Citation: Nianze Shang, Yi Cheng, Shen Ao, Gulimire Tuerdi, Mengwen Li, Xiaoyu Wang, Hao Hong, Zehui Li, Xiaoyan Zhang, Wangyang Fu, Kaihui Liu, Zhongfan Liu. Graphene Photonic Crystal Fiber-Based Fluid Sensor toward Distributed Environmental Monitoring[J]. Acta Physico-Chimica Sinica, ;2022, 38(12): 210804. doi: 10.3866/PKU.WHXB202108041 shu

Graphene Photonic Crystal Fiber-Based Fluid Sensor toward Distributed Environmental Monitoring

  • Corresponding author: Xiaoyan Zhang, xyzhang@iccas.ac.cn Wangyang Fu, fwy2018@mail.tsinghua.edu.cn Kaihui Liu, khliu@pku.edu.cn Zhongfan Liu, zfliu@pku.edu.cn
  • Received Date: 26 August 2021
    Revised Date: 30 September 2021
    Accepted Date: 20 October 2021
    Available Online: 25 October 2021

    Fund Project: the National Natural Science Foundation of China 52025023the National Natural Science Foundation of China 51991342the National Natural Science Foundation of China 52021006the National Natural Science Foundation of China 11888101the Key R & D Program of Guangdong Province 2020B010189001the Key R & D Program of Guangdong Province 2019B010931001the Key R & D Program of Guangdong Province 2018B030327001the Strategic Priority Research Program of Chinese Academy of Sciences XDB33000000the Beijing Natural Science Foundation JQ19004the Pearl River Talent Recruitment Program of Guangdong Province 2019ZT08C321

  • Compared to traditional sensor device arrays, optical fiber systems capable of wide-range detection are gradually emerging as strong candidates for distributed monitoring owing to their simplified structure. However, the working mechanism of optical fiber sensors limits their use to the detection of physical parameters such as refractive index and is an obstacle for the detection of small doses of molecules by optical fiber systems. Several researchers have focused on this aspect to endow sensitivity to these optical fibers for gas or liquid molecules. By deliberately destroying the fiber structure, strong interactions between the evanescent field of optical fibers and the target materials, such as microfibers, D-shaped fiber, etc. can be achieved. Assisted by the surface plasmon resonance techniques, such configurations can exhibit highly enhanced sensitivity to a change in the refractive index caused by gas or liquid molecules. Two-dimensional materials are an excellent candidate as coating materials due to their high specific surface area, which also guarantees a large sensing response and simultaneously minimizes any side effects by suppressing the propagating mode of optical fibers. However, owing to the obstacles in optical fiber engineering and device fabrication, the abovementioned functional 2D sensors are still limited to sample-scale fabrication, and their mass-production has not yet been realized. An all-fiber distributed sensing system with high single-spot sensitivity is still difficult to fabricate. Here, we propose a new configuration of a grid-distributed environmental optical fiber sensing by introducing low-pressure chemical vapor deposition (LPCVD)-grown graphene photonic crystal fiber (PCF) into the optical fiber sensing system. We successfully synthesized monolayer and/or bilayer graphene in the air holes of PCF. By fusing the graphene PCF (Gr-PCF) to a single mode optical fiber, we fabricated an all-optical-fiber sensing system. Preliminary experiments suggest that Gr-PCF can selectively detect NO2 gas at ppb-level and exhibit ionic sensitivity in liquids. The ability to detect NO2 gas is attributed to the graphene layer's interaction among light-mode and adsorbed molecules: adsorption-induced additional hole-doping caused a shift in the Fermi level of graphene and eventually modulated its light absorption, leading to changes in the light intensity signals. We believe that the sensor can be extended to other kinds of gases and liquids, considering the affinity of graphene toward various molecules. In view of practical optical sensors, our design is compatible with the time domain or wavelength domain multiplexing techniques of optical fiber communication systems. Because CVD-based synthesis can be used to realize mass production, the design proposed herein shall be one of the answers to the distributed optical fiber environmental sensors.
  • 加载中
    1. [1]

      Dickinson, T. A.; White, J.; Kauer, J. S.; Walt, D. R. Nature 1996, 382, 697. doi: 10.1038/382697a0  doi: 10.1038/382697a0

    2. [2]

      Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R. Chem. Rev. 2000, 100, 2595. doi: 10.1021/cr980102w  doi: 10.1021/cr980102w

    3. [3]

      Selker, J. S.; Thévenaz, L.; Huwald, H.; Mallet, A.; Luxemburg, W.; van de Giesen, N.; Stejskal, M.; Zeman, J.; Westhoff, M.; Parlange, M. B. Water Resour. Res. 2006, 42, w12202. doi: 10.1029/2006wr005326  doi: 10.1029/2006wr005326

    4. [4]

      Rogers, A. J. Appl. Opt. 1981, 20, 1060. doi: 10.1364/Ao.20.001060  doi: 10.1364/Ao.20.001060

