Citation: Yue Huang, Feifei Mei, Jinfeng Zhang, Kai Dai, Graham Dawson. Construction of 1D/2D W18O49/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic H2 Evolution[J]. Acta Physico-Chimica Sinica, ;2022, 38(7): 210802. doi: 10.3866/PKU.WHXB202108028 shu

Construction of 1D/2D W18O49/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic H2 Evolution

  • Corresponding author: Jinfeng Zhang, jfzhang@chnu.edu.cn Kai Dai, daikai940@chnu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 19 August 2021
    Revised Date: 30 August 2021
    Accepted Date: 4 September 2021
    Available Online: 9 September 2021

    Fund Project: the National Natural Science Foundation of China 51572103the National Natural Science Foundation of China 51973078the Distinguished Young Scholar of Anhui Province, China 1808085J14the Major projects of Education Department of Anhui Province, China KJ2020ZD005

  • Photocatalytic hydrogen production is an effective strategy for addressing energy shortage and converting solar energy into chemical energy. Exploring effective strategies to improve photocatalytic H2 production is a key challenge in the field of energy conversion. There are numerous oxygen vacancies on the surface of non-stoichiometric W18O49 (WO), which result in suitable light absorption performance, but the hydrogen evolution effect is not ideal because the band potential does not reach the hydrogen evolution potential. A suitable heterojunction is constructed to optimize defects such as high carrier recombination rate and low photocatalytic performance in a semiconductor. Herein, 2D porous carbon nitride (PCN) is synthesized, followed by the in situ growth of 1D WO on the PCN to realize a step-scheme (S-scheme) heterojunction. When WO and PCN are composited, the difference between the Fermi levels of WO and PCN leads to electron migration, which balances the Fermi levels of WO and PCN. Electron transfer leads to the formation of an interfacial electric field and bends the energy bands of WO and PCN, thereby resulting in the recombination of unused electrons and holes while leaving used electrons and holes, which can accelerate the separation and charge transfer at the interface and endow the WO/PCN system with better redox capabilities. In addition, PCN with a porous structure provides more catalytic active sites. The photocatalytic performance of the sample can be investigated using the amount of hydrogen released. Compared to WO and PCN, 20%WO/PCN composite has a higher H2 production rate (1700 μmol·g-1·h-1), which is 56 times greater than that of PCN (30 μmol·g-1·h-1). This study shows the possibility of the application of S-scheme heterojunction in the field of photocatalytic H2 production.
  • 加载中
    1. [1]

      Ren, Y.; Li, Y.; Wu, X.; Wang, J.; Zhang, G. Chin. J. Catal. 2021, 42, 69. doi: 10.1016/s1872-2067(20)63631-2  doi: 10.1016/s1872-2067(20)63631-2

    2. [2]

      Kuang, P.; Wang, Y.; Zhu, B.; Xia, F.; Tung, C. W.; Wu, J.; Chen, H. M.; Yu, J. Adv. Mater. 2021, 33, 2008599. doi: 10.1002/adma.202008599  doi: 10.1002/adma.202008599

    3. [3]

      Zhang, Y.; Xu, J.; Mei, J.; Sarina, S.; Wu, Z.; Liao, T.; Yan, C.; Sun, Z. J. Hazard. Mater. 2020, 394, 122529. doi: 10.1016/j.jhazmat.2020.122529  doi: 10.1016/j.jhazmat.2020.122529

    4. [4]

      He, R.; Chen, R.; Luo, J.; Zhang, S.; Xu, D. Acta Phys. -Chim. Sin. 2021, 37, 2011022.  doi: 10.3866/PKU.WHXB202011022

    5. [5]

      Su, Q.; Li, Y.; Hu, R.; Song, F.; Liu, S.; Guo, C.; Zhu, S.; Liu, W.; Pan, J. Adv. Sustain. Syst. 2020, 4, 2000130. doi: 10.1002/adsu.202000130  doi: 10.1002/adsu.202000130

    6. [6]

      Li, Z.; Huang, W.; Liu, J.; Lv, K.; Li, Q. ACS Catal. 2021, 11, 8510. doi: 10.1021/acscatal.1c02018  doi: 10.1021/acscatal.1c02018

