Rationally Designed Mn0.2Cd0.8S@CoAl LDH S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Production
- Corresponding author: Kai Wang, kaiwang@nun.edu.cn Zhiliang Jin, zl-jin@nun.edu.cn †These authors contributed equally to this work.
Citation: Shanchi Liu, Kai Wang, Mengxue Yang, Zhiliang Jin. Rationally Designed Mn0.2Cd0.8S@CoAl LDH S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2022, 38(7): 210902. doi: 10.3866/PKU.WHXB202109023
Zhang, J.; Tian, J.; Fan, J.; Yu, J.; Ho, W. Small 2020, 16, 1907290. doi: 10.1002/smll.201907290
doi: 10.1002/smll.201907290
Cheng, F.; Yin, H.; Xiang, Q. Appl. Surf. Sci. 2017, 391, 432. doi: 10.1016/j.apsusc.2016.06.169
doi: 10.1016/j.apsusc.2016.06.169
Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
doi: 10.1038/238037a0
Xu, F.; Meng, K.; Zhu, B.; Liu, H.; Xu, J.; Yu, J. Adv. Funct. Mater. 2019, 29, 1904256. doi: 10.1002/adfm.201904256
doi: 10.1002/adfm.201904256
Liu, D.; Jin, Z.; Li, H.; Lu, G. Appl. Surf. Sci. 2017, 423, 255. doi: 10.1016/j.apsusc.2017.06.156
doi: 10.1016/j.apsusc.2017.06.156
Yan, X.; Jin, Z.; Zhang, Y.; Liu, H.; Ma, X. Phys. Chem. Chem. Phys. 2019, 21, 4501. doi: 10.1039/C8CP07275B
doi: 10.1039/C8CP07275B
Shi, J.; Sun, D.; Zou, Y.; Ma, D.; He, C.; Ji, X.; Niu, C. Chem. Eng. J. 2019, 364, 11. doi: 10.1016/j.cej.2019.01.147
doi: 10.1016/j.cej.2019.01.147
Shen, R.; Ding, Y.; Li, S.; Li, S.; Zhang, P.; Xiang, Q.; Ng, Y.; Li, X. Chin. J. Catal. 2021, 42, 25. doi: 10.1016/S1872-2067(20)63600-2
doi: 10.1016/S1872-2067(20)63600-2
Hao, X.; Jin, Z.; Yang, H.; Lu, G.; Bi, Y. Appl. Catal. B Environ. 2017, 210, 45. doi: 10.1016/j.apcatb.2017.03.057
doi: 10.1016/j.apcatb.2017.03.057
Wang, H.; Jin, Z. J. Colloid Interface Sci. 2019, 548, 303. doi: 10.1016/j.jcis.2019.04.045
doi: 10.1016/j.jcis.2019.04.045
Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B Environ. 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011
doi: 10.1016/j.apcatb.2018.11.011
Shen, R.; Xie, J.; Xiang, Q.; Chen, X.; Jiang, J.; Li, X. Chin. J. Catal. 2019, 40, 240. doi: 10.1016/S1872-2067(19)63294-8
doi: 10.1016/S1872-2067(19)63294-8
Wang, B.; Ding, Y.; Deng, Z.; Li, Z. Chin. J. Catal. 2019, 40, 335. doi: 10.1016/S1872-2067(18)63159-6
doi: 10.1016/S1872-2067(18)63159-6
Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y. H.; Zhang, P.; Li, X. Sci. China Mater. 2020, 63, 2153. doi: 10.1007/s40843-020-1456-x
doi: 10.1007/s40843-020-1456-x
An, X.; Wang, Y.; Lin, J.; Shen, J.; Zhang, Z.; Wang, X. Sci. Bull. 2017, 62, 599. doi: 10.1016/j.scib.2017.03.025
doi: 10.1016/j.scib.2017.03.025
Wang, J.; Luo, J.; Liu, D.; Chen, S.; Peng, T. Appl. Catal. B Environ. 2019, 241, 130. doi: 10.1016/j.apcatb.2018.09.033
doi: 10.1016/j.apcatb.2018.09.033
Jiang, X.; Gong, H.; Liu, Q.; Song, M.; Huang, C. Appl. Catal. B Environ. 2020, 268, 118439. doi: 10.1016/j.apcatb.2019.118439
doi: 10.1016/j.apcatb.2019.118439
Ikeue, K.; Shiiba, S.; Machida, M. Chem. Mater. 2010, 22, 743. doi: 10.1021/cm9026013
doi: 10.1021/cm9026013
Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. Adv. Mater. 2017, 29, 1601694. doi: 10.1002/adma.201601694