    5. [5]

      Dai, Y. B.; Liu, Y. J.; Leng, J. S.; Deng, G.; Asundi, A. Opt. Laser. Eng. 2009, 47, 1028. doi: 10.1016/j.optlaseng.2009.05.012  doi: 10.1016/j.optlaseng.2009.05.012

    6. [6]

      Ishio, H.; Minowa, J.; Nosu, K. J. Lightwave Technol. 1984, 2, 448. doi: 10.1109/Jlt.1984.1073653  doi: 10.1109/Jlt.1984.1073653

    7. [7]

      Brackett, C. A. IEEE J. Sel. Areas Commun. 1990, 8, 948. doi: 10.1109/49.57798  doi: 10.1109/49.57798

    8. [8]

      Li, X.; Sun, Q.; Wo, J.; Zhang, M.; Liu, D. J. Lightwave Technol. 2012, 30, 1113. doi: 10.1109/jlt.2011.2170401  doi: 10.1109/jlt.2011.2170401

    9. [9]

      Inaudi, D.; Glisic, B. J. Pressure Vessel Technol. 2010, 132, 011701. doi: 10.1115/1.3062942  doi: 10.1115/1.3062942

    10. [10]

      Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B. T.; Buric, M. P.; Ohodnicki, P. R. Appl. Phys. Rev. 2019, 6, 041302. doi: 10.1063/1.5113955  doi: 10.1063/1.5113955

    11. [11]

      Hodgkinson, J.; Tatam, R. P. Meas. Sci. Technol. 2013, 24, 012004. doi: 10.1088/0957-0233/24/1/012004  doi: 10.1088/0957-0233/24/1/012004

    12. [12]

      Arnold, M. A.; Ostler, T. J. Anal. Chem. 1986, 58, 1137. doi: 10.1021/ac00297a035  doi: 10.1021/ac00297a035

    13. [13]

      Otsuki, S.; Adachi, K.; Taguchi, T. Sen. Actuator B-Chem. 1998, 53, 91. doi: 10.1016/S0925-4005(98)00296-2  doi: 10.1016/S0925-4005(98)00296-2

    14. [14]

      Hoo, Y. L. Opt. Eng. 2002, 41, 8. doi: 10.1117/1.1429930  doi: 10.1117/1.1429930

    15. [15]

      Pickrell, G.; Peng, W.; Wang, A. Opt. Lett. 2004, 29, 1476. doi: 10.1364/Ol.29.001476  doi: 10.1364/Ol.29.001476

    16. [16]

      Ritari, T.; Tuominen, J.; Ludvigsen, H.; Petersen, J. C.; Sorensen, T.; Hansen, T. P.; Simonsen, H. R. Opt. Express 2004, 12, 4080. doi: 10.1364/Opex.12.004080  doi: 10.1364/Opex.12.004080

    17. [17]

      Chiu, M. H.; Wang, S. F.; Chang, R. S. Opt. Lett. 2005, 30, 233. doi: 10.1364/Ol.30.000233  doi: 10.1364/Ol.30.000233

    18. [18]

      Ahn, M. W.; Park, K. S.; Heo, J. H.; Park, J. G.; Kim, D. W.; Choi, K. J.; Lee, J. H.; Hong, S. H. Appl. Phys. Lett. 2008, 93, 263103. doi: 10.1063/1.3046726  doi: 10.1063/1.3046726

    19. [19]

      Gayraud, N.; Kornaszewski, L. W.; Stone, J. M.; Knight, J. C.; Reid, D. T.; Hand, D. P.; MacPherson, W. N. Appl. Opt. 2008, 47, 1269. doi: 10.1364/Ao.47.001269  doi: 10.1364/Ao.47.001269

    20. [20]

      Slavik, R.; Homola, J.; Ctyroky, J. Sen. Actuator B-Chem. 1999, 54, 74. doi: 10.1016/S0925-4005(98)00314-1  doi: 10.1016/S0925-4005(98)00314-1

    21. [21]

      Piliarik, M.; Homola, J.; Manı́ková, Z.; Čtyroký, J. Sen. Actuator B-Chem. 2003, 90, 236. doi: 10.1016/s0925-4005(03)00034-0  doi: 10.1016/s0925-4005(03)00034-0

    22. [22]

      Wu, D. K. C.; Kuhlmey, B. T.; Eggleton, B. J. Opt. Lett. 2009, 34, 322. doi: 10.1364/Ol.34.000322  doi: 10.1364/Ol.34.000322

    23. [23]

      Wu, L.; Chu, H. S.; Koh, W. S.; Li, E. P. Opt. Express 2010, 18, 14395. doi: 10.1364/Oe.18.014395  doi: 10.1364/Oe.18.014395

    24. [24]

