Citation: Zhuonan Lei, Xinyi Ma, Xiaoyun Hu, Jun Fan, Enzhou Liu. Enhancement of Photocatalytic H2-Evolution Kinetics through the Dual Cocatalyst Activity of Ni2P-NiS-Decorated g-C3N4 Heterojunctions[J]. Acta Physico-Chimica Sinica, ;2022, 38(7): 211004. doi: 10.3866/PKU.WHXB202110049 shu

Enhancement of Photocatalytic H2-Evolution Kinetics through the Dual Cocatalyst Activity of Ni2P-NiS-Decorated g-C3N4 Heterojunctions

  • Corresponding author: Jun Fan, fanjun@nwu.edu.cn Enzhou Liu, liuenzhou@nwu.edu.cn
  • Received Date: 29 October 2021
    Revised Date: 12 November 2021
    Accepted Date: 22 November 2021
    Available Online: 24 November 2021

    Fund Project: the National Natural Science Foundation of China 21676213the National Natural Science Foundation of China 11974276the National Natural Science Foundation of China 22078261Natural Science Basic Research Program of Shaanxi 2020JM-422

  • With rapid industrialization, issues pertaining to the environment and energy have become an alarming concern. Photocatalytic water splitting is considered one of the most promising green technologies capable of resolving these issues, as it can convert solar energy into chemical energy and have a positive impact on the realization of "carbon neutrality". Current research focuses on the development of highly efficient catalysts to improve the photocatalytic H2-production activity. Transition metal phosphides and sulfides are often used as photocatalysts owing to their low H2-evolution overpotential and excellent electrical conductivity. Among them, Ni2P and NiS have generally been used independently during photocatalytic H2 production; however, it is necessary to study the synergistic effect when they are combined as a dual cocatalyst. In this work, we successfully prepared a Ni2P-NiS dual cocatalyst for the first time via a simple hydrothermal method using red phosphorus (RP) and thioacetamide (C2H5NS) as the sources of P and S. Ni2P-NiS was then introduced to the surface of g-C3N4 nanosheets through solvent evaporation to create a Ni2P-NiS/g-C3N4 heterojunction. Furthermore, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), ultraviolet-visible spectrophotometry (UV-Vis), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), linear sweep voltammetry (LSV), Mott-Schottky (M-S), and electrochemical impedance spectroscopy (EIS) were used to reveal the crystal structures, morphologies, element compositions, and photoelectric characteristics of the samples; thus, it was demonstrated that Ni2P-NiS was successfully deposited on the surface of g-C3N4 and that together they exhibited better activity than their monomers. Moreover, the optimized 15% Ni2P-NiS/g-C3N4 composite exhibits a H2 generation rate of 6892.7 μmol·g-1·h-1, which is about 46.1, 7.5 and 4.4 times higher than that of g-C3N4 (150 μmol·g-1·h-1), 15% NiS/g-C3N4 (914.5 μmol·g-1·h-1), and 15% Ni2P/g-C3N4 (1565.9 μmol·g-1·h-1), respectively. In addition, photoelectric performance tests show that Ni2P-NiS/g-C3N4 has a stronger photocurrent intensity, smaller charge-transfer resistance, more positive H2-evolution overpotential, and better charge-separation ability than the individual components (i.e., Ni2P and NiS), suggesting that the coexistence of Ni2P and NiS can further boost the activity of g-C3N4 during H2 evolution compared with their monomers. This is mainly due to the Schottky barrier effect between Ni2P-NiS nanoparticles and g-C3N4 nanosheets, which can greatly promote charge separation and charge transfer at their interface. Additionally, Ni2P-NiS can reduce the H2-evolution overpotential, leading to the increased surface kinetics of H2 evolution. This work offers a promising approach to obtaining a highly active and stable noble-metal-free dual cocatalyst for photocatalytic H2 production.
  • 加载中
    1. [1]

