Citation: Yingying Zhu, Yong Wang, Miao Xu, Yongmin Wu, Weiping Tang, Di Zhu, Yu-Shi He, Zi-Feng Ma, Linsen Li. Tracking Pressure Changes and Morphology Evolution of Lithium Metal Anodes[J]. Acta Physico-Chimica Sinica, ;2023, 39(1): 211004. doi: 10.3866/PKU.WHXB202110040 shu

Tracking Pressure Changes and Morphology Evolution of Lithium Metal Anodes

  • Corresponding author: Linsen Li, linsenli@sjtu.edu.cn
  • Received Date: 26 October 2021
    Revised Date: 20 November 2021
    Accepted Date: 22 November 2021
    Available Online: 29 November 2021

    Fund Project: the Natural Science Foundation of Shanghai the Science and Technology Commission Shanghai Municipality 19ZR1475100the Equipment Pre-research Fund 61407210207the Sichuan Science and Technology Program 2021JDRC0015

  • High-energy rechargeable lithium metal batteries (LMBs) have attracted significant attention recently. These batteries can be bulit using high areal-capacity (> 4 mAh∙cm−2) layered oxide cathodes and thin lithium (Li) metal anodes (< 50 μm in thickness), whose cycle performance are severely limited by the unregulated growth of Li particles having high surface areas, including dendrites and mossy Li. To improve the cycle performance of LMBs, many approaches have been developed in recent years to promote dendrite-free and dense Li electrodeposition, such as electrolyte engineering (for liquid cells), Li anode surface modification, three-dimensional current collector design, and using solid-state electrolytes. In addition to these heavily researched chemical-based approaches, applying external pressure to LMBs can also strongly impact the morphology of the electrochemically deposited Li particles due to the malleable nature of metallic Li and has been shown to improve the cycle performance. However, the relationship between the applied pressure, morphological evolution of the Li anode and the cycle performance has not been fully understood, especially in coin cells, which are widely used for LMB research. Here we report a custom-designed pressure applying/measurement device based on thin-film pressure sensors to realize real-time tracking of the pressure evolution in LMB coin cells. Our results show that moderate pressure is conducive to dense Li deposition and increases the cycle life, whereas excessive pressure causes Li inward-growth and the deformation of Li anode, which will impare the electrochemical performance of LMBs. Although these observations are made in coin cells, they could have important implications for pouch cells and solid-state batteries, both of which are commonly tested under pressure. The cycle performance of LMBs is significantly improved in both coin cells (under actual relevant conditions) and large pouch cells. A 5 Ah pouch-type LMB with a high energy density exceeding 380 Wh∙kg−1 could achieve stable cycling over 50 cycles under a stack pressure of ~1.2 MPa. It was also confirmed that the cell holders or clamps commonly used for coin cells can only exert a small amount of pressure, which is unlikely to exaggerate the cycle performance of the LMB coin cells. However, we do suggest that the electrochemical performance of LMBs should be reported along with the information on the applied pressure. This research practice will improve the consistency and quality of the reported data in the LMB research community and help unite the efforts to further improve the high energy density LMBs.
  • 加载中
    1. [1]

      Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Nat. Energy 2018, 3, 16. doi: 10.1038/s41560-017-0047-2  doi: 10.1038/s41560-017-0047-2

    2. [2]

      Zhang, J. -G.; Xu, W.; Henderson, W. A. Lithium Metal Anodes and Rechargeable Lithium Metal Batteries, 2nd ed.; Springer International Publishing: Switzerland, 2017; Vol. 249.

    3. [3]

      Lin, D.; Liu, Y.; Cui, Y. Nat. Nanotechnol. 2017, 12, 194. doi: 10.1038/nnano.2017.16  doi: 10.1038/nnano.2017.16

    4. [4]

      Kushima, A.; So, K. P.; Su, C.; Bai, P.; Kuriyama, N.; Maebashi, T.; Fujiwara, Y.; Bazant, M. Z.; Li, J. Nano Energy 2017, 32, 271. doi: 10.1016/j.nanoen.2016.12.001  doi: 10.1016/j.nanoen.2016.12.001

    5. [5]

      Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Energy Environ. Sci. 2016, 9, 3221. doi: 10.1039/C6EE01674J  doi: 10.1039/C6EE01674J

    6. [6]

      Cheng, X. -B.; Zhang, R.; Zhao, C. -Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    7. [7]

