: 10.1016/j.jallcom.2019.151990
Zhang, Y.; Qin, H. N.; Li, B. L.; Wu, B. Chin. J. Struc. Chem. 2021, 40, 595. doi: 10.14102/j.cnki.0254-5861.2011-2989
doi: 10.14102/j.cnki.0254-5861.2011-2989
Che, H. N.; Gao, X.; Chen, J.; Hou, J.; Ao, Y. H.; Wang, P. F. Angew. Chem. Int. Ed. 2021, 60, 2. doi: 10.1002/anie.202111769
doi: 10.1002/anie.202111769
Liu, X. T.; Gu, S. N.; Zhao, Y. J.; Zhou, G. W.; Li, W. J. J. Mater. Sci. Technol. 2020, 56, 45. doi: 10.1016/j.jmst.2020.04.023
doi: 10.1016/j.jmst.2020.04.023
Zhang, J. Y.; Liao, H. G.; Sun, S. G. Chin. J. Struc. Chem. 2020, 39, 1019. doi: 10.14102/j.cnki.0254-5861.2011-2553
doi: 10.14102/j.cnki.0254-5861.2011-2553
Han, S. T.; Li, W. Y.; Xi, H. L.; Yuan, R. S.; Long, J. L.; Xu, C. J. Hazard. Mater. 2021, 423, 127012. doi: 10.1016/j.jhazmat.2021.127012v
doi: 10.1016/j.jhazmat.2021.127012v
Li, D. S.; Huang, Y.; Li, S. M.; Wang, C. H.; Li, Y. Y.; Zhang, X. T.; Liu, Y. C. Chin. J. Catal. 2021, 41, 154. doi: 10.1016/s1872-2067(19)63475-3
doi: 10.1016/s1872-2067(19)63475-3
Lu, Y.; Fan, D. Q.; Wang, Y. D.; Xu, H. L.; Lu, C. H.; Yang, X. F. ACS Nano 2021, 15, 10366. doi: 10.1021/acsnano.1c02578
doi: 10.1021/acsnano.1c02578
Sayed, M.; Zhu, B. C.; Kuang, P. Y.; Liu, X. Y.; Cheng, B.; Ghamdi, A. A. A.; Wageh, S.; Zhang, L. Y.; Yu, J. G. Adv. Sust. Syst. 2021, 2100264. doi: 10.1002/adsu.202100264
doi: 10.1002/adsu.202100264
Wang, L. B.; Cheng, B.; Zhang, L. Y.; Yu, J. G. Small 2021, 17, 2103447. doi: 10.1002/smll.202103447
doi: 10.1002/smll.202103447
Lin, H.; Ma, Z. Y.; Zhao, J. W.; Liu, Y.; Chen, J. Q.; Wang, J. H.; Wu, K. F.; Jia, H. P.; Zhang, X. M.; Cao, X. H.; et al. Angew. Chem. Int. Ed. 2021, 60, 1235. doi: 10.1002/anie.202009267
doi: 10.1002/anie.202009267
Zhang, L.; Xiao, W. P.; Zhang, Y.; Han, F. Y.; Yang, X. F. Compos. Commun. 2021, 26, 100792. doi: 10.1016/j.coco.2021.100792.