      Shen, R.; He, K.; Zhang, A.; Li, N.; Ng, Y. H.; Zhang, P.; Hu, J.; Li, X. Appl. Catal. B: Environ. 2021, 291, 120104. doi: 10.1016/j.apcatb.2021.120104  doi: 10.1016/j.apcatb.2021.120104

    2. [2]

      Pan, J.; Shen, S.; Zhou, W.; Tang, J.; Ding, H.; Wang, J.; Chen, L.; Au, C.; Yin, S. Acta Phys. -Chim. Sin. 2020, 36, 1905068.  doi: 10.3866/PKU.WHXB201905068

    3. [3]

      Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim. Sin. 2021, 37, 2009030.  doi: 10.3866/PKU.WHXB202009030

    4. [4]

      Shen, R.; Ding, Y.; Li, S.; Zhang, P.; Xiang, Q.; Ng, Y. H.; Li, X. Chin. J. Catal. 2021, 42, 25. doi: 10.1016/S1872-2067(20)63600-2  doi: 10.1016/S1872-2067(20)63600-2

    5. [5]

      Chen, Y.; Li, L.; Xu, Q.; Düren, T.; Fan, J.; Ma, D. Acta Phys. -Chim. Sin. 2021, 37, 2009080.  doi: 10.3866/PKU.WHXB202009080

    6. [6]

      Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, R.; Zhang, P.; Li, X.; Ma, D. Acta Phys. -Chim. Sin. 2021, 37, 2010059.

    7. [7]

      Gao, R.; Cheng, B.; Fan, J.; Yu, J.; Ho, W. Chin. J. Catal. 2021, 42, 15. doi: 10.1016/S1872-2067(20)63614-2  doi: 10.1016/S1872-2067(20)63614-2

    8. [8]

      Xue, W.; Chang, W.; Hu, X.; Fan, J.; Liu, E. Chin. J. Catal. 2021, 42, 152. doi: 10.1016/S1872-2067(20)63593-8  doi: 10.1016/S1872-2067(20)63593-8

    9. [9]

      Fujishima, A. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    10. [10]

      Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Adv. Mater. 2019, 31, 1807660. doi: 10.1002/adma.201807660  doi: 10.1002/adma.201807660

    11. [11]

      Wang, S.; Sun, H.; Qiao, P.; Li, Z.; Xie, Y.; Zhou, W. Appl. Mater. Today 2021, 22, 100977. doi: 10.1016/j.apmt.2021.100977  doi: 10.1016/j.apmt.2021.100977

    12. [12]

      Chen, L.; Xie, X.; Su, T.; Ji, H.; Qin, Z. Appl. Surf. Sci. 2021, 567, 150849. doi: 10.1016/j.apsusc.2021.150849  doi: 10.1016/j.apsusc.2021.150849

    13. [13]

      Di, T.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 170. doi: 10.1016/j.jmst.2020.03.032  doi: 10.1016/j.jmst.2020.03.032

    14. [14]

      Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317  doi: 10.1038/nmat2317

    15. [15]

      Li, Y.; Li, X.; Zhang, H.; Fan, J.; Xiang, Q. J. Mater. Sci. Technol. 2020, 56, 69. doi: 10.1016/j.jmst.2020.03.033  doi: 10.1016/j.jmst.2020.03.033

    16. [16]

      Li, Y.; Zhou, M.; Cheng, B.; Shao, Y. J. Mater. Sci. Technol. 2020, 56, 1. doi: 10.1016/j.jmst.2020.04.028  doi: 10.1016/j.jmst.2020.04.028

    17. [17]

      Zhu, B.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. Small Struct. 2021, 2100086. doi: 10.1002/sstr.202100086  doi: 10.1002/sstr.202100086

    18. [18]

      Zhu, B.; Zhang, L.; Cheng, B.; Yu, Y.; Yu, J. Chin. J. Catal. 2021, 42, 115. doi: 10.1016/S1872-2067(20)63598-7  doi: 10.1016/S1872-2067(20)63598-7