    7. [7]

      Zhao, Y.; Shao, C.; Lin, Z.; Jiang, S.; Song, S. Small 2020, 16, 2000944. doi: 10.1002/smll.202000944  doi: 10.1002/smll.202000944

    8. [8]

      Liu, H.; Yu, J.; Chen, Y.; Zhou, Z.; Xiong, G.; Zeng, L.; Li, H.; Liu, Z.; Zhao, L.; Wang, J.; et al. ACS Appl. Mater. Interfaces 2020, 12, 2362. doi: 10.1021/acsami.9b17216  doi: 10.1021/acsami.9b17216

    9. [9]

      Moniruddin, M.; Oppong, E.; Stewart, D.; McCleese, C.; Roy, A.; Warzywoda, J.; Nuraje, N. Inorg. Chem. 2019, 58, 12325. doi: 10.1021/acs.inorgchem.9b01854  doi: 10.1021/acs.inorgchem.9b01854

    10. [10]

      Mo, Z.; Xu, H.; She, X.; Song, Y.; Yan, P.; Yi, J.; Zhu, X.; Lei, Y.; Yuan, S.; Li, H. Appl. Surf. Sci. 2019, 467, 151. doi: 10.1016/j.apsusc.2018.10.115  doi: 10.1016/j.apsusc.2018.10.115

    11. [11]

      Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, R.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2021, 37, 2010059.  doi: 10.3866/PKU.WHXB202010059

    12. [12]

      Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11, 4613. doi: 10.1038/s41467-020-18350-7  doi: 10.1038/s41467-020-18350-7

    13. [13]

      Kshirsagar, A. S.; Khanna, P. K. Mater. Chem. Front. 2019, 3, 437. doi: 10.1039/c8qm00537k  doi: 10.1039/c8qm00537k

    14. [14]

      Lin, J.; Sun, T.; Li, M.; Yang, J.; Shen, J.; Zhang, Z.; Wang, Y.; Zhang, X.; Wang, X. J. Catal. 2019, 372, 8. doi: 10.1016/j.jcat.2019.02.019  doi: 10.1016/j.jcat.2019.02.019

    15. [15]

      Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Chin. J. Catal. 2021, 42, 56. doi: 10.1016/s1872-2067(20)63634-8  doi: 10.1016/s1872-2067(20)63634-8

    16. [16]

      Mei, Z.; Wang, G.; Yan, S.; Wang, J. Acta Phys. -Chim. Sin. 2021, 37, 2009097.  doi: 10.3866/PKU.WHXB202009097

    17. [17]

      Wu, Q.; Cheng, Y.; Huang, F.; Li, X.; Cui, X.; Xu, J.; Wang, Y. J. Hazard. Mater. 2019, 374, 287. doi: 10.1016/j.jhazmat.2019.04.035  doi: 10.1016/j.jhazmat.2019.04.035

    18. [18]

      Meng, A.; Cheng, B.; Tan, H.; Fan, J.; Su, C.; Yu, J. Appl. Catal. B 2021, 289, 120039. doi: 10.1016/j.apcatb.2021.120039  doi: 10.1016/j.apcatb.2021.120039

    19. [19]

      Jeon, J. P.; Kweon, D. H.; Jang, B. J.; Ju, M. J.; Baek, J. B. Adv. Sustain. Syst. 2020, 4, 2000197. doi: 10.1002/adsu.202000197  doi: 10.1002/adsu.202000197

    20. [20]

      Xiao, Y.; Tao, X.; Qiu, G.; Dai, Z.; Gao, P.; Li, B. J. Colloid Interface Sci. 2019, 550, 99. doi: 10.1016/j.jcis.2019.04.081  doi: 10.1016/j.jcis.2019.04.081

    21. [21]

      Jiang, M.; Li, C.; Huang, K.; Wang, Y.; Liu, J. H.; Geng, Z.; Hou, X.; Shi, J.; Feng, S. ACS Appl. Mater. Interfaces 2020, 12, 35113. doi: 10.1021/acsami.0c11072  doi: 10.1021/acsami.0c11072