doi: 10.1016/j.coco.2021.100792
Wang, J. F.; Chen, J.; Wang, P. F.; Hou, J.; Wang, C.; Ao, Y. H. Appl. Catal. B Environ. 2018, 239, 578. doi: 10.1016/j.apcatb.2018.08.048
doi: 10.1016/j.apcatb.2018.08.048
Zhou, S. Q.; Wang, Y.; Zhou, K.; Ba, D. Y.; Ao, Y. H.; Wang, P. F. Chin. Chem. Lett. 2021, 32, 2179. doi: 10.1016/j.cclet.2020.12.002
doi: 10.1016/j.cclet.2020.12.002
Wageh, S.; Al-Ghamdi, A. A.; Rashida, J.; Li, X.; Zhang, P. Chin. J. Catal. 2021, 42, 667. doi: 10.1016/S1872-2067(20)63705-6
doi: 10.1016/S1872-2067(20)63705-6
Fan, D. Q.; Lu, Y.; Zhang, H.; Xu, H. L.; Lu, C. H.; Tang, Y. C.; Yang, X. F. Appl. Catal. B Environ. 2021, 295, 120285. doi: 10.1016/j.apcatb.2021.120285
doi: 10.1016/j.apcatb.2021.120285
Liu, L. Z.; Hu, T. P.; Dai, K.; Zhang, J. F.; Liang, C. H. Chin. J. Catal. 2021, 42, 46. doi: 10.1016/s1872-2067(20)63560-4
doi: 10.1016/s1872-2067(20)63560-4
Wang, R.; Shen, J.; Sun, K. H.; Tang, H.; Liu, Q. Q. Appl. Surf. Sci. 2019, 493, 1142. doi: 10.1016/j.apsusc.2019.07.121
doi: 10.1016/j.apsusc.2019.07.121
Lu, Y.; Zhang, H.; Fan, D. Q.; Chen, Z. P.; Yang, X. F. J. Hazard. Mater. 2021, 423, 127128. doi: 10.1016/j.jhazmat.2021.127128
doi: 10.1016/j.jhazmat.2021.127128
Liu, X.; Zhao, Y. X.; Yang, X. F.; Liu, Q. Q.; Yu, X. H.; Li, Y. Y.; Tang, H.; Zhang, T. R. Appl. Catal. B Environ. 2020, 275, 119144. doi: 10.1016/j.apcatb.2020.119144
doi: 10.1016/j.apcatb.2020.119144
Yan, S. W.; Song, H. J.; Li, Y.; Yang, J.; Jia, X. H.; Wang, S. Z.; Yang, X. F. Appl. Catal. B Environ. 2022, 301, 120820. doi: 10.1016/j.apcatb.2021.120820
doi: 10.1016/j.apcatb.2021.120820
Xie, Q.; He, W. N.; Liu, S. W.; Li, C. H.; Zhang, J. F.; Wong, P. K. Chin. J. Catal. 2020, 41, 140. doi: 10.1016/s1872-2067(19)63481-9
doi: 10.1016/s1872-2067(19)63481-9
Wang, L.; Zhu, C. L.; Yin, L. S.; Huang, W. Acta Phys. -Chim. Sin. 2020, 36, 1907001.
doi: 10.3866/PKU.WHXB201907001
Sayed, M.; Xu, F. Y.; Kuang, P. Y.; Low, J. X.; Wang, S. Y.; Zhang, L. Y.; Yu, J. G. Nat. Commun. 2021, 12, 4936. doi: 10.1038/s41467-021-26467-6
doi: 10.1038/s41467-021-26467-6
Prasad, C.; Tang, H.; Liu, Q. Q.; Bahadur, I.; Karlapudi, S.; Jiang, Y. J. Int. J. Hydrog. Energy 2020, 45, 337. doi: 10.1016/j.ijhydene.2019.07.070
doi: 10.1016/j.ijhydene.2019.07.070
Kuang, P. Y.; Wang, Y. R.; Zhu, B. C.; Xia, F. J.; Tung, C. W.; Wu, J. S.; Chen, H. M.; Yu, J. G. Adv. Mater. 2021, 33, 2008599. doi: 10.1002/adma.202008599
doi: 10.1002/adma.202008599
Bie, C. B.; Yu, H. G.; Cheng, B.; Ho, W. K.; Fan, J. J.; Yu, J. G. Adv. Mater. 2021, 33, 2003521. doi: 10.1002/adma.202003521
doi: 10.1002/adma.202003521
Tao, J. N.; Yu, X. H.; Liu, Q. Q.; Liu, G. W.; Tang, H. J. Colloid Interface Sci. 2021, 585, 470. doi: 10.1016/j.jcis.2020.10.028
doi: 10.1016/j.jcis.2020.10.028
Wang, R.; Shen, J.; Zhang, W. J.; Liu, Q. Q.; Zhang, M. Y.; Zulfiqar; Tang, H. Ceram. Int. 2020, 46, 23. doi: 10.1016/j.ceramint.2019.08.226
doi: 10.1016/j.ceramint.2019.08.226
Wu, J.; Xie, Y.; Ling, Y.; Si, J. C.; Li, X.; Wang, J. L.; Ye, H.; Zhao, J. S.; Li, S. Q.; Zhao, Q. D.; et al. Chem. Eng. J. 2020, 400, 125944. doi: 10.1016/j.cej.2020.125944