    19. [19]

      Yang, Q.; Hu, S.; Yao, Y.; Lin, X.; Du, H.; Yuan, Y. Chin. J. Catal. 2021, 42, 217. doi: 10.1016/S1872-2067(20)63611-7  doi: 10.1016/S1872-2067(20)63611-7

    20. [20]

      Wang, H.; Lin, Q.; Yin, L.; Yang, Y.; Qiu, Y.; Lu, C.; Yang, H. Small 2019, 15, 1900011. doi: 10.1002/smll.201900011  doi: 10.1002/smll.201900011

    21. [21]

      Bao, N.; Hu, X.; Zhang, Q.; Miao, X.; Jie, X.; Zhou, S. Appl. Surf. Sci. 2017, 403, 682. doi: 10.1016/j.apsusc.2017.01.256  doi: 10.1016/j.apsusc.2017.01.256

    22. [22]

      Patnaik, S.; Sahoo, D. P.; Parida, K. Carbon 2021, 172, 682. doi: 10.1016/j.carbon.2020.10.073  doi: 10.1016/j.carbon.2020.10.073

    23. [23]

      Xu, H.; Xiao, R.; Huang, J.; Jiang, Y.; Zhao, C.; Yang, X. Chin. J. Catal. 2021, 42, 107. doi: 10.1016/S1872-2067(20)63559-8  doi: 10.1016/S1872-2067(20)63559-8

    24. [24]

      Ma, X.; Fu, Z.; Wang, C.; Hu, X.; Fan, J.; Tang, C.; Liu, E. Mater. Lett. 2021, 284, 128964. doi: 10.1016/j.matlet.2020.128964  doi: 10.1016/j.matlet.2020.128964

    25. [25]

      Wageh, S.; Al-Ghamdi, A. A.; Jafer, R.; Li, X.; Zhang, P. Chin. J. Catal. 2021, 42, 667. doi: 10.1016/S1872‐2067(20)63705-6  doi: 10.1016/S1872‐2067(20)63705-6

    26. [26]

      Xue, W.; Chang, W.; Hu, X.; Fan, J.; Bai, X.; Liu, E. J. Colloid Interface Sci. 2020, 576, 203. doi: 10.1016/j.jcis.2020.04.111  doi: 10.1016/j.jcis.2020.04.111

    27. [27]

      Ren, D.; Liang, Z.; Ng, Y. H.; Zhang, P.; Xiang, Q.; Li, X. Chem. Eng. J. 2020, 390, 124496. doi: 10.1016/j.cej.2020.124496  doi: 10.1016/j.cej.2020.124496

    28. [28]

      Benisti, I.; Shaik, F.; Xing, Z.; Ben-refael, A.; Amirav, L.; Paz, Y. Appl. Surf. Sci. 2021, 542, 148432. doi: 10.1016/j.apsusc.2020.148432  doi: 10.1016/j.apsusc.2020.148432

    29. [29]

      Li, H.; Gao, Y.; Xiong, Z.; Liao, C.; Shih, K. Appl. Surf. Sci. 2018, 439, 552. doi: 10.1016/j.apsusc.2018.01.071  doi: 10.1016/j.apsusc.2018.01.071

    30. [30]

      Li, J.; Li, Q.; Chen, Y.; Lv, S.; Liao, X.; Yao, Y. Colloid Surf. A 2021, 626, 127053. doi: 10.1016/j.colsurfa.2021.127053  doi: 10.1016/j.colsurfa.2021.127053

    31. [31]

      Pan, Z.; Liu, M.; Niu, P.; Guo, F.; Fu, X.; Wang, X. Acta Phys. -Chim. Sin. 2020, 36, 1906014.  doi: 10.3866/PKU.WHXB201906014

    32. [32]

      Liang, Z.; Shen, R.; Ng, Y. H. Zhang, P.; Xiang, Q.; Li, X. J. Mater. Sci. Technol. 2020, 56, 89. doi: 10.1016/j.jmst.2020.04.032  doi: 10.1016/j.jmst.2020.04.032