      Wo, J. H.; Wang, G. H.; Cui, Y.; Sun, Q. Z.; Liang, R. B.; Shum, P. P.; Liu, D. M. Opt. Lett. 2012, 37, 67. doi: 10.1364/Ol.37.000067  doi: 10.1364/Ol.37.000067

    25. [25]

      Patnaik, A.; Senthilnathan, K.; Jha, R. IEEE Photon. Technol. Lett. 2015, 27, 2437. doi: 10.1109/Lpt.2015.2467189  doi: 10.1109/Lpt.2015.2467189

    26. [26]

      Tan, Y. C.; Tou, Z. Q.; Chow, K. K.; Chan, C. C. Opt. Express 2015, 23, 31286. doi: 10.1364/Oe.23.031286  doi: 10.1364/Oe.23.031286

    27. [27]

      Liang, H.; Shen, T.; Feng, Y.; Xia, Z. T.; Liu, H. C. IEEE Photon. J. 2020, 12, 1. doi: 10.1109/Jphot.2020.2987809  doi: 10.1109/Jphot.2020.2987809

    28. [28]

      Li, J. X.; Tong, Z. R.; Jing, L.; Zhang, W. H.; Qin, J.; Liu, J. W. Opt. Commun. 2020, 467, 125707. doi: 10.1016/j.optcom.2020.125707  doi: 10.1016/j.optcom.2020.125707

    29. [29]

      Paul, A. K.; Mollah, M. A.; Hassan, M. Z.; Gomez-Cardona, N.; Reyes-Vera, E. Photonics 2021, 8, 155. doi: 10.3390/photonics8050155  doi: 10.3390/photonics8050155

    30. [30]

      Chen, K.; Zhou, X.; Cheng, X.; Qiao, R. X.; Cheng, Y.; Liu, C.; Xie, Y. D.; Yu, W. T.; Yao, F. R.; Sun, Z. P.; et al. Nat. Photon. 2019, 13, 754. doi: 10.1038/s41566-019-0492-5  doi: 10.1038/s41566-019-0492-5

    31. [31]

      Ang, P. K.; Chen, W.; Wee, A. T. S.; Loh, K. P. J. Am. Chem. Soc. 2008, 130, 14392. doi: 10.1021/ja805090z  doi: 10.1021/ja805090z

    32. [32]

      Chen, G.; Paronyan, T. M.; Harutyunyan, A. R. Appl. Phys. Lett. 2012, 101, 053119. doi: 10.1063/1.4742327  doi: 10.1063/1.4742327

    33. [33]

      Gautam, M.; Jayatissa, A. H. J. Appl. Phys. 2012, 112, 064304. doi: 10.1063/1.4752272  doi: 10.1063/1.4752272

    34. [34]

      Hayasaka, T.; Lin, A.; Copa, V. C.; Lopez, L. P.; Loberternos, R. A.; Ballesteros, L. I. M.; Kubota, Y.; Liu, Y.; Salvador, A. A.; Lin, L. Microsyst. Nanoeng. 2020, 6, 1. doi: 10.1038/s41378-020-0161-3  doi: 10.1038/s41378-020-0161-3

    35. [35]

      Horng, J.; Balch, H. B.; McGuire, A. F.; Tsai, H. Z.; Forrester, P. R.; Crommie, M. F.; Cui, B.; Wang, F. Nat. Commun. 2016, 7, 13704. doi: 10.1038/ncomms13704  doi: 10.1038/ncomms13704

    36. [36]

      Hu, N.; Yang, Z.; Wang, Y.; Zhang, L.; Wang, Y.; Huang, X.; Wei, H.; Wei, L.; Zhang, Y. Nanotechnology 2014, 25, 025502. doi: 10.1088/0957-4484/25/2/025502  doi: 10.1088/0957-4484/25/2/025502

    37. [37]

      Lin, X.; Ni, J.; Fang, C. J. Appl. Phys. 2013, 113, 034306. doi: 10.1063/1.4776239  doi: 10.1063/1.4776239

    38. [38]

      Mortazavi Zanjani, S. M.; Sadeghi, M. M.; Holt, M.; Chowdhury, S. F.; Tao, L.; Akinwande, D. Appl. Phys. Lett. 2016, 108, 033106. doi: 10.1063/1.4940128  doi: 10.1063/1.4940128

    39. [39]

      Yavari, F.; Castillo, E.; Gullapalli, H.; Ajayan, P. M.; Koratkar, N. Appl. Phys. Lett. 2012, 100, 203120. doi: 10.1063/1.4720074  doi: 10.1063/1.4720074

  • 加载中
    1. [1]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    2. [2]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    3. [3]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    4. [4]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    5. [5]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    6. [6]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    7. [7]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    8. [8]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    9. [9]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    10. [10]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    11. [11]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    14. [14]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    15. [15]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    16. [16]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    17. [17]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    18. [18]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    19. [19]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    20. [20]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

Metrics
  • PDF Downloads(9)
  • Abstract views(493)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return