doi: 10.1016/j.cej.2020.125944
Zhang, Z. Y.; Chi, M. F.; Veith, G. M.; Zhang, P. F.; Lutterman, D. A.; Rosenthal, J.; Overbury, S. T.; Dai, S.; Zhu, H. Y. ACS Catal. 2016, 6, 6255. doi: 10.1021/acscatal.6b01297
doi: 10.1021/acscatal.6b01297
Han, L. L.; Song, S. J.; Liu, M. J.; Yao, S. Y.; Liang, Z. X.; Cheng, H.; Ren, Z. H.; Liu, W.; Lin, R. Q.; Qi, G. C.; et al. J. Am. Chem. Soc. 2020, 142, 12563. doi: 10.1021/jacs.9b12111
doi: 10.1021/jacs.9b12111
Jia, X. M.; Han, Q. F.; Wang, X.; Zhu, J. W. Photochem. Photobiol. 2018, 94, 942. doi: 10.1111/php.12943
doi: 10.1111/php.12943
Wilczewska, P.; Bielicka-Giełdoń, A.; Borzyszkowska, A. F.; Ryl, J.; Klimczuk, T.; Siedlecka, E. M. J. Photochem. Photobiol. A Chem. 2019, 382, 111932. doi: 10.1016/j.jphotochem.2019.111932
doi: 10.1016/j.jphotochem.2019.111932
Liu, Y. Y.; Son, W. J.; Lu, J. B.; Huang, B. B.; Dai, Y.; Whangbo, M. H. Chem. Eur. J. 2011, 17, 9342. doi: 10.1002/chem.201100952
doi: 10.1002/chem.201100952
Bao, Y. P.; Lee, W. J.; Guan, C. T.; Liang, Y. N.; Lim T. T.; Hu, X. J. Mater. Chem. B 2021, 9, 3079. doi: 10.1016/j.seppur.2021.119203
doi: 10.1016/j.seppur.2021.119203
Sanaa, S. K.; Vladimir, U.; Yulia, K.; Ella, M.; Inna, P.; Yoel, S. Catal. Commun. 2011, 12, 1136. doi: 10.1016/j.catcom.2011.03.014
doi: 10.1016/j.catcom.2011.03.014
Zhang, B.; Ji, G. B.; Liu, Y. S.; Gondal, M. A.; Chang, X. F. Catal. Commun. 2013, 36, 25. doi: 10.1016/j.catcom.2013.02.021
doi: 10.1016/j.catcom.2013.02.021
Li, Y.; Zheng, X. N.; Yang, J.; Zhao, Z. H.; Cui, S. H. J. Taiwan Inst. Chem. E 2021, 119, 213. doi: 10.1016/j.jtice.2021.02.014
doi: 10.1016/j.jtice.2021.02.014
Zhang, M.; Cheng, J.; Xuan, X. X.; Zhou, J. H.; Cen, K. F. Chem. Eur. J. 2017, 322, 22. doi: 10.1016/j.cej.2017.03.126
doi: 10.1016/j.cej.2017.03.126
Pan, Y. X.; You, Y.; Xin, S.; Li, Y. T.; Fu, G. T.; Cui, Z. M.; Men, Y. L.; Cao, F. F.; Yu, S. H.; Goodenough, J. B. J. Am. Chem. Soc. 2017, 139, 4123. doi: 10.1021/jacs.7b00266
doi: 10.1021/jacs.7b00266
Gu, S. S.; Marianov, A. N.; Xu, H. M.; Jiang, Y. J. J. Mater. Sci. Technol. 2021, 80, 20. doi: 10.1016/j.jmst.2020.09.053
doi: 10.1016/j.jmst.2020.09.053
Tang, H.; Xia, Z. H.; Chen, R.; Liu, Q. Q.; Zhou, T. H. Chem. Asian J. 2020, 15, 3456. doi: 10.1002/asia.202000912
doi: 10.1002/asia.202000912
Hong, X. Y.; Yu, X. H.; Wang, L. L.; Liu, Q. Q.; Sun, J. F.; Tang, H. Inorg. Chem. 2021, 60, 12506. doi: 10.1021/acs.inorgchem.1c01716
doi: 10.1021/acs.inorgchem.1c01716
Tahir, M.; Tahir, B. J. Mater. Sci. Technol. 2022, 106, 195. doi: 10.1016/j.jmst.2021.08.019
doi: 10.1016/j.jmst.2021.08.019
Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, M. J. Angew. Chem. Int. Ed. 2021, 133, 1521. doi: 10.1002/ange.201914949
doi: 10.1002/ange.201914949
Dehkordi, A. B.; Ziarati, A.; Ghasemi, J. B.; Badiei, A. Sol. Energy 2020, 205, 465. doi: 10.1016/j.solener.2020.05.071
doi: 10.1016/j.solener.2020.05.071
Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010