    33. [33]

      Wang, Z.; Fan, J.; Cheng, B.; Yu, J.; Xu, J. Mater. Today Phys. 2020, 15, 100279. doi: 10.1016/j.mtphys.2020.100279  doi: 10.1016/j.mtphys.2020.100279

    34. [34]

      Lu, Z.; Li, C.; Han, J.; Wang, L.; Wang, S.; Ni, L.; Wang, Y. Appl. Catal. B: Environ. 2018, 237, 919. doi: 10.1016/j.apcatb.2018.06.062  doi: 10.1016/j.apcatb.2018.06.062

    35. [35]

      Wang, M.; Cheng, J.; Wang, X.; Hong, X.; Fan, J.; Yu, H. Chin. J. Catal. 2021, 42, 37. doi: 10.1016/S1872-2067(20)63633-6  doi: 10.1016/S1872-2067(20)63633-6

    36. [36]

      Cheng, Z.; Sendeku, M. G.; Liu, Q. Nanotechnology 2020, 31, 135405. doi: 10.1088/1361-6528/ab646d  doi: 10.1088/1361-6528/ab646d

    37. [37]

      Zhang, J.; Feng, F.; Pu, Y.; Li, X.; Lau, C. H.; Huang, W. Chem. Sus. Chem. 2019, 12, 2651. doi: 10.1002/cssc.201900789  doi: 10.1002/cssc.201900789

    38. [38]

      Zhang, X.; Min, K.; Zheng, W.; Hwang, J.; Han, B.; Lee, L. Y. S. Appl. Catal. B: Environ. 2020, 273, 118927. doi: 10.1016/j.apcatb.2020.118927  doi: 10.1016/j.apcatb.2020.118927

    39. [39]

      Xiao, X.; Huang, D.; Fu, Y.; Wen, M.; Jiang, X.; Lv, X.; Li, M.; Gao, L.; Liu, S.; Wang, M.; et al. ACS Appl. Mater. Interfaces 2018, 10, 4689. doi: 10.1021/acsami.7b16430  doi: 10.1021/acsami.7b16430

    40. [40]

      Xu, Q.; Gao, W.; Wang, M.; Yuan, G.; Ren, X.; Zhao, R.; Zhao, S.; Wang, Q. Int. J. Hydrog. Energy 2020, 45, 2546. doi: 10.1016/j.ijhydene.2019.11.217  doi: 10.1016/j.ijhydene.2019.11.217

    41. [41]

      Han, A.; Chen, H.; Sun, Z.; Xu, J.; Du, P. Chem. Commun. 2015, 51, 11626. doi: 10.1039/c5cc02626a  doi: 10.1039/c5cc02626a

    42. [42]

      Ding, L.; Li, D.; Shen, H.; Qiao, X.; Shen, H.; Shi, W. J. Alloy. Compd. 2021, 853, 157328. doi: 10.1016/j.jallcom.2020.157328  doi: 10.1016/j.jallcom.2020.157328

    43. [43]

      Zhang, W.; Xu, C.; Liu, E.; Fan, J.; Hu, X. Appl. Surf. Sci. 2020, 515, 146039. doi: 10.1016/j.apsusc.2020.146039  doi: 10.1016/j.apsusc.2020.146039

    44. [44]

      Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Chin. J. Catal. 2021, 42, 56. doi: 10.1016/S1872-2067(20)63634-8  doi: 10.1016/S1872-2067(20)63634-8

    45. [45]

      Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012  doi: 10.1002/anie.201916012

    46. [46]

      Li, Q.; Ma, J.; Wang, H.; Yang, X.; Yuan, R.; Chai, Y. Electrochim. Acta 2016, 213, 201. doi: 10.1016/j.electacta.2016.07.105  doi: 10.1016/j.electacta.2016.07.105

    47. [47]