      Hwang, J. -Y.; Park, S. -J.; Yoon, C. S.; Sun, Y. -K. Energy Environ. Sci. 2019, 12, 2174. doi: 10.1039/C9EE00716D  doi: 10.1039/C9EE00716D

    8. [8]

      Fang, C.; Li, J.; Zhang, M.; Zhang, Y.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y.; et al. Nature 2019, 572, 511. doi: 10.1038/s41586-019-1481-z  doi: 10.1038/s41586-019-1481-z

    9. [9]

      Boyle, D. T.; Huang, W.; Wang, H.; Li, Y.; Chen, H.; Yu, Z.; Zhang, W.; Bao, Z.; Cui, Y. Nat. Energy 2021, 6, 487. doi: 10.1038/s41560-021-00787-9  doi: 10.1038/s41560-021-00787-9

    10. [10]

      Yan, C.; Yao, Y. X.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 14055. doi: 10.1002/anie.201807034  doi: 10.1002/anie.201807034

    11. [11]

      Zhang, X. -Q.; Cheng, X. -B.; Chen, X.; Yan, C.; Zhang, Q. Adv. Funct. Mater. 2017, 27, 1605989. doi: 10.1002/adfm.201605989  doi: 10.1002/adfm.201605989

    12. [12]

      Ren, X.; Zhang, Y.; Engelhard, M. H.; Li, Q.; Zhang, J. -G.; Xu, W. ACS Energy Lett. 2018, 3, 14. doi: 10.1021/acsenergylett.7b00982  doi: 10.1021/acsenergylett.7b00982

    13. [13]

      Chen, S.; Zheng, J.; Mei, D.; Han, K. S.; Engelhard, M. H.; Zhao, W.; Xu, W.; Liu, J.; Zhang, J. -G. Adv. Mater. 2018, 30, 1706102. doi: 10.1002/adma.201706102  doi: 10.1002/adma.201706102

    14. [14]

      Li, N. -W.; Shi, Y.; Yin, Y. -X.; Zeng, X. -X.; Li, J. -Y.; Li, C. -J.; Wan, L. -J.; Wen, R.; Guo, Y. -G. Angew. Chem. Int. Ed. 2018, 57, 1505. doi: 10.1002/anie.201710806  doi: 10.1002/anie.201710806

    15. [15]

      Kim, M. S.; Ryu, J. -H.; Deepika; Lim, Y. R.; Nah, I. W.; Lee, K. -R.; Archer, L. A.; Il Cho, W. Nat. Energy 2018, 3, 889. doi: 10.1038/s41560-018-0237-6  doi: 10.1038/s41560-018-0237-6

    16. [16]

      Li, N. -W.; Yin, Y. -X.; Yang, C. -P.; Guo, Y. -G. Adv. Mater. 2016, 28, 1853. doi: 10.1002/adma.201504526  doi: 10.1002/adma.201504526

    17. [17]

      Gao, Y.; Yan, Z.; Gray, J. L.; He, X.; Wang, D.; Chen, T.; Huang, Q.; Li, Y. C.; Wang, H.; Kim, S. H.; et al. Nat. Mater. 2019, 18, 384. doi: 10.1038/s41563-019-0305-8  doi: 10.1038/s41563-019-0305-8

    18. [18]

      Yu, Z.; Mackanic, D. G.; Michaels, W.; Lee, M.; Pei, A.; Feng, D.; Zhang, Q.; Tsao, Y.; Amanchukwu, C. V.; Yan, X.; et al. Joule 2019, 3, 2761. doi: 10.1016/j.joule.2019.07.025  doi: 10.1016/j.joule.2019.07.025

    19. [19]

      Lin, D.; Liu, Y.; Liang, Z.; Lee, H. -W.; Sun, J.; Wang, H.; Yan, K.; Xie, J.; Cui, Y. Nat. Nanotechnol. 2016, 11, 626. doi: 10.1038/nnano.2016.32  doi: 10.1038/nnano.2016.32

    20. [20]

      Lin, D.; Liu, Y.; Chen, W.; Zhou, G.; Liu, K.; Dunn, B.; Cui, Y. Nano Lett. 2017, 17, 3731. doi: 10.1021/acs.nanolett.7b01020  doi: 10.1021/acs.nanolett.7b01020

    21. [21]

      Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N. J. Adv. Energy Mater. 2015, 5, 1401408. doi: 10.1002/aenm.201401408  doi: 10.1002/aenm.201401408

    22. [22]