doi: 10.1002/adma.201601694
Huang, Q.; Wang, J.; Ye, L.; Zhang, Q.; Yao, H.; Li, Z. J. Taiwan Inst. Chem. E 2017, 80, 570. doi: 10.1016/j.jtice.2017.08.030
doi: 10.1016/j.jtice.2017.08.030
Gong, H.; Wang, G.; Li, H.; Jin, Z.; Guo, Q. Int. J. Hydrogen Energy 2020, 45, 26733. doi:10.1016/j.ijhydene.2020.07.059
doi: 10.1016/j.ijhydene.2020.07.059
Li, X.; Du, D.; Zhang, Y.; Xing, W.; Xue, Q.; Yan, Z. J. Mater. Chem. A 2017, 5, 15460. doi: 10.1039/C7TA04001F
doi: 10.1039/C7TA04001F
Zhao, J.; Chen, J.; Xu, S.; Shao, M.; Yan, D.; Wei, M.; Evans, D.; Duan, X. J. Mater. Chem. A 2013, 1, 8836. doi: 10.1039/C3TA11452J
doi: 10.1039/C3TA11452J
Liu, W.; Dang, L.; Xu, Z.; Yu, H.; Jin, S.; Huber, G. ACS Catal. 2018, 8, 5533. doi: 10.1021/acscatal.8b01017
doi: 10.1021/acscatal.8b01017
Li, H.; Li, J.; Xu, C.; Yang, P.; Ng, D.; Song, P.; Zuo, M. J. Alloys Compd. 2017, 698, 852. doi: 10.1016/j.jallcom.2016.12.310
doi: 10.1016/j.jallcom.2016.12.310
Sahoo, D.; Nayak, S.; ReddySaty, K.; Martha, A.; Parida, K. Inorg. Chem. 2018, 57, 3840. doi: 10.1021/acs.inorgchem.7b03213
doi: 10.1021/acs.inorgchem.7b03213
Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010
doi: 10.1016/j.chempr.2020.06.010
Li, H.; Hao, X.; Liu, Y.; Li, Y.; Jin, Z. J. Colloid Interface Sci. 2020, 572, 62. doi: 10.1016/j.jcis.2020.03.052
doi: 10.1016/j.jcis.2020.03.052
Liang, Z.; Shen, R.; Ng, Y.; Zhang, P.; Xiang, Q.; Li, X. J. Mater. Sci. Technol. 2020, 56, 89. doi: 10.1016/j.jmst.2020.04.032
doi: 10.1016/j.jmst.2020.04.032
Li, Y.; Huang, L.; Xu, J.; Xu, H.; Xu, Y.; Xia, J.; Li, H. Mater. Res. Bull. 2015, 70, 500. doi: 10.1016/j.materresbull.2015.05.013
doi: 10.1016/j.materresbull.2015.05.013
Zeng, H.; Zhang, H.; Deng, L.; Shi, Z. J. Water Process. Eng. 2020, 33, 101084. doi: 10.1016/j.jwpe.2019.101084
doi: 10.1016/j.jwpe.2019.101084
Jiang, S.; Song, L.; Zeng, W. ACS Appl. Mater. Interfaces 2015, 7, 8506. doi: 10.1021/acsami.5b00176
doi: 10.1021/acsami.5b00176
Detwiler, M.; Gharachorlou, A.; Mayr, L.; Gu, X.; Liu, B.; Greeley, J.; Delgass, W.; Ribeiro, F.; Zemlyanov, D. J. Phys. Chem. C 2015, 119, 2399. doi: 10.1021/jp510032u
doi: 10.1021/jp510032u
Reddy, B.; Chowdhury, B.; Reddy, E. Appl. Catal. A 2001, 213, 279. doi: 10.1016/S0926-860X(00)00906-6
doi: 10.1016/S0926-860X(00)00906-6
Liu, H.; Xu, Z.; Zhang, Z.; Ao, D. Appl. Catal. A Gen. 2016, 518, 150. doi: 10.1016/j.apcata.2015.08.026
doi: 10.1016/j.apcata.2015.08.026
Zhang, Y.; Jin, Z. Phys. Chem. Chem. Phys. 2019, 21, 8326. doi: 10.1039/C9CP01180C
doi: 10.1039/C9CP01180C
Xing, X.; Gui, Y.; Zhang, G.; Song, C. Electrochim. Acta 2015, 157, 15. doi: 10.1016/j.electacta.2015.01.055
doi: 10.1016/j.electacta.2015.01.055
Rudolf, C.; Dragoi, B.; Ungureanu, A.; Chirieac, A.; Royer, S.; Nastro, A.; Dumitriu, E. Catal. Sci. Technol. 2014, 4, 179. doi: 10.1039/C3CY00611E
doi: 10.1039/C3CY00611E
Yang, M.; Wang, K.; Li, Y.; Yang, K.; Jin, Z. Appl. Surf. Sci. 2021, 548, 149212. doi: 10.1016/j.apsusc.2021.149212
doi: 10.1016/j.apsusc.2021.149212
Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, Q.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2021, 37 (6), 2010059.