    22. [22]

      Shen, C. H.; Wen, X. J.; Fei, Z. H.; Liu, Z. T.; Mu, Q. M. J. Colloid Interface Sci. 2020, 579, 297. doi: 10.1016/j.jcis.2020.06.075  doi: 10.1016/j.jcis.2020.06.075

    23. [23]

      Zhang, N.; Jalil, A.; Wu, D.; Chen, S.; Liu, Y.; Gao, C.; Ye, W.; Qi, Z.; Ju, H.; Wang, C.; et al. J. Am. Chem. Soc. 2018, 140, 9434. doi: 10.1021/jacs.8b02076  doi: 10.1021/jacs.8b02076

    24. [24]

      Zhang, M.; Cheng, G.; Wei, Y.; Wen, Z.; Chen, R.; Xiong, J.; Li, W.; Han, C.; Li, Z. J. Colloid Interface Sci. 2020, 572, 306. doi: 10.1016/j.jcis.2020.03.090  doi: 10.1016/j.jcis.2020.03.090

    25. [25]

      Wang, B.; Chen, C.; Jiang, Y.; Ni, P.; Zhang, C.; Yang, Y.; Lu, Y.; Liu, P. Chem. Eng. J. 2021, 412, 128690. doi: 10.1016/j.cej.2021.128690  doi: 10.1016/j.cej.2021.128690

    26. [26]

      Wang, K.; Li, J.; Zhang, G. ACS Appl. Mater. Interfaces 2019, 11, 27686. doi: 10.1021/acsami.9b05074  doi: 10.1021/acsami.9b05074

    27. [27]

      Huo, Y.; Zhang, J.; Wang, Z.; Dai, K.; Pan, C.; Liang, C. J. Colloid Interface Sci. 2021, 585, 684. doi: 10.1016/j.jcis.2020.10.048  doi: 10.1016/j.jcis.2020.10.048

    28. [28]

      Qin, D.; Xia, Y.; Li, Q.; Yang, C.; Qin, Y.; Lv, K. J. Mater. Sci. Technol. 2020, 56, 206. doi: 10.1016/j.jmst.2020.03.034  doi: 10.1016/j.jmst.2020.03.034

    29. [29]

      Liu, D.; Zhang, S.; Wang, J.; Peng, T.; Li, R. ACS Appl. Mater. Interfaces 2019, 11, 27913. doi: 10.1021/acsami.9b08329  doi: 10.1021/acsami.9b08329

    30. [30]

      Liang, Y.; Xu, W.; Fang, J.; Liu, Z.; Chen, D.; Pan, T.; Yu, Y.; Fang, Z. Appl. Catal. B 2021, 295, 120279. doi: 10.1016/j.apcatb.2021.120279  doi: 10.1016/j.apcatb.2021.120279

    31. [31]

      Zhang, B.; Hu, X.; Liu, E.; Fan, J. Chin. J. Catal. 2021, 42, 1519. doi: 10.1016/s1872-2067(20)63765-2  doi: 10.1016/s1872-2067(20)63765-2

    32. [32]

      Mei, F.; Li, Z.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2020, 41, 41. doi: 10.1016/s1872-2067(19)63389-9  doi: 10.1016/s1872-2067(19)63389-9

    33. [33]

      Yang, Y.; Zhang, D.; Fan, J.; Liao, Y.; Xiang, Q. Sol. RRL 2020, 5, 2000351. doi: 10.1002/solr.202000351  doi: 10.1002/solr.202000351

    34. [34]

      Li, Q.; Zhao, W.; Zhai, Z.; Ren, K.; Wang, T.; Guan, H.; Shi, H. J. Mater. Sci. Technol. 2020, 56, 216. doi: 10.1016/j.jmst.2020.03.038  doi: 10.1016/j.jmst.2020.03.038

    35. [35]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317  doi: 10.1002/adma.202100317

    36. [36]

      Liu, L.; Dai, K.; Zhang, J.; Li, L. J. Colloid Interface Sci. 2021, 604, 844. doi: 10.1016/j.jcis.2021.07.064  doi: 10.1016/j.jcis.2021.07.064