      Lee, Y. -G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D. -S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S.; et al. Nat. Energy 2020, 5, 299. doi: 10.1038/s41560-020-0575-z  doi: 10.1038/s41560-020-0575-z

    23. [23]

      Hu, C.; Shen, Y.; Shen, M.; Liu, X.; Chen, H.; Liu, C.; Kang, T.; Jin, F.; Li, L.; Li, J.; et al. J. Am. Chem. Soc. 2020, 142, 18035. doi: 10.1021/jacs.0c07060  doi: 10.1021/jacs.0c07060

    24. [24]

      Wilkinson, D. P.; Blom, H.; Brandt, K.; Wainwright, D. J. Power Sources 1991, 36, 517. doi: 10.1016/0378-7753(91)80077-B  doi: 10.1016/0378-7753(91)80077-B

    25. [25]

      Yin, X.; Tang, W.; Jung, I. D.; Phua, K. C.; Adams, S.; Lee, S. W.; Zheng, G. W. Nano Energy 2018, 50, 659. doi: 10.1016/j.nanoen.2018.06.003  doi: 10.1016/j.nanoen.2018.06.003

    26. [26]

      Louli, A. J.; Genovese, M.; Weber, R.; Hames, S. G.; Logan, E. R.; Dahn, J. R. J. Electrochem. Soc. 2019, 166, A1291. doi: 10.1149/2.0091908jes  doi: 10.1149/2.0091908jes

    27. [27]

      Niu, C.; Lee, H.; Chen, S.; Li, Q.; Du, J.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J.; Liu, J. Nat. Energy 2019, 4, 551. doi: 10.1038/s41560-019-0390-6  doi: 10.1038/s41560-019-0390-6

    28. [28]

      Kanamori, S.; Matsumoto, M.; Taminato, S.; Mori, D.; Takeda, Y.; Imanishi, N.; Hah, H. J.; Takeuchi, T. RSC Adv. 2020, 10, 17805. doi: 10.1039/d0ra02788j  doi: 10.1039/d0ra02788j

    29. [29]

      Doux, J. M.; Nguyen, H.; Tan, D. H. S.; Banerjee, A.; Wang, X.; Wu, E. A.; Jo, C.; Yang, H.; Meng, Y. S. Adv. Energy Mater. 2020, 10. doi: 10.1002/aenm.201903253  doi: 10.1002/aenm.201903253

    30. [30]

      Liu, J.; Bao, Z.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q.; Liaw, B. Y.; Liu, P.; Manthiram, A. , et al. Nat. Energy 2019, 4, 180. doi: 10.1038/s41560-019-0338-x  doi: 10.1038/s41560-019-0338-x

    31. [31]

      Zhang, C.; Liu, Y.; Jiao, X.; Xiong, S.; Song, J. J. Electrochem. Soc. 2019, 166, A3675. doi: 10.1149/2.0581915jes  doi: 10.1149/2.0581915jes

    32. [32]

      Zhu, Y.; Pande, V.; Li, L.; Wen, B.; Pan, M. S.; Wang, D.; Ma, Z. -F.; Viswanathan, V.; Chiang, Y. -M. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 27195. doi: 10.1073/pnas.2001923117  doi: 10.1073/pnas.2001923117

    33. [33]

      Xu, C.; Ahmad, Z.; Aryanfar, A.; Viswanathan, V.; Greer, J. R. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 57. doi: 10.1073/pnas.1615733114  doi: 10.1073/pnas.1615733114

  • 加载中
    1. [1]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    2. [2]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    3. [3]

      Zhongxiong Sun Haili Song Mei-Huan Zhao Yijie Zeng Man-Rong Li . Structural determination and exotic resistive behaviour of α-RuI3 under high-pressure. Chinese Journal of Structural Chemistry, 2025, 44(2): 100429-100429. doi: 10.1016/j.cjsc.2024.100429

    4. [4]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    5. [5]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    6. [6]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    7. [7]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    8. [8]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    9. [9]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    10. [10]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    11. [11]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    12. [12]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    13. [13]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    14. [14]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    15. [15]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    16. [16]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    17. [17]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    18. [18]

      Haining PengHuijun LiuChengzong LiYingfu LiQizhi ChenTao Li . Diluent modified weakly solvating electrolyte for fast-charging high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 109556-. doi: 10.1016/j.cclet.2024.109556

    19. [19]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    20. [20]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

Metrics
  • PDF Downloads(0)
  • Abstract views(587)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return