doi: 10.3866/PKU.WHXB202010059
He, K.; Xie, J.; Li, M.; Li, X. Appl. Surf. Sci. 2018, 430, 208. doi: 10.1016/j.apsusc.2017.08.191
doi: 10.1016/j.apsusc.2017.08.191
Lyth, S.; Nabae, Y.; Moriya, S.; Kuroki, S.; Kakimoto, M.; Ozaki, J.; Miyata, S. J. Phys. Chem. C 2009, 113, 20148. doi: 10.1021/jp907928j
doi: 10.1021/jp907928j
Jin, Z.; Li, Y.; Hao, X. Acta Phys. -Chim. Sin. 2021, 37 (10), 1912033.
doi: 10.3866/PKU.WHXB201912033
Mei, Z.; Wang, G.; Yan, S.; Wang, G. Acta Phys. -Chim. Sin. 2021, 37 (6), 2009097.
doi: 10.3866/PKU.WHXB202009097
Wageh, S.; Al-Ghamdi, A.; Liu, L. Acta Phys. -Chim. Sin. 2021, 37 (6), 2010024. Wageh, S., Al-Ghamdi, A.,
Wageh, S.; Al-Ghamdi, A.; Jafer, R.; Li, X. Chin. J. Catal. 2021, 42 (5), 667. doi: 10.1016/S1872-2067(20)63705-6
doi: 10.1016/S1872-2067(20)63705-6
Fu, J.; Bie, C.; Cheng, B.; Jiang, C.; Yu, J. ACS Sustain. Chem. Eng. 2018, 6, 2767. doi: 10.1021/acssuschemeng.7b04461
doi: 10.1021/acssuschemeng.7b04461
Wei, J.; Chen, Y.; Zhang, H.; Zhuang, Z.; Yu, Y. Chin. J. Catal. 2021, 42, 78. doi: 10.1016/S1872-2067(20)63661-0
doi: 10.1016/S1872-2067(20)63661-0
Peng, J.; Shen, J.; Yu, X.; Tang, H.; Zulfiqar; Liu, Q. Chin. J. Catal. 2021, 42, 87. doi: 10.1016/S1872-2067(20)63595-1
doi: 10.1016/S1872-2067(20)63595-1
Wen, J.; Xie, J.; Zhang, H.; Zhang, A.; Liu, Y.; Chen, X.; Li, X. ACS Appl. Mater. Interfaces 2017, 9, 14031. doi: 10.1021/acsami.7b02701
doi: 10.1021/acsami.7b02701
Ai, G.; Li, H.; Liu, S.; Mo, R.; Zhong, J. Adv. Funct. Mater. 2015, 25, 5706. doi: 10.1002/adfm.201502461
doi: 10.1002/adfm.201502461
Jin, Z.; Zhang, Y.; Ma, Q. J. Colloid Interface Sci. 2019, 556, 689. doi: 10.1016/j.jcis.2019.08.107
doi: 10.1016/j.jcis.2019.08.107
Mao, Z.; Chen, J.; Yang, Y.; Wang, D.; Bie, L. ACS Appl. Mater. Interfaces 2017, 9, 12427. doi: 10.1021/acsami.7b00370
doi: 10.1021/acsami.7b00370
Di, T.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 170. doi: 10.1016/j.jmst.2020.03.032
doi: 10.1016/j.jmst.2020.03.032
Liu, Y.; Hao, X.; Hu, H.; Jin, Z. Acta Phys. -Chim. Sin. 2021, 37 (6), 2008030.
doi: 10.3866/PKU.WHXB202008030
Wang, Z.; Chen, Y.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 143. doi: 10.1016/j.jmst.2020.02.062
doi: 10.1016/j.jmst.2020.02.062
Fei, X.; Tan, H.; Cheng, B.; Zhu, B.; Zhang, L. Acta Phys. -Chim. Sin. 2021, 37 (6), 2010027.
doi: 10.3866/PKU.WHXB202010027
Li, X.; Liu, J. Huang, J.; He, C.; Feng, Z.; Chen, Z.; Wan, L.; Deng, F. Acta Phys. -Chim. Sin. 2021, 37 (6), 2010030.
doi: 10.3866/PKU.WHXB202010030
Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317
doi: 10.1002/adma.202100317
Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012
doi: 10.1002/anie.201916012
He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Chin. J. Catal. 2020, 41, 9. doi: 10.1016/s1872-2067(19)63382-6
doi: 10.1016/s1872-2067(19)63382-6
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005