    37. [37]

      He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Chin. J. Catal. 2020, 41, 9. doi: 10.1016/s1872-2067(19)63382-6  doi: 10.1016/s1872-2067(19)63382-6

    38. [38]

      Ke, X.; Zhang, J.; Dai, K.; Fan, K.; Liang, C. Sol. RRL 2021, 5, 2000805. doi: 10.1002/solr.202000805  doi: 10.1002/solr.202000805

    39. [39]

      He, R.; Liu, H.; Liu, H.; Xu, D.; Zhang, L. J. Mater. Sci. Technol. 2020, 52, 145. doi: 10.1016/j.jmst.2020.03.027  doi: 10.1016/j.jmst.2020.03.027

    40. [40]

      Chen, R.; Li, D.; Fang, Z.; Huang, Y.; Luo, B.; Shi, W. Acta Phys. -Chim. Sin. 2020, 36, 1903047.  doi: 10.3866/PKU.WHXB201903047

    41. [41]

      Li, X.; Mei, F.; Zhang, J.; Dai, K.; Liang, C. Appl. Surf. Sci. 2020, 507, 145213. doi: 10.1016/j.apsusc.2019.145213  doi: 10.1016/j.apsusc.2019.145213

    42. [42]

      Zhuang, Y.; Liu, Y.; Meng, X. Appl. Surf. Sci. 2019, 496, 143647. doi: 10.1016/j.apsusc.2019.143647  doi: 10.1016/j.apsusc.2019.143647

    43. [43]

      Peng, J.; Shen, J.; Yu, X.; Tang, H.; Zulfiqar; Liu, Q. Chin. J. Catal. 2021, 42, 87. doi: 10.1016/s1872-2067(20)63595-1  doi: 10.1016/s1872-2067(20)63595-1

    44. [44]

      Li, Q.; Shi, T.; Li, X.; Lv, K.; Li, M.; Liu, F.; Li, H.; Lei, M. Appl. Catal. B 2018, 229, 8. doi: 10.1016/j.apcatb.2018.01.078  doi: 10.1016/j.apcatb.2018.01.078

    45. [45]

      Vu, M. H.; Nguyen, C. C.; Do, T. O. ACS Sustain. Chem. Eng. 2020, 8, 12321. doi: 10.1021/acssuschemeng.0c04662  doi: 10.1021/acssuschemeng.0c04662

    46. [46]

      Yang, Y.; Zhang, X.; Niu, C.; Feng, H.; Qin, P.; Guo, H.; Liang, C.; Zhang, L.; Liu, H.; Li, L. Appl. Catal. B 2020, 264, 118465. doi: 10.1016/j.apcatb.2019.118465  doi: 10.1016/j.apcatb.2019.118465

    47. [47]

      Sun, S.; Gou, X.; Tao, S.; Cui, J.; Li, J.; Yang, Q.; Liang, S.; Yang, Z. Mater. Chem. Front. 2019, 3, 597. doi: 10.1039/c8qm00577j  doi: 10.1039/c8qm00577j

    48. [48]

      Yan, J.; Wang, C.; Ma, H.; Li, Y.; Liu, Y.; Suzuki, N.; Terashima, C.; Fujishima, A.; Zhang, X. Appl. Catal. B 2020, 268, 118401. doi: 10.1016/j.apcatb.2019.118401  doi: 10.1016/j.apcatb.2019.118401

    49. [49]

      Li, X.; Zhang, J.; Huo, Y.; Dai, K.; Li, S.; Chen, S. Appl. Catal. B 2021, 280, 119452. doi: 10.1016/j.apcatb.2020.119452  doi: 10.1016/j.apcatb.2020.119452

    50. [50]

      Xie, Y.; Zhuo, Y.; Liu, S.; Lin, Y.; Zuo, D.; Wu, X.; Li, C.; Wong, P. K. Sol. RRL 2020, 4, 1900440. doi: 10.1002/solr.201900440  doi: 10.1002/solr.201900440

    51. [51]