      Li, Z.; Ma, Y.; Hu, X.; Liu, E.; Fan, J. Chin. J. Catal. 2019, 40, 434. doi: 10.1016/S1872-2067(18)63189-4  doi: 10.1016/S1872-2067(18)63189-4

    48. [48]

      Yang, H.; Cao, R.; Sun, P.; Deng, X.; Zhang, S.; Xu, X. Appl. Surf. Sci. 2018, 458, 893. doi: 10.1016/j.apsusc.2018.07.149  doi: 10.1016/j.apsusc.2018.07.149

    49. [49]

      Sun, Z.; Zhu, M.; Lv, X.; Liu, Y.; Shi, C.; Dai, Y.; Wang, A.; Majima, T. Appl. Catal. B: Environ. 2019, 246, 330. doi: 10.1016/j.apcatb.2019.01.072  doi: 10.1016/j.apcatb.2019.01.072

    50. [50]

      Wang, Q.; Zhao, H.; Li, F.; She, W.; Wang, X.; Xu, L.; Jiao, H. J. Mater. Chem. A 2019, 7, 7636. doi: 10.1039/c9ta01015g  doi: 10.1039/c9ta01015g

    51. [51]

      Liang, Z.; Dong, X.; Han, Y.; Geng, J. Appl. Surf. Sci. 2019, 484, 293. doi: 10.1016/j.apsusc.2019.04.006  doi: 10.1016/j.apsusc.2019.04.006

    52. [52]

      Luo, Y.; Qin, J.; Yang, G.; Luo, S.; Zhao, Z.; Chen, M.; Ma, J. Chem. Eng. J. 2021, 410, 128394. doi: 10.1016/j.cej.2020.128394  doi: 10.1016/j.cej.2020.128394

    53. [53]

      Jin, C.; Xu, C.; Chang, W.; Ma, X.; Hu, X.; Liu, E.; Fan, J. J. Alloy. Compd. 2019, 803, 205. doi: 10.1016/j.jallcom.2019.06.252  doi: 10.1016/j.jallcom.2019.06.252

    54. [54]

      Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Pure Appl. Chem. 2015, 87, 1051. doi: 10.1515/pac-2014-1117  doi: 10.1515/pac-2014-1117

    55. [55]

      Ma, S.; Deng, Y.; Xie, J.; He, K.; Liu, W.; Chen, X.; Li, X. Appl. Catal. B: Environ. 2018, 227, 218. doi: 10.1016/j.apcatb.2018.01.031  doi: 10.1016/j.apcatb.2018.01.031

    56. [56]

      Cardon, F.; Gomes, W. P. J. Phys. D: Appl. Phys. 1978, 11, L63. doi: 10.1088/0022-3727/11/4/002  doi: 10.1088/0022-3727/11/4/002

    57. [57]

      Qi, Y.; Xu, J.; Zhang, M.; Lin, H.; Wang, L. Int. J. Hydrog. Energy 2019, 44, 16336. doi: 10.1016/j.ijhydene.2019.04.276  doi: 10.1016/j.ijhydene.2019.04.276

    58. [58]

      Bie, C.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. Energy Chem. 2021, 3, 100051. doi: 10.1016/j.enchem.2021.100051  doi: 10.1016/j.enchem.2021.100051

    59. [59]

      Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. Chem. Soc. Rev. 2015, 44, 2893. doi: 10.1039/c5cs00064e  doi: 10.1039/c5cs00064e

  • 加载中
    1. [1]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    4. [4]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    5. [5]

      Liang DongJingkuo QuTuo ZhangGuanghui ZhuNingning MaChang ZhaoYi YuanXiangjiu GuanLiejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397

    6. [6]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    7. [7]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    8. [8]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    11. [11]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    12. [12]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    13. [13]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    14. [14]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    19. [19]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    20. [20]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

Metrics
  • PDF Downloads(61)
  • Abstract views(1138)
  • HTML views(338)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return