doi: 10.1016/j.chempr.2020.06.010
Liu, Q. Q.; He, X. D.; Tao, J. N.; Tang, H.; Liu, Z. Q. ChemNanoMat. 2021, 7, 44. doi: 10.1002/cnma.202000536
doi: 10.1002/cnma.202000536
Peng, J. J.; Shen, J.; Yu, X. H.; Tang, H.; Zulfiqar; Liu, Q. Q. Chin. J. Catal. 2021, 42, 87. doi: 10.1016/S1872-2067(20)63595-1
doi: 10.1016/S1872-2067(20)63595-1
Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Nat. Commun. 2020, 11, 4613. doi: 10.1038/s41467-020-18350-7
doi: 10.1038/s41467-020-18350-7
Girish, K. S.; Koteswara, R. K. S. R. Appl. Surf. Sci. 2015, 355, 939. doi: 10.1016/j.apsusc.2015.07.003
doi: 10.1016/j.apsusc.2015.07.003
Wang, L. L.; Tang, G. G.; Liu, S.; Dong, H. L.; Liu, Q. Q.; Sun, J. F.; Tang, H. Chem. Eng. J. 2022, 428, 131338. doi: 10.1016/j.cej.2021.131338
doi: 10.1016/j.cej.2021.131338
Xia, Y.; Tian, Z. H.; Heil, T.; Meng, A.; Cheng, B.; Cao, S. W.; Yu, J. G.; Antonietti, M. Joule 2019, 3, 2792. doi: 10.1016/j.joule.2019.08.011
doi: 10.1016/j.joule.2019.08.011
Ye, L.; Wen, Z. H. Int. J. Hydrog. Energy 2019, 44, 3751. doi: 10.1016/j.ijhydene.2018.12.093
doi: 10.1016/j.ijhydene.2018.12.093
Gao, M. C.; Yang, J. X.; Sun, T.; Zhang, Z. Z.; Zhang, D. F.; Huang, H. J.; Lin, H. X.; Fang, Y.; Wang, X. X. Appl. Catal. B Environ. 2019, 243, 734. doi: 10.1016/j.apcatb.2018.11.020
doi: 10.1016/j.apcatb.2018.11.020
Tang, M. L.; Ao, Y. H.; Wang, P. F.; Wang, C. J. Hazard. Mater. 2020, 387, 121713. doi: 10.1016/j.jhazmat.2019.121713
doi: 10.1016/j.jhazmat.2019.121713
Wang, S. L.; Zhu, Y.; Luo, X.; Huang, Y.; Chai, J. W.; Wong, T. I.; Xu, G. Q. Adv. Funct. Mater. 2018, 28, 1705357. doi: 10.1002/adfm.201705357
doi: 10.1002/adfm.201705357
Fu, J. W.; Xu, Q. L.; Low, J. X.; Jiang, C. J.; Yu, J. G. Appl. Catal. B Environ. 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011
doi: 10.1016/j.apcatb.2018.11.011
Liu, Q. Q.; Huang, J. X.; Tang, H.; Yu, X. H.; Shen, J. J. Mater. Sci. Technol. 2020, 56, 196. doi: 10.1016/j.jmst.2020.04.026
doi: 10.1016/j.jmst.2020.04.026
Manthiram, K.; Alivisatos, A. P. J. Am. Chem. Soc. 2012, 134, 3995. doi: 10.1021/ja211363w
doi: 10.1021/ja211363w
An, Z.; Zhou, T. H. Chin. J. Struc. Chem. 2019, 38, 644. doi: 10.14102/j.cnki.0254-5861.2011-2112
doi: 10.14102/j.cnki.0254-5861.2011-2112
Ma, B. R.; Xin, S. S.; Xin, Y. J.; Ma, X. M.; Zhang, C. L.; Gao, M. C.; Ma, F.; Ma, Y. M. Sep. Purif. Technol. 2021, 268, 1383. doi: 10.1016/j.seppur.2021.118699
doi: 10.1016/j.seppur.2021.118699
Sun, H. G.; Tian, Z. X.; Zhou, G. L.; Zhang, J. M.; Li, P. Appl. Surf. Sci. 2019, 469, 125. doi: 10.1016/j.apsusc.2018.11.006
doi: 10.1016/j.apsusc.2018.11.006
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Dong-Ling Kuang , Song Chen , Shaoru Chen , Yong-Jie Liao , Ning Li , Lai-Hon Chung , Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Lili Wang , Ya Yan , Rulin Li , Xujie Han , Jiahui Li , Ting Ran , Jialu Li , Baichuan Xiong , Xiaorong Song , Zhaohui Yin , Hong Wang , Qingjun Zhu , Bowen Cheng , Zhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692