      Hu, T.; Dai, K.; Zhang, J.; Chen, S. Appl. Catal. B 2020, 269, 118844. doi: 10.1016/j.apcatb.2020.118844  doi: 10.1016/j.apcatb.2020.118844

    52. [52]

      Liu, Y.; Liu, H.; Zhou, H.; Li, T.; Zhang, L. Appl. Surf. Sci. 2019, 466, 133. doi: 10.1016/j.apsusc.2018.10.027  doi: 10.1016/j.apsusc.2018.10.027

    53. [53]

      Xu, X.; Luo, F.; Tang, W.; Hu, J.; Zeng, H.; Zhou, Y. Adv. Funct. Mater. 2018, 28, 1804055. doi: 10.1002/adfm.201804055  doi: 10.1002/adfm.201804055

    54. [54]

      Deng, Y.; Tang, L.; Feng, C.; Zeng, G.; Chen, Z.; Wang, J.; Feng, H.; Peng, B.; Liu, Y.; Zhou, Y. Appl. Catal. B 2018, 235, 225. doi: 10.1016/j.apcatb.2018.04.075  doi: 10.1016/j.apcatb.2018.04.075

    55. [55]

      Fei, X.; Zhang, L.; Yu, J.; Zhu, B. Front. Nanotechnol. 2021, 3, 698351. doi: 10.3389/fnano.2021.698351  doi: 10.3389/fnano.2021.698351

    56. [56]

      Liu, Y.; Hao, X.; Hu, H.; Jin, Z. Acta Phys. -Chim. Sin. 2021, 37, 2008030.  doi: 10.3866/PKU.WHXB202008030

    57. [57]

      Zhu, B.; Tan, H.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. J. Materiomics 2021, 7, 988. doi: 10.1016/j.jmat.2021.02.015  doi: 10.1016/j.jmat.2021.02.015

    58. [58]

      Wageh, S.; Ahmed A., A. G. a.; Rashida, J.; Xin, L.; Peng, Z. Chin. J. Catal. 2021, 42, 667. doi: 10.1016/S1872-2067(20)63705-6  doi: 10.1016/S1872-2067(20)63705-6

    59. [59]

      Bao, Y.; Song, S.; Yao, G.; Jiang, S. Sol. RRL 2021, 5, 2100118. doi: 10.1002/solr.202100118  doi: 10.1002/solr.202100118

    60. [60]

      Shen, R.; Lu, X.; Zheng, Q.; Chen, Q.; Ng, Y. H.; Zhang, P.; Li, X. Sol. RRL 2021, 5, 2100177. doi: 10.1002/solr.202100177  doi: 10.1002/solr.202100177

    61. [61]

      Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012  doi: 10.1002/anie.201916012

    62. [62]

      Liu, L.; Hu, T.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2021, 42, 46. doi: 10.1016/s1872-2067(20)63560-4  doi: 10.1016/s1872-2067(20)63560-4

    63. [63]

      Wang, R.; Shen, J.; Zhang, W.; Liu, Q.; Zhang, M.; Zulfiqar; Tang, H. Ceram. Int. 2020, 46, 23. doi: 10.1016/j.ceramint.2019.08.226  doi: 10.1016/j.ceramint.2019.08.226

    64. [64]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    65. [65]

      Wageh, S.; Al-Ghamdi, A. A.; Liu, L. Acta Phys. -Chim. Sin. 2021, 37, 2010024. Wageh, S., Al-Ghamdi, A. A.,

    66. [66]

      Xiang, X.; Zhu, B.; Cheng, B.; Yu, J.; Lv, H. Small 2020, 16, 2001024. doi: 10.1002/smll.202001024  doi: 10.1002/smll.202001024

  • 加载中
    1. [1]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    2. [2]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    3. [3]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    4. [4]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    5. [5]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    6. [6]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    7. [7]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    8. [8]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    9. [9]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    10. [10]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    11. [11]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    12. [12]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    13. [13]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    15. [15]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    16. [16]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    17. [17]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    20. [20]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

Metrics
  • PDF Downloads(77)
  • Abstract views(1323)
  • HTML views(463)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return